
 

 

 

Abstract—This paper proposes an anomaly detection scheme 

which is able to detect anomalies accurately by employing only 

important features of data signals, instead of using all the sensor data 

traces. The contribution of this paper centers on anomaly detection 

by using Discrete Wavelet Transform (DWT) combined with a 

competitive learning neural network called self-organizing map 

(SOM) in order to accurately detect abnormal data readings while 

using just half of the data size. Experiment results from synthetic and 

real data injected with synthetic faults collected from a WSN show 

that the proposed algorithm outperforms the SOM algorithm by up to 

18% and DWT algorithm by up to 35% in presence of bursty faults 

with marginal increase of false alarm rate. Furthermore, in the real-

world datasets experiments show that our proposed algorithm can 

maintain acceptable anomaly detection accuracy as well as the SOM 

algorithm while using just half of the input data. 

 

Keywords—Anomaly Detection, Discrete Wavelet Transform, 

Self-Organizing Map, Wireless Sensor Networks, Agriculture 

Monitoring.  

I. INTRODUCTION 

ireless sensor networks (WSNs) have been recently 

deployed in many areas of agriculture to increase yield 

and prevent outbreaks such as in hydroponics and paddy 

fields, fertilizer composting process, and livestock monitoring. 

However, these applications rely mainly on manually 

measuring and controlling the parameters such as moisture, 

temperature, pH, oxygen, soil nutrients, etc., which are both 

time consuming and laborious. Autonomous monitoring 

devices such as WSNs therefore warrant potential use in 

agriculture monitoring. 

     A WSN is a wireless network that consists of distributed 

autonomous devices using sensors to cooperatively monitor or 

collect environmental conditions at different locations. Several 

measurements can be collected from the WSN. The collected 

measurements from the WSN may be affected by anomalies in 

the sensor network. With the huge amount of data continually 

collected from the WSN, it becomes increasingly difficult to 

detect anomalies in the data measurements. Therefore, 

anomaly detection techniques are necessary to automatically 

detect faults and alert the system controller to take suitable 

action.  

Research emphasizing on anomaly detection in 

communication networks has progressed in recent years,e.g., in  

 
 

 

 

network traffic [1], [2], [3], in IP networks [4], in cellular 

mobile networks [5]. In general anomaly detection refers to the 

problem of finding patterns in data that do not conform to 

expected behavior [1]. Abnormal data patterns can be caused 

by faulty sensors in the network or unusual phenomena in the 

monitored domain. 

Anomalies caused by faulty sensor communications are 

presented in [6]. They proposed a distributed algorithm for 

detecting and isolating faulty sensor nodes in WSNs. Each 

sensor node identifies its own status based on local 

comparisons of sensed data with thresholds. Ref. [7] applied 4 

different anomaly detection techniques for different types of 

faults obtained in the real–world datasets, namely, NAMOS 

[8], INTEL [9] and SensorScope [10]. They classified these 

faults into 3 types, i.e., noise faults, short faults and constant 

faults. This research suggested that there is presently no known 

anomaly detection method suitable for every type of faults. 

Another application of anomaly detection is an unusual 

phenomenon in the monitored domain. Erroneous 

measurements may occur as a result of transducers drifting out 

of calibration, or from faults introduced by harsh 

environmental conditions. In a large network it is extremely 

difficult and time consuming to detect these erroneous 

measurements manually. In addition, energy is wasted in the 

network when forwarding the unwanted erroneous 

measurements to the base station for analysis. One solution to 

alleviate network energy consumption is to reduce the amount 

of data that needs to be communicated through the network. 

Energy is critical in WSNs, therefore anomaly detection 

methods in WSN must not only perform well but also demand 

low energy consumption. Distributed in-network processing 

can reduce transmission energy and eventually help prolong 

the overall network lifetime of the WSN [11]. Our work is 

motivated by this concept. In particular, we focus on reducing 

the amount of transmitted data by in-network processing for 

anomaly detection at the base station.  

  This paper considers anomalies caused by unusual 

phenomenon and faulty sensors. To detect these anomalies, a 

dynamic data classification scheme such as data mining 

method could be useful. 

Data mining is an expanding area of research in artificial 

neural network and information management whose objective 

is to extract relevant information from large databases. One 

particular method, called the self-organizing map (SOM), has 

several beneficial features which make it a useful tool in data 
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mining. In particular, it follows the probability density 

function of the data and is, thus, an efficient clustering and 

quantization algorithm. The most important feature of the 

SOM in data mining is the visualization property [12].  

