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Abstract—One of the new methods that used in Voice activity 

detection (VAD) systems is estimating the Probability Distribution 
Function (PDF) of the speech signal. This estimation becomes hard in 
noisy environments especially low value of Signal-to-Noise Ratios 
(SNR). This paper studies on three types of PDFs and selects one of 
them to modify and approximate the original signal. Then we 
compare the results of this PDF before and after modification. 
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I. INTRODUCTION 
HE process of separating conversational speech and 

silence is called the voice activity detection (VAD) [1]. In 
communications systems based on variable bit rate speech 
coders, it represents the most important block, reducing the 
average bit rate; in a cellular radio system using the 
discontinuous transmission (DTX) mode, a VAD is able to 
increase the number of users and power consumption in 
portable equipment. Unfortunately, a VAD is far from 
efficient, especially when it is operating in adverse acoustic 
conditions [8-10]. 

In early VAD algorithms, short-term energy, zero-crossing 
rate and LPC coefficients were among the common features 
used for speech detection [11]. Cepstral features [12], formant 
shape [13], and least-square periodicity measure [14] are some 
of the more recent metrics used in VAD designs. In the 
recently proposed G.729B VAD [15], a set of metrics 
including line spectral frequencies (LSF), low band energy, 
zero-crossing rate and full-band energy is used along with 
heuristically determined regions and boundaries to make a 
VAD decision for each 10 ms frame. 

When In order to improve the detection accuracy in low 
SNR case, especially when the noise is nonstationary, some 
robust VAD algorithms have been proposed. In [16] and [17], 
a voice detection algorithm based on a pattern recognition 
approach in which the matching phase is performed by a set of 
six fuzzy rules, namely, Fuzzy VAD, is introduced. In [18], a 
fusion algorithm which combines the geometrically adaptive 
energy threshold (GAET) method [19] and the Least-square 
periodicity estimator method [20] was proposed. The GAET 
method keeps track of the nonstationary background noise 
while the LSPE analyzes the periodical content of the 
incoming signal. Both of the two algorithms are shown to 
operate reliably down to very low SNR cases, say, 0 dB or 

even -5 dB. 

 
 

Recently, attempts have been made to develop a statistical 
model-based VAD [21], [22]. These schemes adopt the model 
proposed by Ephraim and Malah. The model assumes Fourier 
coefficients are statistically independent Gaussian random 
variables [4] and is motivated by the central limit theorem. 
Using this model a likelihood ratio is developed and a 
statistical hypothesis test conducted. 

The formulation of the hypothesis test presents some 
problem. It indicates two key parameters need to be 
determined, namely the a priori and a posteriori signal-to-
noise ratios [4]. The problem of determining the a priori 
signal-to-noise ratio is addressed by estimating MMSE speech 
spectral amplitudes. This estimation however is undesirable, 
introducing complexity and a computational burden. The a 
posteriori signal-to-noise ratio is estimated using a scaled 
periodogram. Both ratios further depend on an estimate of the 
variance of the Fourier coefficients during periods of noise. 
This variance is either determined a priori or estimated using 
an exponential average of a scaled periodogram [5]. 

Further, the issue of determining the threshold for the 
hypothesis test is ignored. Bayesian hypothesis testing 
indicates a threshold should be determined on the basis of a 
cost or risk function [23]. This however requires a priori 
knowledge of the probabilities of occurrence of each 
hypothesis, which in this case makes determining a threshold 
in this manner impractical. Cho et al. addressed this and 
indicated a region for the threshold, but gave no specific 
analysis [22]. In general the threshold is set by some heuristic 
rule. 

The schemes were reported to produce good results in both 
babble and vehicle noise. Sohn et al. also evaluated the 
scheme in Gaussian noise; however, results indicated a 
declining performance below 15 dB [21]. This is due, at least 
in part, to the method of estimation of the key parameters 
outlined earlier, namely a scaled periodogram. The 
periodogram is well known to be an inconsistent spectral 
estimator [24]. Typically it is shown that the variance is 
approximately the same size as the square of the power 
spectrum that is being estimated, and does not decrease with 
increasing data length. This high variance contributes to the 
reduced performance in white noise. 

Another statistical scheme has been developed by McKinley 
and Whipple [25]. This scheme, in contrast to other statistical 
methods compares second-order statistics of the signal to 
models.

T 
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Fig. 1 Histogram of SNR measure in Gaussian noise environment for each frequency bin fn 

 
    Speech models are estimated from a large speech set 
developed off-line, and noise models are estimated during an 
initial silence period. The scheme was reported to produce 
good results in a range of environments; however, only a small 
test set was used. Further, the scheme is computationally 
expensive and complex. 

