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Abstract— This paper introduces a routing algorithm for the 

Extended OTIS-n-Cube Networks. The recently proposed network 

has many good topological features such as regular degree, 

semantic structure, low diameter, and ability to embed graphs and 

cycles. Broadcasting approaches such as constructing a 

Hamiltonian cycle, Spanning Tree, and One to all broadcasting are 

important aspects for any topology to embed due to the importance 

of broadcast messages within networks. This paper also presents 

such approaches for the extended OTIS-n-Cube Interconnection 

network. Examples are presented for different network sizes to 

show that broadcasting approaches for the Extended OTIS-n-Cube 

give better performance compared to similar approaches for the 

OTIS-n-Cube. 

 

Keywords— Interconnection Networks, OTIS-n-Cube, 

Broadcasting, Routing Algorithm.  

I. INTRODUCTION 

HE binary n-cube has been one of the most popular 

network topologies for multicomputers due to its 

attractive topological properties, e.g. regular structure, low 

diameter, and ability to exploit communication locality[1]. 

Several experimental and commercial systems have been 

built using the factor cube network including the NCUBE-2 

[2], Intel iPSC [3], Cosmic Cube [4], and SGI Origin 2000 

multiprocessor [5]. 

In the last decade, there has been an increasing interest in a 

class of interconnection networks called Optical Transpose 

Interconnection Systems “OTIS-networks” [6] – [9]. 

Marsden et al were the first to propose the OTIS-networks 

[10]. Extensive studies and modeling results for the OTIS 

have been reported in [11] – [14]. The achievable terabit 

throughput at a reasonable cost makes the OTIS a strong 

competitor to the electronic alternatives [10], [15] - [17]. 

These encouraging findings prompt the need for further 

testing of the suitability of the OTIS for real-world parallel 

applications. 

A number of computer architectures have been proposed in 

which the OTIS was used to connect different processors 

[18]. Krishnamoorthy et al [12] have shown that the power 

consumption is minimized and the bandwidth rate is 

maximized when the OTIS computer is partitioned into N 

 
 

groups of N processors each. [12, 19]. Furthermore, the 

advantage of using the OTIS as optoelectronic architecture 

lies in its ability to maneuver the fact that free space optical 

communication is superior in terms of speed and power 

consumption when the connection distance is more than few 

millimeters [12]. In the OTIS, shorter (intra-chip) 

communication is realized by electronic interconnects while 

longer (inter-chip) communication is realized by free space 

interconnects.  

OTIS technology processors are partitioned into groups, 

where each group is realized on a separate chip with 

electronic inter-processor connects. Processors on separate 

chips are interconnected through free space interconnects. 

The philosophy behind this separation is to utilize the 

benefits of both the optical and electronic technologies.  

Processors within a group are connected by a certain 

interconnecting topology, while transposing group and 

processor indexes achieve inter-group links. Using n-cube as 

a factor network will yield the OTIS-n-Cube in denoting this 

network.  

OTIS-n-Cube is basically constructed by "multiplying" a 

cube topology by itself. The set of vertices is equal to the 

Cartesian product on the set of vertices in the factor cube 

network. The set of edges E in the OTIS-n-Cube consists of 

two subsets, one is from the factor cube, called cube-type 

edges, and the other subset contains the transpose edges. 

The OTIS approach suggests implementing cube-type edges 

by electronic links since they involve intra-chip short links 

and implementing transpose edges by free space optics. 

Throughout this paper the terms “electronic move” and the 

“OTIS move” (or “optical move”) will be used to refer to 

data transmission based on electronic and optical 

technologies, respectively. 

Although the OTIS-n-Cube network has many attractive 

topological properties but it suffers from having limited 

optical links between the different groups. When source and 

destination nodes are in two different groups, the fact that 

only one optical link connects two distinguished groups 

directly create a congestion problem to most of the shortest 

paths that have to pass through this particular optical link. 

Furthermore, alternative paths are too long compared to the 
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short path because they have to be routed via a third group 

which required passing via two optical links in addition to 

the electronic moves in each group to reach the destination. 