SOM has been applied for anomaly detection in 

communication networks [13], [14], [15] as well as WSNs 

[16]. Ref. [16] focuses on evaluating the position of sensors in 

a WSN, or the localization problem. Their localization 

technique is based on a simple SOM, implemented on each 

sensor node. The main advantages of their solution are the 

limited storage and computing costs.  However, SOM requires  

processing time which increases with the size of input data. To 

reduce the input data size, features of the data can be extracted 

without losing the significant data can be used for anomaly 

detection. This can be achieved by the Discrete Wavelet 

Transform (DWT). Wavelets have been extensively employed 

for anomaly [17] and fault detection [18]. DWT has also been 

integrated with SOM to detect system faults [19], [20]. In 

particular, feature vectors of the faults have been constructed 

using DWT, sliding windows and a statistical analysis. 

Classification of the feature vectors was obtained by using 

SOM.  

To the best of our knowledge, DWT and SOM have not yet 

been applied for anomaly detection in WSNs. Therefore, the 

underlying aim of this paper is to propose an anomaly 

detection algorithm which determines the discrete wavelet 

transform, and detects the abnormality of the sensor readings 

by training the SOM using the wavelet coefficients. Our 

proposed algorithm, the integrated SOM and DWT algorithm, 

could help reduce wasted energy caused by transmitting all 

measurement data to the base station by applying DWT 

algorithm onto the sensor modes in order to reduce size of 

transmitted data without losing the significant feature of the 

data. 

II. ANOMALY DETECTION 

The first step of anomaly detection involves selecting the 

data parameters to be monitored and grouping them together in 

a pattern vector x , N,,1  ,   
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where   is the observation index, n  is the number of 

parameter types or key performance indices (KPIs) chosen to 

monitor the environmental condition. 

A. Self-Organizing Map 

Competitive neural models such as the self-organizing map 

(SOM) [13], are able to extract statistical regularities from the 

input data vectors and encode them in the weights without 

supervision. It maps a high-dimensional data manifold onto a 

low-dimensional, usually two-dimensional, grid or display. 

     The basic SOM consists of a regular grid of map units or 

neurons as shown in Fig 1(a). Each neuron, denoted by i  

(depicted by the black dot), has a set of layered neighboring 

neurons (depicted by the white dots) as shown in Fig 1(a). 

     Neuron i maintains a weight vector
i

m . In order to follow 

the properties of the input data, such vector is updated during 

the training process. For example, Fig.1(b) shows a SOM 

represented by a 2-dimensional grid of 44 neurons. The 

dimension of each vector is equal to the dimension of the input 

data. In the figure, a vector of input data (marked by x) is used 

to train the SOM weight vectors (the black dots). The winning 

neuron (marked by BMU) as well as its 1-neighborhood 

neurons, adjust their corresponding vectors to the new values 

(marked by the gray dots). 

     The SOM is trained iteratively. In each training step, one 

sample vector x  from the input data set is chosen.  

 

      
                           (a)                                     (b) 
Fig. 1 An illustration of the SOM (a) with rectangular lattice 

neighbors belonging to the innermost neuron (black dot) 

corresponding to 1, 2 and 3- neighborhoods, (b) SOM updates the 

BMU with 1-neighborhood. 

 

The distances between the sample data and all of weight 

vectors in the SOM are calculated using some distance 

measure. Suppose that at iteration t,  neuron i whose weight 

vector  
i

tm  is the closest to the input vector  tx . We 

denote such weight vector by  
c

tm  and refer to it as the 

Best-Matching Unit (BMU), that is  

)()(minarg)()( tttmtx i
i

c mx 


             (2) 

where  is the Euclidian distance. 

     Suppose neuron i is to be updated, the SOM updating rule 

for the weight vector of neuron i  is given by 

( 1) ( ) ( , )[ ( ) ( )]
i i t c i

m t m t h i t t t   x m               (3) 

where t is the iteration index, ( )tx is an input vector, 
t

  is the 

learning rate,
 

( , )
c

h i t  is the neighborhood function of the 

algorithm. The Gaussian neighborhood function may be used, 

that is 
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where ( )
i

r t and ( )
c

r t are the positions of neurons i  and the 

BMU, c respectively, and ( )t is the radius of the neighborhood 

function at time t . Note that ( , )
c

h i t  defines the width of the 

neighborhood. It is necessary that lim ( , ) 0
c

t

h i t


  and 

lim 0
t

t




 for the algorithm to converge [13]. 

