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Abstract—Parallel computing becomes common tool to 

accelerate long-lasting electromagnetic computations. In some cases 
their realization does not bring an expecting gain. In this paper the 
authors present the results of the simulations from application created 
in order to show selected anomalies in parallel computing. The way 
of parallel system implementation is presented on the basic of direct 
graph model with the set of precedence constraints. The Graham’s 
anomalies are discussed during optimization tasks scheduling issue, 
towards makespan criterion. The research was focused on three most 
frequently applied cases during acceleration the computations i.e. 
shortened tasks times execution, add additional computational power 
and reduction of selected precedence constraints. All phenomena are 
discussed and presented with the usage of Gantt’s charts. 
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I. INTRODUCTION 
YNAMIC development of numerical algorithms  and 
information technology enabled precisely analysis and 

implementation many physical phenomena using adequately 
mathematical models. One of these issue is analysis of 
dynamics of electromagnetic devices in application to 
automatics and robotics. The devices are modeled using 3D 
distributed parameters systems. After discretisation of partial 
or integral equations that describe electromagnetic 
phenomena, a large and sparse system of equations are 
obtained [10-13].  

The computation performs execution many mathematical 
operations. In most cases it make possible to decrease the time 
of calculation. Then very often is made an effort to realise 
multi-processors system. Fortunately, some algorithms can be 
executed simultaneously on principle of parallel computation, 
what in most cases considerable allows to cut down the time 
of calculation. 
This paper presents Graham’s anomalies phenomenon as a 
menace that appears during fragmentation and parallel code of 
the application. There is discussed and presented a general 
problem in scheduling theory called the minimum makespan 
scheduling. 
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II. MODEL OF AN ELECTROMAGNETIC SYSTEM 
Using the magnetic vector potential A and electric scalar 

potential V as electromagnetic field variables, the electric field 
intensity E in conducting region (ΩC) and magnetic flux 
density B in conducting and non-conducting region (ΩC ∪ 
ΩN) is defined as [11]: 
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In this case, the boundary value problem in terms of potentials 
is expressed as follows:  
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where μ is a permeability, σ represents conductivity, v 
represents velocity of movable armature and j(t) current 
density of the thin coil. If voltage excitation is given, the 
electric circuit system of equations expressed in term of 
magnetic vector potential must be considered as [13]:  

(t)u(t)iR(t)
dt
d

(t)u(t)iR(t)
dt
d

nnn
l

111
l

n

1

=+

=+

∫

∫

dlA

dlA

M     (5) 

For n-phase voltage forced system above equations are 
expressed by matrix of dynamic impedances. Discrete form of 
(7) can be defined as bellow:  
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Global impedance matrix includes own impedances  and 

mutual impedance . For A (j=1,2, …, n) 

and for  are performed calculations for matrix of 
impedance Z, next the current vector I in both coils are 
calculated from formulation:  

iiZ

kjjk ZZ = 1=iI
0=≠ikI

          (8) UZI 1−=
when a voltage vector U is known. Calculation of the force is 
performed using the Maxwell’s stress tensor method. The 
force density is given by following formula: 

           (9) Tf ⋅∇=
where T denotes modified Maxwell’s stress tensor [9] 
proposed as follows (10): 

Then total force is defined  

          (11) dΩfF ∫
Ω

=

Motion problem is solved by sequentially coupled model with 
time step verification according to the fixed grid distance in 
motion direction [9]. Choosing the displacement and velocity 
as state of 1-DOF mechanical motion, the equation is solved 
by recurrance Euler’s algorithm in state space form as a 
system of first order differential equations [13]:  
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where x represents displacement and v represents velocity of 
movable armature used in boundary value equations (3) - (4). 

III. NUMERICAL REALISATION  
For given voltage value an iterative procedure includes 
calculation of equation (6) in discrete form:   

   (13) 
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where own and mutual impedances are calculated as: 
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and right side of equation (13) performs: 
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In equations (14)-(15) exists vector potential a for one-ampere 
test. In the last equation (14) is given potential  which 
takes eddy current into consideration. In second step the 
boundary equation (3) – (4) in integral form are solved by a 
finite element method with linear shape functions of the 
potentials. The global matrix system iterative procedure of the 
system becomes [13]: 
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In above equations z represents vector of unknown of 
magnetic vector potential A, y  represents vector of unknown 
electric scalar potential V and r is a vector of current density 
j(t). Matrices C, D, E, F, G and H are obtained as result of 
discretisation of the following formulations: 
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equation is non-symmetric. Matrix C is non-symmetric and 
diagonally dominant, D is a diagonal matrix. Matrix G is 
symmetric. Coefficients of C, D, E, F, G, H depends on 
materials description and type of discretisation. Included in 

formulations (5) and (6) terms , and 
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in global matrix structure. The magnetic vector potential A 
and electric scalar potential V are calculated by step by step 
computation process of equation system (16). For this type of 
computation the conjugate gradient method with 
preconditioner called BiCG is worked up [13]. 
Total force influencing on movable armature is obtained from 
(11)-(13) as a combination of calculated potentials A, V. The 
method is widely described in [9]. Then is solving the discrete 
state space equation of mechanical system to obtain velocity 
and displacement. The differential equation of a motion in 
discrete form 
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is successively solved in each iterative step  to get the 
armature displacement x.  

iΔt
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IV.  MODEL DEFINITION, NOTATION AND PRELIMINARIES 
The calculating cluster of  four PC computers with Linux 

operating system is used to solve presented problem. Linux 
includes BSD (Berkeley Software Distribution) socket 
interface, which is the standard network communication 
protocol. TCP/IP connections as well as communication 
between processors in Unix domain are used. Hardware 
cluster consists of: one Intel Pentium IV 1.8 GHz with 1.5 GB 
RAM system memory running as client application and two 
Intel Pentium IV 1.8 GHz 256 MB as server applications. 

