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Abstract- The electrical characteristics of two monopoles with 
different lengths located in the near region of each other are analyzed. 
The self and mutual impedances of both radiators are calculated, the 
mutual coupling between two monopoles is considered. It is shown 
that as in the case of two monopoles with equal lengths the structure 
of two monopoles with different lengths can be modeled as a 
combination of two-wire transmission line and monopole with 
stepped change of equivalent radius. The current distribution along 
each conductor is found. Also the method is applied to the multiple-
wire radiator. Calculations are based on the folded dipoles theory, on 
the theory of electrically coupled lines located under ground, and on 
the superposition principle.

Keywords - Folded dipoles, Monopole antennas, Mutual 
coupling, Near fields, Transmission lines.

I.  INTRODUCTION

The requirement for creating a weak field area in the 
transmitting antenna near region stems from the necessity to 
protect vulnerable devices or phone users from RF irradiation. 
In accordance with the compensation method proposed by M. 
Bank [1], such problem can be efficiently solved by 
employing two radiators, the fields of which mutually 
suppress each other in a certain desired area. For this purpose, 
between the main radiator 1 and the user’s head an auxiliary 
radiator 2 is placed in the vicinity of the main radiator, as 
depicted in Fig.1. 

Development of the compensation method theory required 
calculation of fields produced by two linear electric radiators 
of finite lengths located in their near regions [2]-[7]. This 
calculation is based on the folded dipoles theory and on the 
superposition principle. The two radiators system is divided 
into two circuits: an open-ended long line and a two-wire 
linear radiator (for example, monopole) with an equivalent 
radius. If the wires have equal lengths, the line length and the 
monopole height equal the wire length. But, if the wires have 
different lengths, it is necessary to determine the input 
impedance of each circuit and the current distribution along 
each wire.

Analogous problems occur with multiple-wire radiators. For 
example, a radiator may consist of a long central rod with load 
and a system of identical shorter wires located around this rod,
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in parallel to it. Another example of such problem is the 
analysis of a mast influence on the characteristics of a vertical 
wire antenna suspended in parallel to the mast [8].

We shall consider these problems by the example of a weak 
field area creation. In accordance with the compensation 
method, in a point A inside the head two radiators create the 
fields, the  vertical components of which have equal 
magnitudes and opposite signs. That point is called the 
compensation point. Around this point a weak-field area is 
produced.

This paper is organized as follows. In Section 2 the 
procedure, which allows us to analyze the antenna system as a 
superposition of two sub-systems with in-phase currents (even 
mode) and anti-phased currents (odd mode), is considered. In 
Section 3 it is shown that the input impedance of a line with 
wires of unequal lengths is equal to the input impedance of a 
line with the short wires, loaded by a small capacitance. From 
the results of Section 4 one can see that the currents along 
both sections of the monopole are distributed in accordance 
with sinusoidal law. In Section 5 the results of the mutual 
impedances calculation for the radiators of unequal lengths in 
the near region are given. In Section 6 the method of multiple-
wire radiator calculation is considered.

II.  SUBDIVIDING INTO TWO SYSTEMS

Fig.2 shows the equivalent circuit of the two radiators 
structure for the case when an emf e1 is connected to the input 
of the first radiator (hereafter, the active antenna), and the 
second radiator is not driven. In Fig.2, R1 is the output 
impedance of the first generator; R2 is the input impedance of 
the second generator (it may be measured at the input of the 
cable leading to this generator), and usually RRR  21 .

In accordance with the theory of folded monopoles, we 
consider an equivalent structure, in which two generators of 

equal emf )2( 1e are connected to the terminal of the second 

Fig.1. The compensation method
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Fig.2. The two-radiator system

radiator in opposite directions, and the emf 1e  of the active 

radiator is split into two generators of equal emf 21e and 

direction, as depicted in Fig. 3. This procedure allows us to 
analyze the antenna system as a superposition of two sub-
systems with in-phase currents (even mode) and anti-phased 
currents (odd mode). The odd mode sub-system represents an 
open-ended transmission line, and the even mode sub-system 
represents a monopole. 

If the wires have equal lengths L, we can write for the two-
wire line of Fig. 2

                                    RZJe ll 21  ,                        (1)   

where lJ  is the current at the line base, kLjWZ ll cot  is 

the input impedance of a line with length L , 

 abWl ln120  is the line’s wave (characteristic) 

impedance, b is the distance between the wires, and 2 a  is the 
diameter of each wire. The current at point C is equal 

to 111 YeJ lC  , and the current at point D is 111 YeJ lD  , 

where 
                        RkLjWY l 2cot11  .