B. Discrete Wavelet Transform 

     DWT is a mathematical transform that separates the data 

signal into fine-scale information known as detail coefficients, 
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and rough-scale information known as approximate 

coefficients. Its major advantage is the multi-resolution 

representation and time-frequency localization property for 

signals. Usually, the sketch of the original time series can be 

recovered using only the low-pass-cut off decomposition 

coefficients; the details can be modeled from the middle-level 

decomposition coefficients; the rest is usually regarded as 

noises or irregularities. The following equations describe the 

computation of the DWT decomposition process: 

 

1 0
( ) ( 2 ) ( )

DWT DWT

j j

n

a k h n k a k


                        (5) 

1 0
( ) ( 2 ) ( )

DWT DWT

j j

n

d k g n k a k


   ,                   (6) 

where the rough-scale (or approximation) coefficients 
DWT

j
a  

are convolved separately with 
0

h and
0

g , the  wavelet function 

and scaling function, respectively, n is the time scaling index, 

k is the frequency translation index for wavelet level j.  The 

resulting coefficient is down-sampled by 2. This process splits  
DWT

j
a  roughly in half, partitioning it into a set of fine-scale (or 

detail) coefficients 
1

DWT

j
d


and a coarser set of approximation 

coefficients 
1

DWT

j
a


[21].  

DWT has the capability to encode the finer resolution of the 

original time series with its hierarchical coefficients. 

Furthermore, DWT can be computed efficiently in linear time, 

which is important while dealing with large datasets. 

C. Integration of SOM and DWT 

In the integration of SOM and DWT algorithm, the DWT 

algorithm is used as an input data preprocessor of the SOM 

algorithm in order to reduce the size of data without losing any 

significant feature of the data. This enables the implementation 

of in-network processing which helps to reduce the radio 

communication energy and eventually prolong the lifetime of 

the WSN [11]. The input data will be padded with zero if its 

length is odd data. After obtaining the wavelet coefficients, 

these coefficients will be fed to the SOM algorithm which can 

be divided into 2 sets. Each set contains both approximate and 

detail coefficients. The first set which is obtained from 

noiseless data, will be used to train the SOM algorithm. The 

second set which is obtained from the faulty data will be used 

to test the SOM algorithm. Then to reduce the false alarms the 

detected results will be double checked by using the univariate 

method [13], [14]. 

D. Anomaly Detection 

A new observation data set can be considered abnormal if 

the distance between the weight vector of the winning neuron 

and the new state vector, given by 
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is greater than a certain percentage 1p    of the distances in 

the distance distribution profile. That is, 

                              IF   ,p pe e e     ,                         

                             THEN 
new

x   is  NORMAL                      (8) 

                              ELSE  
new

x is ABNORMAL.                    

 

     Equation (8) is referred to as the global decision. In [6], an 

addition of local decisions of each KPIs is presented. Suppose 

that a data vector new
x is considered abnormal by the global 

decision. Then in the local anomaly detection, the absolute 

value of error in each component of the error vector is then 

computed by 
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The error in each KPI is then compared to the interval of 

normality component-by-component, and the anomaly decision 

is carried out as in (8). 

III. EXPERIMENT RESULTS 

A. Evaluation on detecting synthetic faults 

In this section, we evaluated the performance of the 

proposed integration of SOM and DWT algorithm by 

detecting anomalies in series of synthetic data and actual data 

collected from a wireless sensor network injected by various 

synthetic faults. 

In the experiment, we generated the synthetic input data from 

a normal distribution N(0,1) and synthetic faults by additive 

white Gaussian noise (AWGN) with power 25 dBW generated 

from MATLAB. We used such fault because its statistical 

similarity to the synthetic input data thus, it is more difficult to 

be detected. Therefore, we can evaluate the performance of the 

algorithms under ambiguous faults. The amount of faults is 

represented by the notation n/s, where “n” is the amount of 

faults per series and “s” is the amount of series of faults, 

resulting in the total amount of ns faults. The generated faults 

added to the input data ranged from bursty (20/10) to sparse 

(1/10). The exact positions of the faults injected in the input 

data were predetermined and was later used to detect true and 

false alarms. In the experiment using real data, we have chosen 

2 parameters, namely temperature and moisture, as KPIs 

collected from samples of compost in a bioorganic fertilizer 

plant. In this paper, the data of the 2 KPIs at the WSNs were 

collected every 5 minutes for 3 days. We compared 3 anomaly 

detection methods: SOM algorithm, DWT algorithm, and 

integration of SOM and DWT algorithm. 

