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The Analysis of the Error Estimation and
Ambiguity of 2-D Time Difference of Arrival
Localization Method
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based on transformation equations (1) to solvable ones. See
Abstract—This article is focused on the analysis of the errof3], [4], [5].
estimation and the ambiguity of the TDOA (Time Difference of

Arrival) localization method in the 2-D space. First, the algorithm of|, THE ANALYTICAL SOLUTION OF HYPERBOLICAL EQUATIONS
hyperbolic equations solution is presented as a background for 51: 1 sh | lizati Wi 3 .
derivation of a covariance matrix. Next, the covariance matrix is igure 1 shows a localization system receiving

derived in analytical form. Finally, the conditions of the covariancgtations and a target that are placed in special coordinate
matrix solvability are shown. The analytical solution of thesystem &’, y'}. This coordinate system is selected to simplify
covariance matrix is the main contribution of this article. the solution. Coordinates of the receiving stations af®,8],

S, [a,0], and 3 [b,c] and coordinates of the target axe,[v;'].
Keywords—Covariance Matrix, Localization Method, Time

Difference of Arrival. v A
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[. INTRODUCTION T [X'uY'd
he TDOA (Time Difference of Arrival) method is well- K
known signal source localization technique. It is used in
many both civil and military applications, for example in EW + S;[b,c]

(Electronic Warfare) systems. This method is based on
extraction of TOA (Time of Arrival}i of the received signals
that are processed by generdilyeceiving stations. It can be $; [a0] S, [0,0] X
expressed, in this article only for 2-D application, as a set of
non-linear equations. These equations are usually called
hyperbolical equations and they can be given as

v

Fig.1 the configuration of passive system

(R i (P (1)  Ingeneral, the coordinates of receiving stations and target can
b=t ol ' be arbitrary in the standard coordinate systa&y}{ut we can
(s - )2 (- )2 always t_ransforrr_l them to the special coordinate system
=g+ L - it {x’, y/'} via following terms
t :t0+\/(XN ‘&)ZC’I'(VN ‘yt)2 X = (x—xl)cosa+(y—y1).sina', (2)
wheret; is measured TOA at receiving station with coordinates y = _(X_ Xl)-s'“a + (y— yl).cosa
{x, v}, to is initial transmit time of the signat| is speed of
light and {, y;} are coordinates of signal source (target). —y
The solution of the equations (1), i.e. the finding of signalhere g = tan_l(#}
source coordinates, is not trivial because these equations are Xo =X

non-linear ones. Generally, there are two ways to solve this set

of equations. First, there are the linearization methods that 6w, let us define the distance between the target and the

based on the linearization of equations (1) via Taylqly, ginate origin £y} by

expansion and following solution of the set of linear equations. 2 > 9

See [1], [2]. Second, there are the analytical methods that are K™ =xt +y - ®3)
In this case, the TOA equations (1) can be expressed by
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-%)+0-%) | _x®w?

0= g =ty x =(x) cosr = (y;)sina +x,., (11)

t, =
= T (X) sira+ ()
)2 )2 Y, = sin +(y,)cosa +y;.

= (a-%)" +(0-w) e (4) L= ! !
2= o 0

( )2 ( )2 [Il. THE ACCURACY OFTDOA METHOD

b-x Y . . .
tg = X TR +y The solution of equations (1) is only one part of

cl troubleshooting area that is connected with TDOA theory. The

evaluation of signal source position error presents another
o&%blem that is coupled with TDOA method. The covariance
matrix seems to be a powerful tool for solution of accuracy
TDOA method problem. The derivation of this matrix is

le(tz _tl):é(m_ K)’ (5a) following.

