
 

 

  
Abstract—This article is focused on the analysis of the error 

estimation and the ambiguity of the TDOA (Time Difference of 
Arrival) localization method in the 2-D space. First, the algorithm of 
hyperbolic equations solution is presented as a background for a 
derivation of a covariance matrix. Next, the covariance matrix is 
derived in analytical form. Finally, the conditions of the covariance 
matrix solvability are shown. The analytical solution of the 
covariance matrix is the main contribution of this article. 
 

Keywords—Covariance Matrix, Localization Method, Time 
Difference of Arrival.  

I. INTRODUCTION 

he TDOA (Time Difference of Arrival) method is well-
known signal source localization technique. It is used in 

many both civil and military applications, for example in EW 
(Electronic Warfare) systems. This method is based on 
extraction of TOA (Time of Arrival) ti of the received signals 
that are processed by generally N receiving stations. It can be 
expressed, in this article only for 2-D application, as a set of 
non-linear equations. These equations are usually called 
hyperbolical equations and they can be given as 
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where ti is measured TOA at receiving station with coordinates 
{ xi, yi}, t0 is initial transmit time of the signal, cl is speed of 
light and {xt, yt} are coordinates of signal source (target). 
 The solution of the equations (1), i.e. the finding of signal 
source coordinates, is not trivial because these equations are 
non-linear ones. Generally, there are two ways to solve this set 
of equations. First, there are the linearization methods that are 
based on the linearization of equations (1) via Taylor 
expansion and following solution of the set of linear equations. 
See [1], [2]. Second, there are the analytical methods that are 

 
 
 

based on transformation equations (1) to solvable ones. See 
[3], [4], [5]. 

II. THE ANALYTICAL SOLUTION OF HYPERBOLICAL EQUATIONS 

Figure 1 shows a localization system with N = 3 receiving 
stations and a target that are placed in special coordinate 
system {x’, y’}. This coordinate system is selected to simplify 
the solution. Coordinates of the receiving stations are S1 [0,0], 
S2 [a,0], and S3 [b,c] and coordinates of the target are [xt’ , yt’ ]. 

 

 
 

Fig.1 the configuration of passive system 

In general, the coordinates of receiving stations and target can 
be arbitrary in the standard coordinate system {x,y} but we can 
always transform them to the special coordinate system      
{ xt’ , yt’ } via following terms  
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Now, let us define the distance between the target and the 
coordinate origin {x‘,y‘} by 

         222
tytxK ′+′= .         (3) 

In this case, the TOA equations (1) can be expressed by 
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If we use time delay instead TOA we can rearrange equations 
(4) to following form 

   

   ( ) ( ) 




 −′+′−=−= Kyxa

cl
tt tt

22
121

1τ ,    (5a) 

   ( ) ( ) ( ) 




 −′−+′−=−= Kycxb

cl
tt tt

22
132

1τ   (5b) 

 
where τ1 and τ2 are time delay (i.e. time difference of arrival) 
between receiving of signal at stations S1,S2 and S1,S3. 
Substituting L = τ1.cl into the equation (5a) yields 
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Then, the target xt’ coordinate can be written as  
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Similarly, the target yt’  coordinate can be written (with 
substituting R = τ2.cl into the equation (5b)) as 
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Substituting equations (7) and (8) into equation (3) yields 
    

  ( ) ( )22222 .. KDCKBAyxK tt +++=′+′= .  (9)   

 
The roots of quadratic equation (9) K1,2 are 
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where N = A.B+C.D, M = B2+D2-1 and P = A2+C2. 

 
 Finally, we can determine the target coordinates xt’ , yt’  by 
substituting roots of equation (10) back into equations (7) and 
(8). The back transformation of computed target coordinates to 
the standard coordinate system {x, y} can be determined by 
following terms 

 
   ( ) ( ) 1sin.cos. xyxx ttt +′−′= αα ,       (11) 

   ( ) ( ) 1cos.sin. yyxy ttt +′+′= αα . 