We measured 2 performance metrics: 1) the true alarm rate 

which is defined by the number of detected true anomalies 

over the total number of true anomalies in the data set; and 2) 

the false alarm rate which is defined by the number of 

detected false alarms over the total number of detected 

anomalies.  

In the DWT algorithm, we used the threshold in (11) in order 

to decide whether the data is normal or abnormal  
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where N is the size of data and 1d is the sample mean of the 

level 1 detail coefficients [21]. 

This threshold was calculated from the low pass and high 

pass coefficients from the assumed normal data by using Haar 

and Daubechies4 mother wavelets. The Haar and Daubechies4 

wavelets were used because they are relatively easy to cross-

check by hand with computed coefficients from MATLAB 

program. Hence, we can compare the position of each 

coefficient with the actual fault position. After the threshold 

calculation, the set of coefficients which are obtained from the 

DWT of the noisy data will be compared with the threshold, 

coefficient by coefficient. For the real data scenario, the data 

was normalized by equation (12) before being processed by 

the DWT to eliminate potential outliers:  

 

(Data) - mean(Data)
Norm(Data) =

variance(Data)
                 (12) 

If the absolute value of the coefficient is greater than the 

computed threshold, an anomaly is said to be detected. 

In the SOM algorithm and the proposed integrated SOM 

and DWT algorithm, the initial value for learning rate in the 

SOM part was set to η0 = 0.9, and gradually reduced to ηT = 

10
-5

, in order to guarantee convergence [13]. The number of 

training epochs was set to 50 because longer training epochs 

tend to over train the SOM [13]. The required percentage of 

distance in (8) was set to 99%. We used a Gaussian 

neighborhood function because the distribution of the 

collected data after the normalization fits well to the Gaussian 

distribution. The 3030 size of neurons was used. Fig. 2 and 3 

show that the anomaly detection in SOM algorithm and the 

integrated SOM and DWT algorithms improve as the number 

of neurons is increased. This suggests that the more neurons 

used, the “finer” SOM’s classification becomes resulting in 

enhanced detection performance. However, at neuron size 

5050, the SOM requires much longer training time with a 

marginal improvement in the detection performance. 

Therefore, the 3030 size of neurons was selected to train and 

test the SOM. We also improved the SOM algorithm by 

double checking with the univariate method in order to reduce 

the false alarm rate [13], [14]. To obtain accurate results, each 

algorithm was repeated for 70 runs. 

To evaluate the performance of all algorithms, the results of 

each algorithm were compared to the (known) fault positions 

which were injected into the input data. In particular, when an 

anomaly was detected then its position was compared with the 

(known) fault position. If this position existed, then the 

anomaly detected was a true alarm; otherwise, it was a miss. 

On the other hand, if an anomaly was detected but the (known) 

fault position did not exist, then the anomaly was a false alarm.  

Fig. 4 and Fig. 5 show the percentage of true alarm rate 

averaged over 70 runs, as a function of the amount of faults 

added into the input data.   Note that the proposed integrated 

SOM and DWT algorithm which used Haar as a mother 

wavelet gives the best performance over other algorithms. This 

is because the DWT with Haar wavelet can detect changing 

points. In particular, the Haar wavelet uses 2 adjacent input 

data to compute a coefficient whereas the Daubechies4 uses 4 

adjacent input data to compute a coefficient. However, 

Daubechies4 gave a lower performance than Haar because 

each coefficient was computed from an average over 4 input 

data. If a fault occurred in 1 of these 4 data, such fault will be 

averaged with the remaining 3 normal data resulting in a 

coefficient with an absolute value possibly lower than the 

decision threshold. Consequently, the true alarm rate is 

reduced. On the other hand, the Haar wavelet only uses 2 

adjacent data to compute 1 coefficient. Thus, the true alarm 

rate is significantly higher than that of Daubechies4. The 

integrated SOM and DWT algorithm using Haar also 

outperforms the SOM algorithm. This is because in the Haar 

case, the coefficients obtained were transformed from two 

adjacent data. Therefore, if some data was faulty or differed 

greatly from the data nearby, this coefficient can detect such 

anomaly. On the other hand, the SOM algorithm directly 

checked the data one by one to detect an anomaly. If the data 

was faulty but had a small magnitude, then this fault may not 

be detected, and consequently the true alarm rate was reduced. 