1 First, assume that the covariance matrix can be generally
rzz(t3—t1):a(\/(b— X +(c-y ) —Kj (5b) written as

.
, o _ clx,)=| D]y s )| 2 (12)

where r; and 7, are time delay (i.e. time difference of arrival) ot ot,

between receiving of signal at stations,Ss and $S.  where I'Y(t;) is Fisher information matrixt; = [ty,...,tn] is

If we use time delay instead TOA we can rearrange equati
(4) to following form

SubstitutingL = 7.cl into the equation (5a) yields vector of TOA's andx, = [x, Y] is vector of the target
coordinates. In TDOA case, the inverted Fisher information
L+ K= /(a_)()Z +y2, (6) matrix is equal to the covariance matrix of TOAG(t). In

practical case, when the measured TOA’'s at particular

— _ , 2 2 _ 2 _ ' 2
E+2 Lk K= d-2ax+ "+ ' =a -2ax +K* receiving stations are independent, this matrix can be written

as
Then, the target coordinate can be written as o2 0 ... 0
t1
2 _12_ — 0 Ut22 0 (13)
x =8 |_2 2LK _ A1 BK ) clt,)=| 7 "7 . 0
a
where 0 0 0 oy
_at-r g=_ L
A= 2a = a where gy’ is variance of TOA measured at receiving station S
Thus, we must only compute partial derivations of function
Similarly, the targey, coordinate can be written (with x; = f(t}), which is represented by above mentioned algorithm
substitutingR = z.cl into the equation (5b)) as of analytical solution of TDOA equations for derivation of the
covariance matrix C(x;). These partial derivations are
y =C+DK (8) generally expressed as matdix
where
B+ ¢-2bA-R? - R-bB ox(t) . ox(t)
C= andD=—. af (t,) ot ot 14
2.C c J= = (1 (“ . (14)
ot, 0y, ti) oy, ti)
Substituting equations (7) and (8) into equation (3) yields o, oty
K= x>+ % = (A+ B,K)2 + (C + D_K)Z. (9) As demonstrated earlier, the derivation of analytical solution

of the TDOA equations is realized with using of many
substitutions. These substitutions are applied to derivation of

The roots of quadratic equation ), are : X >
matrix J, too. So, we derive following terms:

K =-Ne/N-4amP (10) oL oL oL
“ 2M % -1c=-c ~——=LL=cl@d_==R=0 (15)
at, ot, ot,
whereN = A.B+C.D, M = B*D?1 andP = A>+C>. and
_ _ _ R _Rre=-c Ropr=gandR_pp=¢. (16)
Finally, we can determine the target coordinatesy;, by ot, ot, ot,

substituting roots of equation (10) back into equations (7) and
(8). The back transformation of computed target coordinates to
the standard coordinate system {} can be determined by
following terms
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In the same way
If the term N? — 4.M.P is substituted bPET, then

gTA:AC:—gELC’ a7
A L 9ET _ pETC= 2.NNC-4(MPC+PMC):  (24)
S =AL=-—L o
a
A L 9DET _ pETL= 2.N.NL- 4(M.PL+ PML),
aTzAR:—fD_Rzo, ot,
a
3
9ET _ pETR= 2. NNR- 4( MPR+ PMR):-
0B 1 oty
5 -BC=-J0c (18)
a
aé . Next, assume th&D=+/DET , then
5 -BL=-_0L
2 aSD 1
0B 1 =SDC=DETCEH—— (25)
EZBR:_EELR:O, atl Zm
9SD _ gy = pETLE—A .
aC b R at, 24/DET
—~ =CC=-=[AC-—[RC: (19) aSD 1
ot c c = SDR=DETRE——— -
aC b ot 2./DET
5 ~CL= -~ AL
aé R Consider thaiNOM = _M , then
= =CR=-—[RR 2
ot, c
ONOM (NC+ SDC)
— RC- =NOMC = -+ ——>=+, (26)
gTD =DC = — RC-hBC| (20) ot, 2
C
1
s ) ONOM :NOML:_(NLiSD)’
?ZDL:_EEBL, atZ 2
2
D_ ol aNOM:NOMR:_(NRtSDQ_
Rt ot 2
ot, c 3
%ﬂ = MC= 2.(BBC+ D.DC), (21) Finally, if K = NOM , then
t1
oM
22 = ML= 2(BBL+D.DL) _
at, ( ) K _ - (NoMCM- Nom.mc) o
M _ MR=2.DDR o, M
o, 0K _ ey = (NOMLM - NOM.ML)
at, M ?
IN - NG 2( ABG+ BAC+ CDC+ DCC): (22) 9K _ g = (NOMRM- NOMMR)
%, at, M?
N _ L= 2( ABL+ BAL+C.DL+ DCL)
ot, Thus, the partial derivations of functian= f(t;), in coordinate
gTN - NR= 2_( CDR+ D.CR)a system &',y‘} can be written as
3
0,
op —L = XC= AC+ BKC+BCK, (28)
= PC=2(AAC+ CCO): (23) o
1 I
P 9% _ ' = AL+ BKL+BLK .
5 = P 2(AAL+CCL): ot,
2
0X _ vy =
oP _ PR= 2.CCR- aTS— XR = BKR;