In this paper, the candidate models are the distribution of 
the spectral components under various noisy conditions. Not 
only the traditional Gaussian PDF but also the complex 
Laplacian and Gamma PDFs are applied to represent the 
distribution of each Discrete Fourier Transform (DFT) 
coefficients. We extend the PDFs described in [2] in low 
SNRs. At the end, we consider a set of correction coefficients 
to improve the performance of the estimation. 

II. STATISTICAL MODEL FOR NOISY SPEECH 
In order to validate this, the PDF of speech signal was 

experimentally calculated in a range of noise environments. 
The measure was found to follow closely a Gaussian 
distribution in stationary noise environments such as Gaussian 
noise, pink noise, and HF channel noise as taken from the 
NOISEX-92 database. In highly variable environments such as 
babble and vehicle noise, the assumption is violated. 
Normalized histograms along with a Gaussian fit with zero 
mean can be seen in Figs. 1–3. The figures represent the 
Gaussian, vehicle, and babble noise environments as taken 
from the NOISEX-92 database. The effect of the Gaussian 
assumption failing is reduced performance in the affected 
environment. This is generally manifested as false alarms, due 
to the long tails on the probability density function (pdf). This 
phenomenon can be seen in the evaluation where the babble 
noise environments is considered. 

 
In this section we extend the hypothesis of Gaussian PDF 

and study the best performance of Gamma, Laplacian and 
Gaussian   distributions   especially   in low SNR. Then we 
evaluate the error function of the best distribution to modify 
the false alarm.  

The first distribution is Gaussian PDF. We assume that the 
noise signal n(t) is added to the speech signal x(t), with their 
sum being denoted by y(t) in time domain. y(t) is transformed 
by the Discrete Fourier Transform (DFT) as follows: 

)()()( tNtXtY ==                            (1) 
where: 

(t)]N,…(t),N(t),[N=N(t)
(t)],X,…(t),X(t),[X=X(t)

(t)],Y,…(t),Y(t),[Y=Y(t)

m21

m21

m21
 

denote the DFT factors of the noisy speech signal, clean 
speech, and the added noise. Given two classes, H0 and H1 
which, respectively, indicate speech presence and absence, it 
is assumed that: 

(t)N+(t)X=(t)Y :presentspeech  :H
(t)N=(t)Y :absentspeech  :H        

KKK1

KK0  

With the Gaussian PDF assumption, the distributions of the 
noisy spectral components conditioned on both hypotheses are 
given by: 
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Fig. 2 Histogram of SNR measure in Vehicle noise environment for each frequency bin fn 

 
where λx,k and λn,k indicate the variances of noise and speech 
for the individual frequency band, respectively. 
The second distribution is the complex Laplacian PDF. The 
real and imaginary parts of each DFT coefficients are assumed 
to be distributed according to a real Laplacian PDF. Let Xk(R) 
and Xk(I) denote the real and imaginary parts, respectively, of 
the DFT coefficients Xk.  

If both the real and imaginary parts have the same 
variances and assume to be independent [3], the distribution 
p(Xk) of Xk turns out to be: 
 

}
|)k(I)X||k(R)X2(|-

exp{2
x

1=                     

)  k(I)(X L).p  k(R)(X Lp =) k(X Lp

xσσ

+  (4) 

From this equation, the distributions of the DFT coefficients 
under the respective hypotheses are given by [4]: 

} 
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The last statistical model is described in terms of the 
complex Gamma PDF.  

If the real and imaginary parts assumed to be independent 
of each other as in the Laplacian case, the distribution of a 
DFT coefficient Xk is then given by: 
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Applying this equation in two hypotheses H0 and H1, which 
described it above, we have the distributions of the DFT 
coefficients as follows: 
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Fig. 3 Histogram of SNR measure in Babble noise environment for each frequency bin fn 

III. MODIFYING STATISTICAL MODEL FOR               
NONSTATIONARY NOISE 

In [4] it has been shown a good performance in high SNR, 
because the threshold depends only on the background noise 
statistics. The lower variance in a particular spectral bin 
requires the lower threshold [26].  

The system performance will be better under the less time 
variable background noise. However, as the SNR becomes 
lower, the fundamental assumption in which there will be a 
significant shift in mean during periods of speech becomes 
weaker.  

The hangover scheme in [4] caused a lower performance and 
time consumption in non-stationary noise. We present the 
overall performance of the proposed statistical model-based 
VAD.  