Note that the DWT algorithm has the lowest performance 

because the decision threshold in (11) is rather conservative. 

Furthermore, the threshold is fixed throughout the detection 

and the algorithm does not have any double checking method.  

Fig.4 and 5 show that the proposed algorithm can achieve 

up to 65% and 67% of true alarm rates in case of bursty faults 

for synthetic and real data, respectively. The proposed 

algorithm achieved a true alarm rate of up to 18% higher than 

the SOM algorithm alone in presence of bursty faults. 

Compared to the DWT alone, the proposed algorithm can 

attain a true alarm rate of up to 35% more in the bursty faults 

case.  

As for sparse faults, the proposed algorithm can achieve up 

to 69% and 80% true alarm rates for synthetic and real data, 

respectively. The integrated SOM and DWT also gave true 

alarm rates of up to 10% higher than the SOM algorithm alone 

whereas DWT performed the weakest, in presence of sparse 

faults. 

Fig.6 and Fig. 7 show the false alarm rate results in the 

synthetic and real data experiments, respectively.  Note that 

most results have low false alarm rates, i.e., less than 1 % 

except in the case of sparse faults due to the increased 

detection difficulty. 

The integration of SOM and Daubechies4 DWT also gave a 

weak performance due to the reasons previously explained. All 

these results show that the integration of SOM and DWT with 

Haar as a mother wavelet outperform the SOM algorithm and 

DWT method.  

From these figures, the false alarm rate of the proposed 

algorithm is 0.11% and 0.13% in presence of bursty faults and 

0.91% and 1% in presence of sparse faults with synthetic and 

real data, respectively. Note that the false alarm rate of the 

proposed algorithm is slightly higher than the other two 

algorithms. Since the gain in the true alarm rate is more 

significant, such tradeoff is therefore considered acceptable. 
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Fig. 2 True alarm rates with different size of neurons in the sparse 

faults case 

 

 
Fig. 4 True alarm rates with synthetic data 

 

 
Fig. 6 False alarm rates with synthetic data 

 

  

Fig. 8 True alarm rate with 10 dBW AWGN faults 

 
Fig. 3 True alarm rates with different size of neurons in the bursty 

faults case 

 

Fig. 5 True alarm rates with real data 

 

 
Fig. 7 False alarm rates with real data 

 

 
 

Fig. 9 False alarm rate with 10 dBW AWGN faults 

 

 

INTERNATIONAL JOURNAL OF COMMUNICATIONS 
Issue 3, Volume 4, 2010

78



 

 

Fig. 8 and 9 show the effect of the decreasing of AWGN 

noise power from 25dBW to 10dBW in both synthetic and real 

data scenarios. Only the Haar wavelet was used in the 

proposed algorithm and the DWT algorithm. The Daubechies4 

was not included due to its weak performance. Though the 

anomaly detection is more difficult, the proposed integrated 

SOM and DWT still consistently outperforms the other two 

methods in terms of true alarm rate but with marginal increase 

in the false alarm rate as tradeoff. 

The proposed integration of SOM and DWT algorithm with 

Haar wavelet outperformed the SOM algorithm and the DWT 

algorithm alone. Our results suggest that the proposed 

integrated SOM and DWT anomaly detection scheme can be 

deployed in a resource-constrained network such as a WSN. In 

particular, the DWT using Haar wavelet can be implemented 

at the sensor nodes as a data preprocessor to reduce the 

amount of data to be transmitted by at least half (for one-level 

DWT). Since energy consumption is critical in WSNs, such 

distributed in-network processing can reduce transmission 

energy and eventually help prolong the overall network 

lifetime of the WSN [11] while still maintaining acceptable 

anomaly detection accuracy. 

B. Evaluation on detecting faults in real-world datasets 

In this section, we apply the anomaly detection methods to 

three real-world datasets, i.e., NAMOS [8], INTEL Berkeley 

Lab [9], and SensorScope [10], to detect anomalies in sensor 

traces. However, since we did not have ground truth 

information about faults for these datasets, visual inspection 

and the histogram method are used to decide whether the data 

is normal or abnormal. The histogram method was used 

because it displays the data distribution which allows us to 

determine a suitable threshold according to that data series.  