III.  THE ACCURACY OF TDOA METHOD 

The solution of equations (1) is only one part of 
troubleshooting area that is connected with TDOA theory. The 
evaluation of signal source position error presents another 
problem that is coupled with TDOA method. The covariance 
matrix seems to be a powerful tool for solution of accuracy 
TDOA method problem. The derivation of this matrix is 
following. 

First, assume that the covariance matrix can be generally 
written as  
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where I -1(t i) is Fisher information matrix, t i = [t1,…,tN] is 
vector of TOA’s and xt = [xt, yt] is vector of the target 
coordinates. In TDOA case, the inverted Fisher information 
matrix is equal to the covariance matrix of TOA’s  C(t i). In 
practical case, when the measured TOA’s at particular 
receiving stations are independent, this matrix can be written 
as  
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where σti

2 is variance of TOA measured at receiving station Si. 
Thus, we must only compute partial derivations of function    
xi = f(t i), which is represented by above mentioned algorithm 
of analytical solution of TDOA equations for derivation of the 
covariance matrix C(xt). These partial derivations are 
generally expressed as matrix J 
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 As demonstrated earlier, the derivation of analytical solution 
of the TDOA equations is realized with using of many 
substitutions. These substitutions are applied to derivation of 
matrix J, too. So, we derive following terms:  
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In the same way 
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If the term PMN ..42 −  is substituted by DET, then 
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Next, assume that DETSD= , then 
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Thus, the partial derivations of function xi = f(t i), in coordinate 
system {x‘,y‘} can be written as 
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In standard coordinate system {x,y} these derivations are given 
as 
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Consequently, the covariance matrix C(xt) can be written as  
 
                      (30) 

  ( )
T

t

t

t

t YRYLYC

XRXLXC

YRYLYC

XRXLXC

































= .

00

00

00

.
2
3

2
2

2
1

σ
σ

σ
xC

.   

                       
 The covariance matrix C(xt) describes the error of target 
position localization and it represents so called error ellipse. In 
practical case, the CEP (Circular Error Probability) is used as 
parameter that can describe the error of target position.  This 
parameter can be expressed by following term 
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where λ1,2 are eigenvalues of covariance matrix. 

IV.  THE ANALYSIS OF THE COVARIANCE MATRIX 

Generally, the set of equations (1) express the mapping of 
an arbitrary point from {x,y}  plane onto the hyperbolic plane 
{ τ1,τ2}. This mapping is unambiguous.  Figure 2 shows an 
example of this mapping.  

 

 
 

 
Fig. 2 the example of the mapping from the Cartesian 

coordinate system onto the hyperbolic coordinate system 
 

 The limiting values of both delays are restricted by 
receiving station coordinates and they can be following 
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 However, the back mapping from the hyperbolic plane onto 
{ x,y} plane is ambiguous. It is clear from mathematical 
notation of the analytical solution of TDOA equations where 
the quadratic term appears, see (10). Thus, the algorithm can 
generally have tree different solutions:  
 

- the roots of quadratic equation are two real positive 
numbers, i.e. we can compute coordinates of two 
different real targets, 

- the roots of quadratic equation are two identical real 
positive numbers, i.e. we can compute coordinates 
of one real target, 

- the roots of quadratic equation are two complex 
numbers, i.e. we can not determine coordinates of 
target. It is example of non-real target.  

 
Next, we will analyse the covariance matrix from conditions of 
solvability point of view. If we take into consideration, the 
above derived algorithm of the covariance matrix computation 
does not have solution under the conditions:  

 
a) a = 0, in equations (17) and (18), 
b) c = 0, in equations (19) and (20), 
c) M = 0, in equation (27), 
d) DET = 0, in equation (25). 
 