For the monopole we can write

                           )2/(2/1 RZJe rr  ,                    (2)

where rJ  is the current at the monopole base, and 

 emr aLZZ ,  is the input impedance of a monopole with 

length L and equivalent radius ea , given by ab . The 

currents at points C and D are the same

                     21111 24 YeRZeJJ rrDrC  ,

where   RaLZY em 2,412  . So, if emf 1e  fed the 

Fig.3. For calculation of the input impedance

first radiator, the currents at the first and the second radiator
bases are 

              21111 YYeJ  ,  21121 YYeJ  .

Similarly, if emf 2e is connected to the second radiator input, 

the currents at the radiator’s bases are 

 21212 YYeJ  ,  21222 YYeJ  .

According to the superposition principle the currents at the 
radiators’ terminals are

    2211211 YeeYeeJA  ,                                       

    2211122 YeeYeeJA  .                (3)

And the input admittances of the radiators are

                  112221111 / eYYeYYeJY AA  ,            

  21212122 / eYYeYYeJY AA  .    (4)

If the radiators have different lengths, the problem is 
complicated.

III.    TWO-WIRE TRANSMISSION LINE   

As shown in Fig.4a, a two-wire line consisting of parallel 
wires of unequal lengths has two sections: a lower section of 

length 2lL   and an upper section of length 21 lll  , 

where 1l  is the length of the longer radiator, and 2l  is the 

length of the shorter one. The lower section consists of two 
parallel wires of circular cross section of the same lengths and 
radii. The capacity per unit length between such wires placed 
in a homogeneous medium of permittivity   is given by

                                    abC ln0  .                       (5)

Here a is the wire radius, and b is a distance between wires 

axes. The linear capacitance 0C  determines the wave 

impedance of the two-wire line lower section.
We shall take account of the upper section effect on the line 

input impedance by calculating the capacitance between the 
upper part of the longer wire (of length l) and the short 
radiator (Fig. 4b). This capacitance equals the difference of 
two capacitances:

Fig. 4. The account of line’s upper section
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                                     LCCC 01  .                         (6)

Here 1C  is the total capacitance between the longer and the 

short wires, LC0 is the capacitance between the line wires of 

length L . At that 1C  is given by (see, for example [9])

                            1
1222111 2  C ,               (7)

where
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Therefore, the input impedance of the line with wires of 
unequal lengths equal to the input impedance of the line with
the short wires, loaded by a capacitance. Calculations show 

that this capacitance is small in comparison with 0C  of the 

line. In particular, for L=7.5, b=1.0, 2a=0.05 (all dimensions 

are in centimeters) we have 0C =7.5 pF, and C calculated in 

accordance with (6) for l from 1 to 4 cm changes from 0.05 to 
0.1 pF, where it is assumed  that the wires are located in air, 

Table 1. Capacitive loads due to unequal wire lengths and 
elongations l0 and l01 at 2a=0.05 cm

l, cm l0, cm l01, cm C, pF
0.0 0 0 0.020
0.5 0.22 0.19 0.037
1.0 0.41 0.39 0.050
1.5 0.56 0.52 0.063
2.0 0.69 0.86 0.073
2.5 0.80 1.10 0.081
3.0 0.90 1.38 0.089
3.5 0.98 1.66 0.095
4.0 1.05 1.94 0.101
4.5 1.12 2.17 0.107

Fig.5. The simulation model for the two-wire transmission line

i.e.   3610 9 .
The capacitive load at the end of the open line is actually 

equivalent to its elongation by l0, beyond the line’s length L. 
The elongation value is obtained from the expression

                         
lCW

arc
k

l


1
cot

1
0  .                   (8)

The calculation results are given in Table 1. Table 1 
presents the values of capacitance C, and also the distances l0 

for given wires dimensions at frequency 1GHz. 
The obtained theoretical results were verified by the CST 

simulation. The system model used in the simulations is 
shown in Fig.5. In this Figure e is a discrete port (generator), 
and R is the output impedance of the generator set to 50 ohm. 
These calculation results are also presented in the Table 1 (the 
length l01). At that the magnitudes l0 and l01 are decreased by 
their values for l=0 cm. The calculation and simulation results 

are close to each other, if 1.0l , and show that the input 
impedance of a line with different wire lengths differs 
somewhat from the input impedance of a line with wires 
having the same lengths as the shorter wires. 

The analogous results at 2a=0.2 are presented in Table 2. 