The values of speech detection probability (Pd) for these 
three models has been shown in Figs. 4-7 where the VAD 
algorithms were applied to the speech data corrupted by the 
aforementioned noises at a variety of SNRs (-10, -5, 0 and 5 
dB).  

The choice of the value of parameters kL and kM for 
Laplacian and Gamma models, respectively - that describe 
above - in 5dB SNR shows that the best choices for these 
parameters are kL=0.9 and kM=0.9 for Laplacian and Gamma 
model respectively [4]. From the obtaining results, we could 
obtain the following observations: 
- In the case of the white noise, the Laplacian model-based 

VAD algorithm outperformed the other approaches. Also,  
 

 
 
the Gamma model-based resulted in a better performance  
than that of the Gaussian model in the most tested 
conditions. For example Fig. 4a shows the speech detection 
probability in 5dB SNR and we have a good probability for 
Laplacian and Gamma PDFs.  
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Fig. 4 Speech detection probability in white noise in (a) 5 dB, 

(b) 0 dB, (c) -5 dB and (d) -10 dB 
 

It is observed in the Figs. 1(a-d), for different SNR values, 
Laplacian and Gamma PDFs have same probability but 
Laplacian is better. 

- In contrast, from the Pd’s shown in Figs. 2(a-d) looks 
relatively close to each other in the case of the vehicular 
noise. However, it is observed that the Gamma model-based 
VAD algorithm demonstrates a slightly better performance 
than the other models. In the case of the vehicle noise, the 
Laplacian model-based VAD algorithm has a same 
performance with Gamma algorithm. Also, both of these 
model-based resulted in a better performance than that of the 
Gaussian model in the most tested conditions. For high 
SNRs, thus shown in the Fig. 5a and Fig. 5b we have good 
and same performance in all three PDFs. Fig. 5c and Fig. 5d 
show the speech detection probability in low SNRs and we 
have a same probability for Laplacian and Gamma PDFs. 
But the Gaussian PDF is worst. 
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Fig. 5 Speech detection probability in vehicle noise in (a) 5 

dB, (b) 0 dB, (c) -5 dB and (d) -10 dB 
 
In the above Figures, it could be resulted in that the 

performance of all PDFs type in respect of white noise 
decreased. But in general, it seems good for Laplacian and 
Gamma model-based VAD. 

- As shown in Figs. 6(a-d), for the babble noise, the VAD 
algorithm incorporating the Laplacian model yielded a 
performance superior to both the Gamma and Gaussian 
PDFs. Moreover, the performance difference became larger 
as the SNR decreased. Also, both of these model-based 
resulted in a better performance than that of the Gaussian 
model in the most tested conditions. For high SNRs, as 
shown in the Fig. 6a and Fig. 6b we have good and same 
performance in all three PDFs. Fig. 6c and Fig. 6d show the 
speech detection probability in low SNRs and we have a 
same probability for Laplacian and Gamma PDFs. But the 
Gaussian PDF is worst. 
Babble noise is one of the hardest noises for separating and 
detecting the active parts of speech signal. This type of noise 
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Fig. 6 Speech detection probability in babble noise in (a) 5 

dB, (b) 0 dB, (c) -5 dB and (d) -10 dB 
 
has periodicity properties that make it hard for detection and 
the simulation is heavy and time consuming process. 

In these Figures, we have the worst performance in respect 
of other noises type and performance decreasing as SNR 
increased [26]. 

IV. CORRECTION FACTORS 
In this section, we propose a technique to adopt various 

factors for the Likelihood ratios (LRs) such as ck log Λk, which 
shows below, as we believe that incorporation of the different 
contributions of the LRs will increase the performance of the 
VAD [26]: 

⎭
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where knkxk ,, / λλξ =  and knkk Y ,/ λγ =  denote the a priori 
signal-to-noise ratio (SNR) and the a posteriori SNR, 
respectively [4]. The a posteriori SNR kγ  is estimated 

using kn,λ , and the a priori SNR is estimated by the well-
known Direct Decision (DD) method as follows [5]: 
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where the speech spectral amplitude estimate of the 
previous frame is obtained using the minimum mean-square 
error (MMSE) estimator [3]. Also, α is a weight determined in 
the range (0.95, 0.99) [1]. The function P[x]=x if  and 
P[x]=0 otherwise. The final decision in the conventional 
statistical model-based VADs has been established from the 
geometric mean of the LRs computed for the individual 
frequency bins [7] and is obtained by: 
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where an input frame is classified as speech presence if the 
geometric mean of the LRs is greater than a certain threshold 
value η  and speech absent otherwise. The factors ck, is 
needed to satisfy the following conditions: 

0,1
1

≥=∑
=

k

M

k
k c   c        (13) 