at,
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Y = ¢ = CC+ DKC+DCK I s,
atl Lmax
O _\yi ! !
—=YL'"=CL+DKL+DLK, —S |
ot, ! |
M~ \r= CR+ DKR+DRK - i [0,0] !
ot, . —»
| +7 T
In standard coordinate systemy} these derivations are given | S i
as ~ Dmax : :
o R -
e XC= XC cosr - YC'sina: (29) ~Timax Timax
1

Fig. 2 the example of the mapping from the Cartesian
coordinate system onto the hyperbolic coordinate system
0y, . :
—+= YR XR sinor+ R cosa - The limiting values of both delays are restricted by

ot, s . . )
. . receiving station coordinates and they can be following
Consequently, the covariance maftix,) can be written as

(30) _\/?_ a

T = =—,
o 0 0 ] mx el el
XC XL XR]| & XC XL XR] . Ja?z
clx, )= Jo o2 ol _Ja® _ a
YC YL YR , L YC YL YR “Tonax == =——,
0 o4 cl cl
_ [bZ +CZ
The covariance matrixc(x;) describes the error of target L omax = cl '
position localization and it represents so called error ellipse. In W
practical case, th€EP (Circular Error Probability) is used as =T opax = —7|-
c

parameter that can describe the error of target position. This

parameter can be expressed by following term . .
However, the back mapping from the hyperbolic plane onto

3 3 {x,y} plane is ambiguous. It is clear from mathematical
CEPL 075 [\/?} +[\/IJ , (31) notation of the analytical solution of TDOA equations where

2 the quadratic term appears, see (10). Thus, the algorithm can

generally have tree different solutions:
where, , are eigenvalues of covariance matrix. -the roots of quadratic equation are two real positive
numbers, i.e. we can compute coordinates of two

IV. THE ANALYSIS OF THE COVARIANCE MATRIX different real targets,

Generally, the set of equations (1) express the mapping of -the roots of quadratic equation are two identical real
an arbitrary point from X,y} plane onto the hyperbolic plane positive numbers, i.e. we can compute coordinates
{n,}. This mapping is unambiguous. Figure 2 shows an of one real target,
example of this mapping. -the roots of quadratic equation are two complex

numbers, i.e. we can not determine coordinates of
Va target. It is example of non-real target.
T Xyl
+ Next, we will analyse the covariance matrix from conditions of

S [b.d solvability point of view. If we take into consideration, the
n ' above derived algorithm of the covariance matrix computation
does not have solution under the conditions:

v

' S, [a,0] S, [0,0] X a)a= 0, in equations (17) and (18),
b) c = 0, in equations (19) and (20),
¢) M =0, in equation (27),

d) DET = 0, in equation (25).

The condition a) is satisfied just in case when the receiving
station $ has the same coordinates as the receiving station S
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Of course, it means that the TDOA system has only two
receiving stations and coordinates of target can not be
computed, i.e. the covariance matrix can not be computed, too.

The condition b) is satisfied just in case when the receiving
station § has coordinatesb[0]. It means that all three
receiving stations lie on the same line.