The Extended OTIS-n-Cube is a recently proposed 

interconnection network based on the “OTIS-n-Cube” 

network [20]. This new topology has many attractive 

properties such as the regular degree, the small diameter, 

embedding structure nature, etc. The Extended OTIS-n-

Cube network outperforms the OTIS-n-Cube in many 

feature including semantic structure, regularity, smaller 

diameter, and other exceptional properties [20]. 

Broadcasting refers to a method of transferring a message 

to all other nodes simultaneously. Broadcast operation is one 

of the most fundamental services utilized frequently by other 

communication mechanisms in any network topology. 

Supporting efficient broadcast operation is therefore very 

crucial for all networks including the Extended OTIS-n-

Cube. Embedding of topologies with regular structure and 

also irregular structure has been broadly investigated in the 

literature, e.g [18, 19, 21, 22]. Embedding structures and 

other topologies is one of the key features of interest in 

interconnection networks. The load of an embedding is the 

maximum number of nodes in a graph assigned to any node 

in the embedded graph. We are interested in this research in 

investigating routing algorithms and broadcasting  

techniques including embedding a Hamiltonian cycle and 

blanched trees approaches [23]. 

In the mathematical field of graph theory, a Hamiltonian 

path is a path in an undirected graph which visits each node 

exactly once. A Hamiltonian cycle is a cycle in an 

undirected graph which visits each node exactly once and 

also returns to the starting node. Determining whether such 

paths and cycles exist in graphs is the Hamiltonian path 

problem [21, 22, 24].  

The Hamiltonian path seeks whether there is a route in a 

directed network from a beginning node to an ending node, 

visiting each node exactly once. The Hamiltonian path 

problem is NP complete, achieving astonishing 

computational complexity. This challenge has inspired 

researchers to broaden the definition of computer 

computations. The Hamiltonian problem arises in many real 

world applications including DNA applications [22]. 

This paper proposes a theoretical study on the routing 

properties in general and broadcasting techniques in specific 

for the Extended OTIS-n-Cube due to its attractive 

properties. Section 2 presents notations and preliminary 

definitions. Details of embedding a Hamiltonian cycle in the 

Extended OTIS-n-Cube topology will be discussed in 

section 3. Section 4 concludes the paper. 

II. PRELIMINARY DEFINITIONS 

The n-dimensional undirected graph binary n-cube is one 

of the well known networks which have been used in real 

life systems [25] – [28]. 

Definition 1: The undirected graph n-cube with 
n2  

vertices, representing nodes, which are labelled by the 
n2  

binary digits of length n. The binary system consists of two 

bits; 0 and 1. Two nodes are connected by a direct edge if, 

and only if, their labels differ in exactly one bit position. 

The Extended OTIS-n-Cube is constructed by 

"multiplying" a cube topology by itself. The vertex set is 

equal to the Cartesian product on the original vertex set in 

the factor cube network. The initial step is similar to OTIS-

n-Cube construction; this is why we name it Extended OTIS-

n-Cube. 

Definition 2: Let g
1
, p

1
 be group and processor addresses 

of a node in an Extended OTIS-n-Cube labeled as series of 

bits xn…x2x1, yn…y2y1 consequently where each bit is 

either 0 or 1. A  node g
2
, p

2
 is called an opposite of node 

g
1
, p

1
 if and only if they differ only in the first bit position 

of g
1
 and  g

2 
labels, and also in the first bit position of p

1
 and  

p
2 

labels; they differ only in x
1
 and  y

1
, e.g. node 00, 00 is 

an opposite node of 01, 01. 

Definition 3: The two nodes g
1
, p

1
 and g

2
, p

2
 are 

connected via a transpose edge if and only if g
1
= p

2
 and g

2
= 

p
1
. 

The edge set consists of electronic edges from the factor 

network and two new types of edges called the transpose and 

opposite edges, both types are considered optical edges. The 

formal definition of the Extended OTIS-n-Cube is given 

below. 