IV.  MONOPOLE OF PARALLEL WIRES

The not less important second problem is the input 
impedance calculation of a linear radiator (monopole) 
composed of two wires with different lengths (Fig. 6a). Fig. 
6b shows an equivalent asymmetric line for this radiator. The 
current distribution along the monopole wires is calculated in 
accordance with the theory of electrically coupled lines 
located under ground, developed by A. Pistolkors [10].

In this case, since the line wires have different lengths, it is 
necessary to divide the equivalent line to two sections, as 
shown in Fig. 6b. The expressions for the current and potential 
of wire n at section m of the asymmetric line of N wires

Table 2. Capacitive loads due to unequal wire lengths and 
elongations l0 and l01 at 2a=0.2

l, cm l0, cm l01, cm C, pF
0.0 0 0 0.047
0.5 0.21 0.15 0.073
1.0 0.37 0.30 0.093
1.5 0.49 0.45 0.108
2.0 0.58 0.61 0.119
2.5 0.65 0.79 0.128
3.0 0.71 1.00 0.135
3.5 0.75 1.24 0.140
4.0 0.78 1.48 0.144
4.5 0.81 1.64 0.148
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Fig.6. Monopole and equivalent asymmetric line
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potential at the beginning of section m of wire n (at point
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section m, and )(m
nsW and )(m

ns  are the electrostatic and 

electrodynamic wave impedances  between  wire n and  wire s
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compared with the wires lengths, one can assume
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The zero currents at the ends of the wires and the continuity of 
the current and potential along each wire permit to write the 
boundary conditions
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The current along the first section of the longer wire as a function of z-
coordinate is given by
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The current along the second section is
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The total current along the second section is   
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One can see from the obtained expressions that the current 
along both sections of the monopole is distributed in
accordance with sinusoidal law as in the known case of a 
monopole consisting of two segments each with different 
wave impedances (for example, with different wire diameters).

Let us write the expression for the total current along the 
monopole in the form

          mmmmmmm lzlzkljBzklAzJ  1,sincos

In accordance with presented earlier formulas
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The input reactance of the monopole is equal to the input 
impedance of the equivalent long line:
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where  
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The radiation resistance of the monopole is

                                         2240 ehkR  ,                            (13)

where eh is the effective height 
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The potential coefficients  m
n are calculated by the method 

of mean potentials in accordance with a real location of 
antenna wires. The simplest variant of this method is the 
method of Howe. It is easy to show that the mutual potential 
coefficient of two parallel wires with the same length, the 
dimensions and location of which are given in Fig. 7, equals
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taking into account mirror image equals
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where ml and 1ml  are the coordinates of m-section tips, 
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Fig. 7. The mutual location of wires

m-section and its mirror image, )(m
na is the n-wire radius at the 

m-section. The mutual potential coefficient between the m-
sections of n-wire and s-wire equals 
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)(m
nsb is the distance between axes of n-wire and s-wire at the 

m-section.

V. MUTUAL INFLUENCE OF RADIATORS

As is well known, a current and an input impedance of a 
radiator depend on neighboring radiators currents and mutual 
impedances. One can write for a system of two radiators 

          1221111 ZJZJe AA  , 2222112 ZJZJe AA   (15)                                                                                                    

Here 1e and 2e are the electromotive forces (emf) connected in 

the bases of the first and second monopoles, Z11 and Z22 are the 
self-impedances of the radiators, Z12 and Z21 are their mutual 
impedances.

Either of the two expressions (15) is Kirchhoff equation for 
a circuit. A set of Kirchhoff equations is valid at an arbitrary
relative position of radiators. From (15) in particular it follows 
that
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 ,(16)                             

that is the current in each radiator is the sum of the currents 
produced by the self generator, as well as the generator of the 
neighboring radiator (because of the mutual coupling between 
radiators). The relation of these currents depends on the 
mutual coupling size that is depends on the radiators 
dimensions and location. 

In order to determine the self and the mutual radiators 
impedances (with equal wire radii), we compare expressions 
(16) with expressions (3). Considering that 
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we obtain: 
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Adding and subtracting left and right parts of last two 
expressions, we find:   
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that is     
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and consequently 
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from which
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The calculation method for the transmission line is 
considered in Section 3. In accordance with it the wave 
impedance of the line is 

abWl ln120 ,

and the elongation value is obtained from the expression (8). 
The input impedance of the monopole equals

                                Am jXRZ   ,                       (18)

where the input resistance is 2240 ehkR  , and the input 

reactance is  eA lLkWX  cot2 .                         

At that the effective height eh is equal to 21 hhhe  ,
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The results of the self and mutual impedances calculation of 
the radiators with unequal lengths in the near region are given 
in Fig. 8. They are accomplished in accordance with the 
described method for variant with L=7.5, b=1.0, 2a=0.05 
depending from l (all dimensions are in centimeters).