The histogram method divides the time series of sensor 

readings into groups of N samples. We then plot the histogram 

of the samples and select a threshold according to outliers of 

the histogram. However, this approach is sensitive to the 

choice of N. Fig. 10 [10] shows the effect of N on the 

histogram computed for sensor measurements taken from a 

real-world deployment [7]. Therefore, selecting the correct 

value for the parameter N requires a good understanding of the 

normal sensor readings. In practice, one should also try a 

range of values for N to ensure that the samples flagged as 

faulty are not just an artifact of the value selected for N [7]. 

With heuristic adjustments on the parameter value of N and 

some domain knowledge of the normal data profile, the 

histogram method was used as reference to identify abnormal 

data samples. 

In the real-world datasets experiment, we evaluated the 

performance of 3 anomaly detection methods: the SOM, DWT 

using the Haar wavelet methods, and the integration of SOM 

and DWT using the Haar wavelet. For the SOM and the 

integration of SOM and DWT using Haar wavelet algorithms, 

we also considered the effects of changing the number of 

training samples, the number of training epochs which were 10 

and 50 iterations, and the size of neurons which were 10x10 

and 30x30. We also compared the performance of the low and 

high pass Haar wavelet coefficients (LP and HP, respectively) 

in the DWT algorithm and the integration of SOM and DWT 

algorithm. 

1) NAMOS 

In the NAMOS dataset, 9 buoys with temperature and 

chlorophyll concentration sensors (fluorimeters) were 

deployed in Lake Fulmor, James Reserve for over 24 hours in 

August, 2006 [8]. We analyzed the measurements from 

chlorophyll sensors on buoys no. 103 for 10
4
 samples as 

shown in Fig.11. In the experiment, the histogram method was 

used to identify anomalies in the NAMOS dataset from which 

we selected the threshold of 0 and 500 as lower and upper 

bounds of the normal region, respectively. The size of training 

samples of 1500 and 3000 samples were used to train both the 

SOM and the integration of SOM and DWT algorithms.  

Fig. 12 shows the percentage of detection alarm rates for 

true, miss and false alarms which were obtained from changing 

the size of training samples. Note that both the SOM algorithm 

and the proposed integrated SOM and DWT algorithm with 

low pass wavelet coefficients gave the best true alarm 

detection performance of nearly 100% while their false alarm 

rates is negligible. The integrated SOM and DWT algorithm 

and DWT algorithm with high pass coefficients gave the 

lowest performance. This is because the high pass coefficients 

are more suitable for detecting the changing points of the data 

whereas most of faults appear constant as seen from 9x10
3
 

samples onwards in Fig. 11. In addition, reducing the size of 

training samples did not have any effect on the anomaly 

detection in the SOM algorithm and the proposed integrated 

SOM and DWT algorithm. This is because both training 

samples are obtained from a normal period of data which 

differ only in sample sizes. 

Fig. 13 shows the percentage of detection alarm rates for 

true, miss and false alarms which were obtained by reducing 

the number of training epoch from 50 to 10 iterations. In this 

case, the SOM algorithm gave the best performance with 

nearly 100% of true alarm detection rate and no false alarm 

rate. DWT algorithm which used low pass coefficient gave 

high performance while the proposed integrated SOM and 

DWT algorithm with either coefficient failed on detecting any 

anomaly. The reason could be caused by the constant features 

of the faults in NAMOS which may be difficult to decide 

whether samples are normal or abnormal, in particular, if the 

wavelet coefficients are under trained. Hence, care must be 

taken when selecting the suitable number of training epochs. In 

addition, we also investigated the effect of reducing the size of 

neurons. Results in Fig.14 show that there is no significant 

effect from reducing size of neurons from 30x30 to 10x10. 

 

2) INTEL 

In the INTEL dataset, 54 Mica2Dot motes with temperature, 

humidity and light sensors were deployed in the Intel Berkeley 

Research Lab between February 28th and April 5th, 2004 [9]. 

In this paper, we present the results on the anomaly detection 

in the temperature readings. 

In the experiment, we selected the threshold value of 16 and 

30 as the upper and lower bounds of the normal data regions. 