Definition 4: Let n-cube = (V0, E0) be an undirected 

graph representing an n-cube network where n is the cube 

degree. The Extended OTIS-n-Cube = (V, E) network is 

represented by an undirected graph obtained from n-cube as 

follows V = {g, p | g, p  V0} and E = {(g, p
1
, g, p

2
) | if 

(p
1
, p

2
)E0}  {(g, p, p, g) | g, p  V0}  {(g, g, p, 

p) | g, p  V0 ∩ g is an opposite of p} 

In the Extended OTIS-n-Cube, the address of a node u = 

g, p from V is composed of two components.  

Figure 1 shows a 16 processor Extended OTIS-2-Cube, 

solid arrows represent transpose edges while dashes arrows 

represent opposite edges. The notation g, p is used to refer 

to the group and processor addresses respectively, two nodes 

 g
1
, p

1
 and  g

2
, p

2
 are connected by a direct edge if one of 

the following cases occurs: 
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Fig. 1 16-processor Extended OTIS-2-Cube 

1. If g
1
 = g

2
 and (p

1
, p

2
)E0 where E0 is the set of edges in 

n-cube network, in this case the two nodes are connected by 

an electronic edge if their labels differ only by one bit 

position. 

2. If g
1
 = p

2
 and p

1
 = g

2
, in this case the two nodes are 

connected by a transpose edge. 

3. If g
1
 = p

1
 , g

2
 = p

2
 , and g

1
 is an opposite of g

2
, then the 

two nodes are connected by an opposite edge . 

III. THE ROUTING ALGORITHM 

In this section we introduce the routing algorithm for the 

Extended OTIS-n-Cube. First, we introduce some routing 

topological properties of the Extended OTIS-n-Cube which 

are needed to show the present the unicast routing and also 

the broadcasting algorithms. 

Definition 5: If the cube factor degree is n, then any node 

in the Extended OTIS-n-Cube is regular and the node degree 

is n+1. 

Every node has n electronic edges based on the properties 

of the n-cube factor. Also every node; g, p; has an 

additional optical edge based on the Extended OTIS-n-Cube 

topology rule: {(g, p, p, g) | g, p  V0}  {(g, g, p, p) 

| g, p  V0 ∩ g is an opposite of p} 

so If  g= p then  g, p 
O

 gop, gop else g, p 
O

 p, 

g. 

Since every node has an n number of electronic, in addition 

to one optical edge, then by definition the topology is 

regular. 

Definition 6: Let g
1
, p

1
 and g

2
, p

2
 be two different 

nodes in the Extended OTIS-n-Cube. The length of shortest 

path from the source node g
1
, p

1
 to the destination node 

g
2
, p

2
 is defined mutually exclusive as in the following 

order: 

 

Where d(p
1
, p

2
) is the number of bit positions differ 

between  p
1
 and p

2
 labels. 

The length of the shortest path between the nodes g
1
, p

1
 

and g
2
, p

2
 can be addressed as follows: 

-If both nodes are in the same group then the shortest path 

is guaranteed by generating electronic moves toward the 

destination; d(p
1
, p

2
). 

- If g
1
= g

2 op
 it means that one optical move is needed to 

move toward the destination group via a group opposite 

edge. To reach the destination, some electronic moves might 

be needed first at one source group to reach g
1
, g

1
, then 

one optical move to reach the destruction group; finally 

other electronic moves at the destination group might be 

needed to reach the destination node. 

- If p
1
= p

2 op
 it means that two optical moves are needed to 

reach the destination group through an intermediate group 

equal to p
1 op

. This requires some electronic moves to 

perform the two optical moves, and finally to reach the 

destination node at optimal distance. 

- If p
1
= p

2
, g

1
= g

2
, and d(p

1
,p

2
)=n  it means that two optical 

moves in addition to some electronic moves are needed to 

reach the destination group through an intermediate group g
1 

op
. First an opposite move is required to reach g

1op
, p

1op
, 

then n-1 electronic moves to reach g
1op

, g
2
, then an optical 

move to reach g
2
, g

1op
, and finally other n-1 electronic 

moves to reach the destination node g
2
, p

2
 at optimal 

distance. 

- Otherwise we choose the shortest path based on the factor 

OTIS moves [29]. 