Let ∑
=

Λ=Λ
M

k
kkk c

M 1
log1

give the threshold value where  

 is: kc

∑
=

= M

i
k

k
k

c

cc

1
)~exp(

)~exp(
       (14) 

We therefore adopt the following parameter transformation, 
which is inversely transformed to : kc

kk cc log~ =         (15) 

Let denote the set of estimations for the transformed factors at 
time. Then, it is updated based on the steepest descent 
algorithms as follows: 
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k
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−=+ ε         (16) 

The GPD approach approximates the empirical classification 
error by a smooth objective function, which is the 0-1 step loss 
function defined by: 
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where γ  denotes the gradient of the sigmoid function. 
Therefore the reformed system performed by: 
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V. EXPERIMENTAL RESULTS  
In order to evaluate the performance of the proposed 

algorithm, we added the white, vehicular, and babble noises 
from the NOISEX-92 database [7] to the clean speech with 
varying SNR. The VAD test was carried out for each 10ms 
frame in length. 

The parameters used for defining the objective function L 
were selected such that 1=γ  and the step size for parameter 

update was set to 4000/)(t1−=ε . In practice, a threshold  
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Fig. 7 ROC curves and modified ROC curves for white noise in 5 dB, 0 dB, -5 dB, and -10 dB. 
—— the basic form of ROCs 
– – –  Modified form of ROCs 

 
value of the combined score was set to 0 as the experimentally 
chosen boundary in the middle of  stemming from speech 

and  stemming from noise. 
SΛ

NΛ
 As a result, Figs. 7, 8 and 9 show the ROC curves for the 

proposed algorithm compared with the conventional Laplacian 
methods using white, vehicle and babble noises, respectively, 

in     
in 5dB, 0dB, -5dB and -10dB. 

Finally, among the different sets of the factors, we selected 
only a single set of the factors as a representative case which 
is obtained based on an observation that the weights under 
each training condition seem to be quite similar. 

Fig. 7 represents the ROC curves for white noise in 5, 0, -5 
and -10dB SNR. In 5dB we have a good modification by 
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Fig. 8 ROC curves and modified ROC curves for vehicle noise in 5 dB, 0 dB, -5 dB, and -10 dB. 
—— the basic form of ROCs 
– – –  Modified form of ROCs 
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Fig. 9 ROC curves and modified ROC curves for babble noise in 5 dB, 0 dB, -5 dB, and -10 dB. 
—— the basic form of ROCs 
– – –  Modified form of ROCs 

 
means of correction factors and in the results in 0dB show that 
the modified version of 0dB is better that 5dB before 
modification and it has a good result. In low SNRs, -5 and      
-10dB, it can slightly modify the Laplacian PDF. Most types 

     

models under Low SNR conditions have made it possible to 
understand that the complex Laplacian and Gamma PDFs 
could be strong candidates for a parametric representation of 
the noisy speech spectra distribution. We select the Laplacian 
model and trying to improve its PDF. The results show a good 
modification especially in case of Gaussian and babble noise. 

Fig. 8 represents the ROC curves for vehicle noise in 5, 0,   
-5 and -10dB SNR. 

It is as same as the white noise. Also the total performance 
of correct detection in this type is generally better than white 
noise by means of correction factors and the results in 0dB 
also good for Laplacian-based VAD systems. In low SNRs, -5 
and -10dB, it can slightly modify the Laplacian PDF but it’s 
better in -5dB. The modification of speech signal in the 
vehicle noise seems good and we can use this method for 
various types of VAD systems. 

In all the three noise types, we have an increment in Speech 
Detection Probability when False-alarm Probability decreased. 

Fig. 9 represents the ROC curves for babble noise in 5, 0,    
-5 and -10dB SNR.  

In this case, the overall performance, in respect of white and 
vehicle noise, decreased. For 5dB and 0dB SNR we have a 
good modification for 0.1-0.5 False-alarm Probability and 
slight for low False-alarms. In low SNRs, for this test -5dB 
and -10dB, we can see some modification in 0.05-0.5 False-
alarm for -5dB and 0.2-0.5 for -10dB. 

Babble noise is one of the hardest noises for separating and 
detecting the active parts of speech signal. This type of noise 
has periodicity properties that make it hard for detection and 
the simulation is heavy and time consumption. 

VI. CONCLUSION 
An extensive study and experiments on the statistical  

 

In the future works we want to use the product of correction 
factors for modifying G.729 Annex B standard. This is the 
Voice Activity Detector (VAD) part of ITU-T standard. This 
standard has a lot of benefits but low performance in low 
SNRs. 
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