VI.  MULTIRADIATOR ANTENNA

One can apply the calculation method based on the theory of 
electrically coupled lines located under ground, which is used 
at the input impedance calculation of a linear radiator 
(monopole) composed of two wires with different lengths, for 
analysis of multiple-wire radiators. One of possible multi-

Fig. 8. The self and mutual impedances of the radiators with unequal lengths

radiators antenna variants is presented in Fig. 9a. An
equivalent asymmetrical line is given in Fig. 9b. Antenna 
consists of the central radiator 1 with complex loading 

impedance 0Z  and side radiators 2 located around the central 

one along cylinder generatrixes and connected to the base of 
the radiator 1. The sake of simplicity let us consider that 
geometric dimensions of the side radiators are the same, 
though one can solve the problem in the general case. Then 
one may reduce the asymmetrical line to two-wire one and to 
obtain the solution for the current in an explicit form. At that 
first wire of an equivalent asymmetrical line is the central 
radiator, and the second wire is a system of N-1 side radiators 
(N is the total quantity of radiators).

If the wires of the line have different lengths, at that loading 
impedance is connected to one wire, it is necessary to divide 
the line into three sections. The expressions for the current and 
potential of n-wire in m-section look like (9). The boundary 
conditions for the two-wire asymmetrical line shown in Fig. 
9b look in the following way
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(19) 

These conditions mean the absence of the currents at the free 
ends of the wires and continuity of the current and the 
potential along each wire with the exception of the point 

where the load 0Z is placed and the potential step occurs.

Substituting (9) into (19) and solving the equations system, 

we find all coefficients    m
n

m
n UI , and afterwards the total 

current along the antenna as function of the coordinate 

mm zl  :

Fig. 9. Multi-radiators antenna with complex loading impedance (a) and 
an equivalent asymmetrical line (b)
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The input impedance of the asymmetrical line is

                                        0JeZl  .                           (21)

This expression with allowance for (20) permits to calculate 
approximately the reactance of the multi-radiators antenna, 
similarly to the fact that the expression for impedance of the 
equivalent long line permits to calculate approximately the 
reactance of the linear radiator. One can find the antenna 
impedance more exact, if to consider that antenna is the linear 
radiator, the current along which equals the total current of the 
multi-radiators antenna. 

In accordance with the second statement of emf method the 
impedance of the linear radiator with the concentrated load is 
defined by the expression
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where E is the tangent component of electric field, created at 

the radiator space by current  J  along its axis, and the 

current  J is found from (20). The free term in square 

brackets of expression (22) is the power, which is dissipated 

by the complex load 0Z . The field E is calculated in 

accordance with common expression. The function  J is 

continuous in the all interval 10 l   and has sinusoidal 

character in each antenna section. However the function 
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where 22
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are the values of derivatives on the right and on the left from 

the point mlz  , a is the equivalent radius of antenna in the 

point  . Substitution (20) into (23) gives
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An electrical field in the far region at the distance r is 
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where  H  is a generalized effective height, equal to 
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from which an effective height of asymmetric multi-radiators 
antenna is
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Radiation resistance of antenna is

                                      lsA RRR  ,                        (26)                                               

where AR  is active component of an input impedance 

calculated with help of (22)), and lsR is loss resistance in the 

load 0Z  referred to an antenna input:
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2

02
2

J

ZlJ
Rls  .                    (27)

In Fig. 10 the characteristics of the multi-radiator antenna 
with 6 the same side radiators are given (N=7). The geometric 

dimensions (in meters) are 5.6,7,10 321  lll ,   ,007.01
1 a

    15.0,01.0,02.0 2
3

1
2

1  aaa . The load 0Z is the 

parallel connection of resistor with active impedance 

200R ohm and of the coil with inductance £=14·10-6 H.
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a)

b)

c)

Fig. 10. The input characteristics (a), efficiency (b) and pattern (c) of multi-
radiators antenna with complex loading impedance

The calculations are accomplished on the basis of described 
procedure. The experimental values are given together with 
calculated curves. The agreement is enough good.

VII.  CONCLUSIONS

The obtained results show that using the folded dipoles theory 
and the superposition principle one can analyze the near 
region behavior of a system from two linear electric radiators 
with different lengths. For this purpose the system is divided 
into two circuits: a two-wire open-ended transmission line and 
a two-wire linear radiator (monopole). As a first order 
approximation, the length of the equivalent line’s wires is 
quite close to that of the shorter wire, and the monopole length 
is equal to the length of the longer wire.
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