Figure 2 shows the unicast routing algorithm where each 

source node <g1, p2> in the network applies to route a 

message towards its destination node <g2, p2>.  

The new algorithm out perform the previous one 

introduced in [30] by considering all routing cases including 

diameter distances where g1 ≠ p2 and/or g1 ≠ p2. 
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Fig. 2 The Unicast Routing Algorithm 

The Algorithm checks first whether the source and the 

destination nodes are in the same group or not. If both nodes 

are in the same group then the factor cube routing rules are 

applied by selecting a preferred neighbor to guarantee an 

optimal routing toward the destination. Otherwise, the 

algorithm selects a move that leads to make an optical move 

to reach the destination's group, then, to reach the target 

destination node. 

This routing algorithm checks first the related locations of 

the source and the destination nodes. If both nodes are in the 

same group; where the factor network is the n-Cube; then the 

algorithm corresponds to a series of electronic moves from 

p1 to p2 along an optimal path in the n-Cube as generated by 

the optimal distance routing function. If the source node is 

located in different group than the destination node's group 

then there are three cases. 

In the first case, if the distance is equal to the diameter then 

the optimal routing path will contain two optical moves in 

addition to a set of electronic moves; as explained in the 

previous section; the algorithm with go through several 

conditions based on the addresses of source and destination 

nodes to choose the proper moves to reach the destination 

node. 

In the second case, if the group of destination node is in an 

opposite group of the source node then the optimal routing 

path will contain only one optical move in addition to 

addition to electronic moves. The algorithm with go choose 

an opposite move or a transpose move for this optical move 

based on the addresses of source and destination nodes to 

choose the proper moves to reach the destination node. 

In the third case, if the process address of destination node 

is in an opposite process address of the source node then the 

optimal routing path will contain either one or two optical 

moves in addition to electronic moves based on the 

addresses of source and destination nodes, the algorithm will 

choose the proper direction to reach the destination node as 

show in Figure 2. 

Example 1: Consider the Routing algorithm to route a 

message from the source node <01, 00> to the destination 

node <01, 11> in an Extended OTIS-2-Cube network. 

Since both nodes are in the same group; the same factor 2-

Cube network; then the algorithm corresponds to a series of 

electronic moves from process address 00 to 11 along an 

optimal path in the 2-Cube as generated by the optimal 

distance routing. These moves are as follows:  

01, 00 
E 01, 01 

E 01,11. 

Example 2: Consider routing algorithm to route a message 

from the source node <00, 00> to the destination node <01, 

11> in an Extended OTIS-2-Cube network. 

Algorithm: Routing(M: message; <g1,p1>,<g2,p2>: 

node) 

/* called by current node <g1,p1> to route the message 

M toward  

   its destination node <g2,p2> */ 

if g1= g2 and p1= p2 then exit;  /* destination reached */ 

if g1= g2 then route(<g1,p1>,<g2,p2>)  /*  curr & dest. at 

the same group */ 

if dist(p1,p1)+dist(g1  g2)= diameter then move m to < g1  

Opposite, p1 Opposite> 

 if g1=g2 Opposite then    /* curr and dest are in opposite groups 

  {  

     if p1=g1 then move m to < g1 Opposite, g1 Opposite> 

          else if p1= g2 then move m to < g2, p1> 

             else route(Min(<g1,p1>,< g1, g1> or <g1,p1>,< 

g1, g2>)) 

     } 

if  p1=p2 Opposite then  /* curr and dest are in opposite 

processes */ 

  { if p1=g1 then move m to < g1 Opposite, g1 Opposite> 

          else  move m to < p1, p2Opposite>} 

 if (dist(p1,p2)+dist(g1,g2)+2)<(dist(p1,g2)+dist(g1,p2)+1) 

then  

          { if p1= p2 then move m to < p1, g1> 

             else route(<g1,p1>,< g1, p2>) } 

      else  

         { if p1= g2 then move m to < p1, g1 > 

           else route(<g1,p1>,<g1,g2>) } 

End. 