These values were obtained from the histogram method. The 

size of training samples used was 1000 and 2000 samples as 

shown in Fig. 15. 
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Fig. 16, shows the percentage of detection alarm rates for 

true, miss and false alarms which were obtained from changing 

the size of training samples. According to the results as shown, 

the SOM and the proposed algorithm can achieve a true alarm 

rate of up to 100% with very small false alarm rate. Their true 

alarm rate is 67% higher than the DWT method using high 

pass coefficients. Note that the high pass coefficients can 

detect spike faults better than low pass coefficient since the 

high pass coefficients reflect the rate of change between two 

successive samples. Note that the DWT using low pass 

coefficient gave the lowest performance.  The results of 

changing number of training epochs are shown in Fig. 17 and 

the size of neurons are shown in Fig. 18. From both figures 

there are no significant effects on the detection rate because 

the fault in this dataset has a high amplitude and can be easily 

detected. 

3) SensorScope 

The SensorScope project is an ongoing outdoor sensor 

network deployment consisting of weather-stations with 

sensors for sensing several environmental quantities such as 

temperature, humidity, solar radiation, soil moisture, and so on 

[10]. We did not have the ground truth regarding faulty 

samples for this dataset. We used a combination of visual 

inspection and the histogram method to identify anomaly 

samples [7]. 

In the experiment, we present the results on the anomaly 

detection in two types (KPIs) of data in the pdg2008-metro-1 

dataset, i.e., the surface and ambient temperature readings. 

Using visual inspection and the histogram method, the lower 

and upper threshold values used for anomaly detection in 

SensorScope were -14 and 4 for the surface temperature and    

-12 and 4 for the ambient temperature. The sizes of training 

samples were 700 and 2000 samples for both KPIs as shown in       

Fig. 19. 

Fig. 20 shows the percentage of detection alarm rates for 

true, miss and false alarms obtained from changing the size of 

training samples. Note that the proposed algorithm using low 

pass coefficients achieved a true alarm rate 2% higher than the 

SOM algorithm while false alarm rate remained less than 

0.5%. The proposed algorithm using low pass coefficients can 

attain a true alarm rate of up to 17% more than the DWT 

algorithm alone. The integrated SOM and DWT algorithm and 

DWT algorithm which used high pass coefficients gave the 

lowest performance. This is because high pass coefficients are 

more suitable for short duration faults such as, spike or sparse 

faults while the data in Fig. 19 contains noise faults which 

affect a larger number of successive samples with an increase 

in their variance. 

The effect of reducing the number of training epochs is 

shown in Fig. 21. According to the results, there is no 

significant effect on the performance of SOM and the 

integrated SOM and DWT. 

Fig. 22 shows the percentage of detection alarm rates for 

true, miss and false alarms which were obtained from reducing 

the size of neurons. Note that the proposed algorithm using 

low pass coefficients achieved a true alarm rate 2% lower than 

the SOM algorithm, whereas the false alarm rate remains 

lower than 0.5%. On the other hand, the proposed algorithm 

using low pass coefficients can attain a true alarm rate of up to 

13% more than the DWT algorithm alone. 

The results from the real-world dataset show that our 

proposed algorithm, the integrated SOM and DWT algorithm 

performs as equally well as the SOM algorithm while using 

just half of the input data (using level 1 of DWT). This is 

because DWT is able to extract relevant data features without 

any significant loss in information, thereby reducing wasted 

energy from transmitting all measurements to the base station. 

Hence, by applying DWT onto the sensor modes, to achieve 

in-network data processing, the size of transmitted data can be 

reduced while still maintain good anomaly detection abilities.  

However, a variety of data characteristics can affect the 

anomaly detection in the integrated SOM and DWT algorithm 

as can be seen from the NAMOS dataset. Hence, a suitable 

setting of the algorithm, such as the size of training epochs, 

has to be considered carefully. In terms of the number of 

neurons, the more neurons used, the finer SOM’s classification 

becomes, generally resulting in enhanced detection 

performance. However, the results in the real-world datasets 

show that there is no significant change in detection 

performance. In terms of the selection of wavelet coefficients, 

high pass coefficients are more suitable for detecting the 

changing points of the data, whereas low pass coefficients are 

more suitable for detecting the changing of trend of the data. 

These settings can be determined by considering the nature of 

the sensors deployed. For example,  calibration errors in 

sensors can cause offset faults (whereby the measured value 

can differ from the true value by a constant), low battery 

voltage causes a combination of noise and  constant faults, 

while short faults are caused by software error during 

communication and data logging [7]. 