The analysis of the conditions c) and d) is more complicated
than study of previous conditions. Thus, we chose following
approach. The conditioM = B>+D*1 = 0 can be expressed,
with using equation (8) and substitutidns 7.cl, R = n.cl as
functionR =f(L). Then, this function is given as

aaR + bbR+cc=0 (32)
where
-20 -10 0 10 20 30 40
aa=U?% bb=U.W, cc=B?+W -1,U = 1k, andW = -b.Blc. —
Fig 4 the graphic representation of conditidhs 0 and

Figure 3 shows the curve (solid line) that includes all points DET = 0 in {x,y} coordinate system
which satisfy the function (32) in coordinate system #},
resp. {,R} as result of numerical analysis of (32). V. THE TEST OF VALIDITY OF THE COVARIANCE MATRIX

The conditionDET = N*-4.M.P = 0 was analyzed with using SOLVABILITY CONDITIONS

of similar idea. The dotted line in Fig 3 is graphic |n this part of this article we present some results of validity
representation of analysis results. The border of unambiguadsting of the derived solvability conditions of the covariance
target position computation is the physical meaning of th@atrix. The simulation was performed in MATLAB software
M = 0 condition. It means that the TDOA equations have jughvironment. In coordinate systemy} there are some areas
one real solutionK>0) there. Figure 4 shows this border inyhere the covariance matrix does not have any solution which
coordinate systemx{y} as boundary lines between light andyas demonstrated by analysis of a, b, ¢, and d conditions in
dark grey areas. In dark grey area the TDOA equations hgy@vious part of this paper. Figure 5 shows a detaCBP
one real solution and one non-real solutir@). In light grey  parameter, which represents the covariance matrix here, in
area these equations have two real solutions, i.e. the TDQfyrounding of receiving site;Sn this case the coordinates of
method is ambiguous. the receiving sites are, $25 km,0], $[0,-10 km] and $[25

The conditionDET = 0 represents the points (in hyperboliqqm 0] and the CEP is computed for 2500 targets with
coordinate system) where the TDOA equations have only oggordinates in intervals ~ x = (-50 km,50 km) andy = (-50
solution and it is real. The boundary lines between black areh, 50 km). It is clear that the val@EP is close to infinity
light grey areas just represent this condition iryf{ for targets that lie on lines that connect particular receiving
coordinate system. From accuracy point of view, thsites. This result exactly correlates to the covariance matrix
covariance matrix does not have any solution here. analysis.

CEP [m]

R [knm]

-5000

10000

Fig. 3 the graphic representation of conditions c) and d) Fig. 5 the detail 0EEP parameter values
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It is clear that the TDOA system measures the target CEP,,
positions with large error just in these areas and it have very

strong impact on the planning of the TDOA system The whole algorithm is repeated for situation when the

arr_lc:;mgement in_prac;[]i_cal uti:;Tationr.] TDOA h number of receiving stations of TDOA systems is increased by
0 suppression this problem the system can haye e results of all algorithm rundowns, represented by
more receiving sites than three or the TDOA system Bep

. o > oo @re then mutually compared and the topology of
intended only for localization of targets that are inside t DOA system with sufficient accuracy characteristics with

receiving sites triangle. This case is shown in Fig. 6 where tP@gard to number of receiving stations is selected as the
receiving station coordinates arg[84 km,20 km], g0,- optimal topology

40 km], S[34 km,20 km] and possible targets are inside of a
circle with radius 10 km. The centre of this circle is situated to ViI
origin of coordinate system. '

= min(CEP,)- (34)

THE OPTIMIZATION ALGORITHM SIMULATION

The result of simulation that tests looking for optimal
topology of TDOA system with 3 receiving stations is shown
in Figure 7. In this case the aréh is defined as circle
centered at coordinate origin with radius 25 km. The éré&a
defined as circle too. This circle has radius 10 km and it is
centered at coordinate origin, too. In this case 25000 TDOA
systems are created and 10000 signal source positions are
considered.