Function route(<g1,p1>,<g2,p2>:node) 

{  

send M to (<g1,
)(

1

ip  > 

/* select a preferred neighbor toward the destination 

node <g2,p2>   */ 

 } 
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Since both nodes are in the different groups opposite to 

each other, then the routing path contains one optical move. 

The routing path will be 00, 00 
O  01, 01 

E  01, 

11. 

Example 3: Consider routing algorithm to route a message 

from the source node <00, 00> to the destination node <11, 

11> in an Extended OTIS-2-Cube network. 

Since both nodes are in the different groups at the diameter 

distance, then the routing path contains two optical moves. 

Based on the routing algorithm, the routing path will be 00, 

00 
O  01, 01 

E  01, 11 
O  11, 01 

E  

11, 11. 

Example 4: Consider routing algorithm to route a message 

from the source node <00, 00> to the destination node <10, 

01> in an Extended OTIS-2-Cube network. 

Since both nodes are in the different groups where the 

process addresses are opposite to each other, then the 

routing path contains only one optical move. Based on the 

routing algorithm, the routing path will be 00, 00 
E  

00, 10 
O  10, 00 

E  10, 01. 

IV. BROADCAST ALGORITHMS 

In this section, we introduce three broadcast algorithms for 

the Extended OTIS-n-Cube networks; we also compare such 

using such algorithms in both Extended OTIS-n-Cube and 

the OTIS Cube. 

A.  One-to-all Broadcasting 

While unicast routing has proved very useful in computer 

resource sharing, certain distributed computing applications 

requiring one-to-all communication have been suffering. 

Broadcast one-to-all communication is the delivery of 

messages to all destination nodes, while multicast, or multi 

destination delivery, is the delivery of messages to some 

specified subset of all the destinations. 

Broadcast routing is defined to be the routing procedures 

by which broadcast is achievable in inherently non broadcast 

communication networks. Broadcast routing is a special case 

of multi destination  

One-to-all broadcasting is a communication process in 

which a single source node sends the same message to every 

other node in the network.  It is used in many applications.  

Examples are Guass elimination method, and matrix-vector 

multiplication [31].  An optimal broadcasting algorithm for 

OTIS-Cube networks is presented in [29]. First we introduce 

a one to all routing algorism that can be applied to OTIS 

Cube: 

 

OTIS_Cube One-to-all Broadcasting 

{ 

Step1: <gi, pj> broadcasts M locally to every node in the 

group <gi>, where <gi, pj> is the source node and M is the 

message to be broadcasted. 

 

Step 2: Every node <gi,pk>, ,,21 ikk n   sends M to 

<pk,gi> over the optical link. 

 

Step 3: Every node <pk,gi>, ,,21 ikk n   broadcasts 

M locally in the <pk> group. 

} 

Using the above algorithms take 12 n  sequential time 

units in an OTIS-Cube network. For step 1, sending the 

message to all local nodes in parallel will take n time units, 

the same applies for step3. Step 2 takes one time unit since 

the message is transferred to the 12 n  groups are occurred 

in parallel at once. 

Now we present the following simple algorithm to 

broadcast a message M to all other nodes in the Extended 

OTIS-n-Cube: 

 

Extended OTIS-n-Cube One-to-all Broadcasting 

{ 

For i= 1 to 2n do 

    { 

     Every node <p,g> broadcasts M only to its unvisited 

     neighbors 

   } 

} 

 

Using the above gossip type algorithm in OTIS-n-Cube, it 

only requires 2n units of time which is less than the time 

needed in the OTIS Cube networks. It is also simpler to 

apply, in addition to guaranteeing delivering the message 

from different intermediate nodes. 

B. Hamiltonian Cycle Structure in the Extended OTIS-n-

Cube 

This section presents a Hamiltonian cycle structure within 

the recently proposed interconnection topology. Since 

Hamiltonian is a cycle in an undirected graph which visits 

each node exactly once and finally returns to the starting 

node, the following steps are the description of the proposed 

algorithm proofing that the Extended OTIS-n-Cube topology 

is Hamiltonian: 

1. Let assume that the start node of a path is <0, 1>, and 

p =2, where p represents the bit position of the label.  