IV. CONCLUSION 

This paper proposed an integration of a competitive learning 

method called the self-organizing map (SOM) and the discrete 

wavelet transform (DWT), to detect anomalies from synthetic 

faults and faults obtained from real-world datasets.  

In the synthetic faults experiment, the results show that the 

integration of SOM and DWT with Haar as a mother wavelet 

can attain 65% and 67% of true alarm rates in the case of 

bursty faults, and 69% and 80% of true alarm rates  in case of 

sparse faults for synthetic and real data, respectively. In terms 

of the true alarm rate, the proposed algorithm outperforms the 

SOM algorithm by up to 18% and DWT algorithm by up to 

35% in presence of bursty faults. With sparse faults, the 

proposed algorithm can gain a true alarm rate up to 10% above 

the SOM algorithm alone and entirely outperforms the DWT 

algorithm alone. Such gain in true alarm rates come with a 

marginal increase of false alarm rate.  

In the real-world datasets, the integration of SOM and DWT 

with Haar as a mother wavelet can attain up to 99%, 100% and 

83% of true alarm rates in the NAMOS, INTEL and 

SensorScope dataset, respectively. Our proposed algorithm 

also performs as equally well as the SOM algorithm and 

outperforms the DWT algorithm by up to 15%, 100%, and 

17% in the NAMOS, INTEL and SensorScope dataset, 

respectively. 
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Fig. 10a Histogram shape with N = 100  

 
Fig. 11 NAMOS dataset of 104 samples 

 

 

 
Fig. 13 Detection rate in the NAMOS data set using training epoch of 

10 iterations 

 

 
Fig. 15 INTEL dataset of 2x104 samples 

 

 
Std. Deviation 

Fig. 10b Histogram shape with N = 1000 

 

 
Fig. 12 Detection rate in the NAMOS dataset using training epoch of 

50 iterations 

 
Fig. 14 Detection rate in the NAMOS dataset using the size of 

neurons of 10x10 

 

 
Fig. 16 Detection rate in the INTEL dataset using training epoch of 

50 iterations 
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Fig. 17 Detection rate in the INTEL dataset using training epoch of 

10 iterations 

 

 
Fig. 19 SensorScope dataset of 4000 samples 

 

 

 
Fig. 21 Detection rate in the SensorScope dataset using training 

epoch of 10 iterations 

 

 

 

 

 
Fig. 18 Detection rate in the INTEL dataset using the size of neurons 

of 10x10 

 

 
Fig. 20 Detection rate in the SensorScope dataset using training 

epoch of 50 iterations 

 

 
Fig. 22 Detection rate in the SensorScope dataset using the size of 

neurons of 10x10 
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In terms of the true alarm rate when reducing the number of 

training epochs, the proposed algorithm has a poor 

performance due to the detection ability of wavelet coefficients 

is unsuitable for the anomaly in the NAMOS dataset. In the 

INTEL dataset, the proposed algorithm outperforms the DWT 

algorithm and performs equally well when compared to the 

SOM algorithm while using just half of the input data. In the 

SensorScope dataset, the proposed algorithm outperforms the 

DWT algorithm but is slightly lower than the SOM algorithm. 

By reducing the size of neurons, the proposed algorithm still 

obtained a true alarm rate up to 16%, 100% and 84% higher 

than the DWT algorithm in NAMOS, INTEL and SensorScope 

dataset, respectively. The proposed algorithm performed 

equally well as the SOM algorithm in the NAMOS and INTEL 

dataset but only 2% lower than the SOM algorithm in the 

SensorScope dataset. The reduction of the size of neurons did 

not show any significant change in detection performance. 

Our results suggest that the integration of SOM and DWT 

with Haar wavelet can lead to more effective anomaly 

detection.  In particular, our results confirm that the proposed 

algorithm can maintain acceptable anomaly detection accuracy 

while using just half of the input data (using level 1 DWT). 

In the future, we plan to extend our work to investigate 

anomaly detection with actual faults obtained from the 

bioorganic fertilizer plant environment, and study its 

performance by increasing the DWT level and considering 

other different types of wavelets. Furthermore, we also plan to 

investigate ways to identify and eliminate erroneous sensor 

readings at the sensor nodes, which could help further reduce 

wasted energy from transmitting unwanted erroneous 

measurements to the base station.  
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