40

-2 ¥ [km]

Fig. 6 theCEP parameter values

VI. THE PRACTICAL UTILIZATION OF THE COVARIANCE MATRIX
ANALYSIS

The optimization of the TDOA system topology (i.e.
number of receiving sites and their mutual arrangement) is one
of the practical exploitation of the covariance matrix analysis. 5 4 2 0 2 4 5
We designed an optimization algorithm. This optimization
algorithm is based on the Monte-Carlo method and as the
optimization parameter was chosen BEP parameter. The Fig. 7 the example of optimal topology of TDOA system with
principle of the algorithm operation is following. First, 3 receiving stations
TDOA systems with necessary number (for example with 3
stations) of receiving stations are randomly (with uniform
distribution) deployed in defined aréh The ared] is area of VIIl. THE TEST OF THE OPTIMIZATION ALGORITHM WITH REAL
possible positions of receiving stations, for example it can be DATA
airport. Next, theCER values are computed for all TDOA The operation of optimization algorithm is tested with real
systems, i.e. fof TDOA systems, fok points from areab. data here. The real TDOA system measured positions of
The area® represents an area of possible targets and thiplane flight at approximately 8000 points. The topology of
number of targets positions is justlt meansk CEP values is this TDOA system and direction of this flight are shown in
computed for each TDOA system. The vallEP that satisfies Figure 8. This TDOA system has 4 receiving stations. In this
following equation case the map coordinate system is used.

CEP, = max(CER,) (33)

is saved. Finally, the optimal topology of TDOA system is
selected. The selection is accomplished according to following
expression
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o The comparison both topologies is shown in Figure 11.
! ; ‘ ‘ The parameter of comparison is valueGEP. We can see
556 : S TEIT T 8 that new topology provides better accuracy of target position
: : localization

a6

jsRala) TEE

5mm”.”.”}..””.m e SRS

552

M {m]

1000 y . : :
7 | — CEP optiral topology |
k RS |T — - CEP original topology  -r------ -

I

a4

5481 . J N d
B 2000
G000

545 = B4 ...\ BO00 i
: original topology

: : Sd
5.44 : . LEEL ]

CEP [m]

5.42

B5
E{m] o1

Fig. 8 the topology of real TDOA system and direction of
flight

] 1000 2000 3000 4000 5000 G000 7000 8000 9000
target position measurernent order

The new (optimal) topology of TDOA system is shown on

Figure 9. The areBl is restricted by size of airport base. Fig. 11 theCEP comparison of optimal and original topology
of real TDOA system

56

........ _ The results of comparison between original and optimal
topology of TDOA system under real condition is described
in Table 1. We can see that the average valueCBP
dropped after optimization from 110 m to 66 m. The real
TDOA system works with variation of TOA measuring

........ 4 0{i2 — (10 nsﬁ.

550 F

LEjkafa| SemGRaa

554k .
552k .
13 :
Z 5EF N

S4B

8 Table 1: TheCEP comparison of optimal and original
i topology of real TDOA system

S4B -

s £l . Original topology of | Optimal topology of
TDOA system TDOA system
Fig. 9 the topology of the optimal TDOA system and Ucep 110,07 M | icep 66,33 m
direction of flight CEPnn | 944,90 m |CER,, |153,61m
CEPax 1,15m CEPax 1,14 m

IX. CONCLUSION

This article more detailed describes the derivation and the
following analysis of the covariance matrix of the TDOA
localization method. The derived algorithm of the covariance
matrix computation is fully analytical. It means that it is a
powerful tool for following solvability analysis of the
covariance matrix that is main part of the article.

The example of practical using of this analysis is shown in
last part of the paper. This is the simulation of the system
topology optimization algorithm computation. The results of
the simulation illustrated that the optimal topology of the
TDOA system can be found whereas the criterion of
Fig. 10 the detail of topology of the optimal TDOA system optimization can be values GEP parameter.

N [m]
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Generally, the same procedure can be applied to solution of
3-D case of a TDOA system using. The results of the
covariance matrix analysis were used for innovation of current
TDOA systems.
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