 The condition a) is satisfied just in case when the receiving 
station S2 has the same coordinates as the receiving station S1. 
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Of course, it means that the TDOA system has only two 
receiving stations and coordinates of target can not be 
computed, i.e. the covariance matrix can not be computed, too.   
 The condition b) is satisfied just in case when the receiving 
station S3 has coordinates [b,0]. It means that all three 
receiving stations lie on the same line.  
 The analysis of the conditions c) and d) is more complicated 
than study of previous conditions. Thus, we chose following 
approach. The condition M = B2+D2-1 = 0 can be expressed, 
with using equation (8) and substitutions L = τ1.cl, R = τ2.cl as 
function R = f(L). Then, this function is given as 
 

       0.. 2 =++ ccRbbRaa       (32) 

where  
 
aa = U2, bb = U.W, cc = B2 + W2 -1, U = 1/c, and W = -b.B/c.  
 
 Figure 3 shows the curve (solid line) that includes all points 
which satisfy the function (32) in coordinate system {τ1,τ2}, 
resp. {L,R} as result of numerical analysis of (32). 
 The condition DET = N2-4.M.P = 0 was analyzed with using 
of similar idea. The dotted line in Fig 3 is graphic 
representation of analysis results. The border of unambiguous 
target position computation is the physical meaning of the      
M = 0 condition. It means that the TDOA equations have just 
one real solution (K>0) there. Figure 4 shows this border in 
coordinate system {x,y} as boundary lines between light and 
dark grey areas. In dark grey area the TDOA equations have 
one real solution and one non-real solution (K<0). In light grey 
area these equations have two real solutions, i.e. the TDOA 
method is ambiguous.  

The condition DET = 0 represents the points (in hyperbolic 
coordinate system) where the TDOA equations have only one 
solution and it is real. The boundary lines between black and 
light grey areas just represent this condition in {x,y} 
coordinate system. From accuracy point of view, the 
covariance matrix does not have any solution here. 

 

 
 

Fig. 3 the graphic representation of conditions c) and d) 

 
Fig 4 the graphic representation of conditions M = 0 and     

DET = 0 in {x,y} coordinate system 

V. THE TEST OF VALIDITY OF THE COVARIANCE MATRIX 

SOLVABILITY CONDITIONS   

In this part of this article we present some results of validity 
testing of the derived solvability conditions of the covariance 
matrix. The simulation was performed in MATLAB software 
environment. In coordinate system {x,y} there are some areas 
where the covariance matrix does not have any solution which 
was demonstrated by analysis of a, b, c, and d conditions in 
previous part of this paper. Figure 5 shows a detail of CEP 
parameter, which represents the covariance matrix here, in 
surrounding of receiving site S3. In this case the coordinates of 
the receiving sites are S1 [-25 km,0], S2 [0,-10 km] and S3 [25 
km,0] and the CEP is computed for 2500 targets with 
coordinates in intervals         x = (-50 km,50 km) and  y = (-50 
km, 50 km). It is clear that the value CEP is close to infinity 
for targets that lie on lines that connect particular receiving 
sites. This result exactly correlates to the covariance matrix 
analysis. 

 

 
 

Fig. 5 the detail of CEP parameter values 
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It is clear that the TDOA system measures the target 
positions with large error just in these areas and it have very 
strong impact on the planning of the TDOA system 
arrangement in practical utilization.  

To suppression this problem the TDOA system can have 
more receiving sites than three or the TDOA system is 
intended only for localization of targets that are inside the 
receiving sites triangle. This case is shown in Fig. 6 where the 
receiving station coordinates are S1 [-34 km,20 km],       S2 [0,-
40 km], S3 [34 km,20 km] and possible targets are inside of a 
circle with radius 10 km. The centre of this circle is situated to 
origin of coordinate system.  