2. Do 2
n
-1 factor moves towards a potential target node 

by complementing the p
th

 bit in the factor label, if the 

target factor address matches an already visited group 

or matches the start node group address then increase p 
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by 1 modulus n, if all label bits were tested an no move 

is performed then perform a nand; not and; operation 

between group address and factor address of the 

current node. The outcome will be the factor address 

of the node target node. 

3. do an optical move from <g, p> to <p, g> 

4. increase p by 1 modulus n 

5. Repeat steps 2, 3, and 4 as long as the move will not 

lead to the group label of the start node until the 2
n
-1 

groups are visited.  

6. Finally, construct an optical move back toward the 

start node. 

In the following examples, the dots represent n-1 factor 

moves of the corresponding nodes; every arrow represents 

an optical move. 

Example 5: Hamiltonian cycle within an Extended OTIS-

2-Cube topology, Figure 3 shows a representation of such a 

Hamiltonian cycle. 

00, 01
.
.

00, 11

11, 00
.
.

11, 10

10, 11
.
.

10, 01

01, 10
.
.

01, 00

  

Fig.3 A Hamiltonian cycle in an Extended OTIS-2-Cube. 

Example 6: Hamiltonian cycle within an Extended OTIS-

3-Cube graph, Figure 4 shows a representation of such a 

Hamiltonian cycle. 

000, 001
.
.

000, 011

011, 000
.
.

011, 100

100, 011
.
.

100, 010

010, 100
.
.

010, 110

110,010
.

Nand opr.
110,101

101, 110
.
.

101, 111

111, 101
.
.

111, 001

010, 100
.
.

010, 110

Fig. 4 A Hamiltonian Cycle in an Extended OTIS-3-Cube. 

Example 7: Hamiltonian cycle within an Extended OTIS-

2-Cube graph, Figure 5 shows a representation of such a 

Hamiltonian cycle. 

C. Minimal Spanning Tree Construction: 

Day [29] proved that an OTIS-n-Cube has a spanning tree. 

Figure 6 shows a spanning tree broadcast graph in an OTIS-

2-Cube, with starting node <00, 00>. The height of a 

minimal spanning tree for OTIS-n-Cube is always 12 n . 

Now, we introduce a spanning tree for the Extended OTIS-

n-Cube. Figure 7 shows a spanning tree broadcast graph in 

an Extended OTIS-n-Cube; where n=2; with starting node 

<00, 00>. The height of a minimal spanning tree for 

Extended OTIS-n-Cube is always 2
n
. So the Extended OTIS-

2-Cube has a spanning tree height of 4. This means that the 

height of a minimal spanning tree for Extended OTIS-n-

Cube is always less than the height of a minimal panning 

tree for the OTIS-n-Cube. 

 

Fig.5: A Hamiltonian Cycle in an Extended OTIS-4-Cube. 
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Fig. 6 Minimal spanning tree in an OTIS-2-Cube 
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Fig.7: Minimal spanning tree in an Extended OTIS-2-

Cube. 

A balanced binary tree is commonly defined as a binary 

tree in which the heights of the two sub trees of every node 

never differ by more than 1 [32]. It is worth to mention that 

we can always construct a balanced binary tree for the 

Extended OTIS-n-Cube, but this is not true for the OTIS-n-

Cube. This fact can be verified by referring to figure 6 and 

figure 7. The balanced binary tree is very important in many 

mathematical applications especially in searching and 

optimization implementations [33]. 

V. CONCLUSION 

This paper introduced the attractive routing algorithm for 

the Extended OTIS-n-Cube interconnection network. 

Furthermore, many broadcasting approaches have been 

presented for this topology. Different types of broadcasting 

approaches have been presented for this network. An 

algorithm of forming a Hamiltonian cycle within the 

Extended OTIS-n-Cube is presented in details showing the 

good communication properties of the new network. 

Minimal Spanning Tree and One to all broadcasting 

approaches are also presented. Examples to show the 

applicability of these approaches for the Extended OTIS-n-

Cube are presented in this paper.  
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