 

 
Fig. 6 the CEP parameter values  

 

VI.  THE PRACTICAL UTILIZATION OF THE COVARIANCE MATRIX 

ANALYSIS 

The optimization of the TDOA system topology (i.e. 
number of receiving sites and their mutual arrangement) is one 
of the practical exploitation of the covariance matrix analysis. 
We designed an optimization algorithm. This optimization 
algorithm is based on the Monte-Carlo method and as the 
optimization parameter was chosen the CEP parameter. The 
principle of the algorithm operation is following. First, j 
TDOA systems with necessary number (for example with 3 
stations) of receiving stations are randomly (with uniform 
distribution) deployed in defined area Π. The area Π is area of 
possible positions of receiving stations, for example it can be 
airport. Next, the CEPk values are computed for all TDOA 
systems, i.e. for j TDOA systems, for k points from area Φ. 
The area Φ represents an area of possible targets and the 
number of targets positions is just k. It means k CEP values is 
computed for each TDOA system. The value CEP that satisfies 
following equation 

  
( )kj CEPCEP max=          (33) 

 
is saved. Finally, the optimal topology of TDOA system is 
selected. The selection is accomplished according to following 
expression  

 

( )jjopt CEPCEP min= .        (34) 

      
The whole algorithm is repeated for situation when the 

number of receiving stations of TDOA systems is increased by 
1. The results of all algorithm rundowns, represented by 
CEPjopt, are then mutually compared and the topology of 
TDOA system with sufficient accuracy characteristics with 
regard to number of receiving stations is selected as the 
optimal topology. 

VII.  THE OPTIMIZATION ALGORITHM SIMULATION  

The result of simulation that tests looking for optimal 
topology of TDOA system with 3 receiving stations is shown 
in Figure 7. In this case the area Π is defined as circle 
centered at coordinate origin with radius 25 km. The area Φ is 
defined as circle too. This circle has radius 10 km and it is 
centered at coordinate origin, too. In this case 25000 TDOA 
systems are created and 10000 signal source positions are 
considered. 
 

 
 
Fig. 7 the example of optimal topology of TDOA system with 

3 receiving stations 
 

VIII.  THE TEST OF THE OPTIMIZATION ALGORITHM WITH REAL 

DATA 

  The operation of optimization algorithm is tested with real 
data here. The real TDOA system measured positions of 
airplane flight at approximately 8000 points. The topology of 
this TDOA system and direction of this flight are shown in 
Figure 8. This TDOA system has 4 receiving stations. In this 
case the map coordinate system is used. 
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Fig. 8 the topology of real TDOA system and direction of 
flight 

 
The new (optimal) topology of TDOA system is shown on 

Figure 9. The area Π is restricted by size of airport base.  
 

 
 

Fig. 9 the topology of the optimal TDOA system and 
direction of flight 

 

 
 

Fig. 10 the detail of topology of the optimal TDOA system  
 
 
 

The comparison both topologies is shown in Figure 11. 
The parameter of comparison is value of CEP. We can see 
that new topology provides better accuracy of target position 
localization 

 

 
 
Fig. 11 the CEP comparison of optimal and original topology 

of real TDOA system 
 

The results of comparison between original and optimal 
topology of TDOA system under real condition is described 
in Table 1. We can see that the average value of CEP 
dropped after optimization from 110 m to 66 m. The real 
TDOA system works with variation of TOA measuring    
σti

2 = (10 ns)2. 
 

Table 1:  The CEP comparison of optimal and original 
topology of real TDOA system 

 
Original topology of 
TDOA system 

Optimal topology of 
TDOA system 

µCEP 110,07 m µCEP 66,33 m 

CEPmin 944,90 m CEPmin 153,61 m 
CEPmax 1,15 m CEPmax 1,14 m 

 

IX.  CONCLUSION 

This article more detailed describes the derivation and the 
following analysis of the covariance matrix of the TDOA 
localization method. The derived algorithm of the covariance 
matrix computation is fully analytical. It means that it is a 
powerful tool for following solvability analysis of the 
covariance matrix that is main part of the article. 

The example of practical using of this analysis is shown in 
last part of the paper. This is the simulation of the system 
topology optimization algorithm computation. The results of 
the simulation illustrated that the optimal topology of the 
TDOA system can be found whereas the criterion of 
optimization can be values of CEP parameter.  
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Generally, the same procedure can be applied to solution of 
3-D case of a TDOA system using. The results of the 
covariance matrix analysis were used for innovation of current 
TDOA systems.  
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