Let’s describe matrix 
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and right side of (16) as vector b. The idea of parallel 
calculation is to cut matrix A and vector b for three fragments 
simultaneously keeping non zero extortion in all new part of 
vector b. 

For the sake of  individuality of each  solving problem and 
to optimise load balancing between cluster nodes the expert’s 
knowledge was used by giving cut dimensions.  The total 
space Ω is split into for three calculating subspace 
(Ω∈Ω1∪Ω2∪Ω3) taking consideration boundary conditions 
on division area into account. Algorithm of solving field issue 
is divided on parallel field calculation in each from three 
domains. 

 
Fig.1 The model space Ω split into three parts   

 
In this case we get three systems of equations type ANxN=bN 
solving by PCG algorithm on N node. Continuity of field 
functions at cutting area has to be kept and internal boundary 
condition at data divide and integrate should be retained. Then 
the potentials of next cutted walls in calculate subspace have 
to accept the same values. 
 

 
Fig.2 The way of two subspace marge 

 
On ΠN⊂ΩN and ΠN+1⊂ΩN+1 areas must occur following 
relation: 

M
∀XN,M=XN+1,M  where XN∈ΠN  and  XN+1∈ΠN+1    (18) 

 
Message passing quite often has application in matrix 

calculus, where individual processors execute computation on 
selected part of main matrix. In the discussed approach N 
nodes solve ΩN part of space Ω. If stopping criteria in the 
iterative algorithm are achieved on each servers then the 
results are sent to a client application. Next they are 
integrated. The whole algorithm is recurred till the maximal 
number of iteration or stopping criteria is reached. 

To realise the communication in the cluster architecture 
the authors used sockets service. It is implemented at kernel in 
systems type Unix and execution the operations is enable 
using system’s functions similarly to files. Stream sockets 
(SOCK_STREAK) use TCP protocol, which main virtues are: 
sequencing, error control and connection-orient. 

V. PROBLEM STATEMENT  
The authors created an application, which allows to detect 

potential anomalies on the basis of structure of tasks’ schedule 
graph (Fig. 1). As an example specific model is presented. 
The Graham’s anomalies towards minimum makespan 
scheduling are studied. Each parallel system could be 
independently applied for resources [6].  

It is shown parallel system in MPI (ang. Message Passing 
Interaface) technology using three nodes cluster with memory 
system concentrated. The system was made up of tasks set 

},...,,{ 21 nFFFF = . Each task could be executed on one at 
the most machine [8]. The simulated cluster system is made of 
three parallel machines },,{ 321 MMM=Μ  that each could 
calculated simultaneously any but only one task from set F 
[1]. 

 

Fig.3 Graham anomalies simulator 
 

The authors focused one’s attention on set nonsplitable 
tasks, because these algorithms are used frequently in 
electromagnetic field calculation. In general, the MPI system 
is a set that dependents on tasks determined precedence 
constraints. Between F1 and F2 tasks is precedence constraint 
(notation F1p F2) when F1 has to be done before beginning 
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task F2 calculation. It is necessary to take into consideration 
that binary relation partially order set F [4].  p

In the application the relation p  is presented in the form 
of direct acyclic graph G(V,E) with node convention. In this 
model the nodes (V) answer a task and the edges (E) describes 
precedence constraints [2][3]. The authors’ application can 
models tasks schedule such as portray three Graham’s 
anomalies on base modification the original system. User has 
to only precise how many machines he wants to use in cluster, 
parallel algorithms execution times and precedence is 
constraints.  

The graph was implemented as neighborhood matrix V×V 
dimension and the memory complexity this algorithm is 
O(V2) [7]. In the aim to simulate Graham’s anomalies it was 
necessary to appropriately match tasks execution time vector 

][ ijτ , where ijτ is time of execution task  on machine 

. The parallel computation is made using set three 
identical machines: 

iF

jM

iiji
ττ =∀  ,  j=1,2,3  i=1,2,..,9.                    (19) 

 
The problem is to find optimal tasks schedule with 

assurance all tasks execution which meets all imposed 
constraints in schedule length (makespan) criterion [5]: 

 
}{maxmax ii

CC =                                  (20) 

where : is completion time task ,  iC iF FFi ∈
As the results the optimal schedule is presented in 

graphical way using Gantt chart. Next chart illustrated 
individual Graham’s anomalies on the basis of research 
modifications. 

VI. THE TASK CLUSTERING SCHEDULES  
Individual tasks should be identify with parallel opetations 

in electromagnetic calculation, where: 
F1- socket combination and opening, F2- data transfer to 
server1, F3- data transfer to server2, F4- server1 computation, 
F5- server2 computation, F6- client computation, F7- test of 
data transfer correctness, F8- marge the results, F9- verification 
of cluster cohesion.  

Knowing executions times all tasks and precedence 
constraints the issue is solved and optimal schedule is found. 
In the basic model time Cmax amount 48 second. Solution is 
presented at Gantt chart (Figure 4). 
 

τi [s] 2 8 8 30 30 30 6 9 10 
Fi 1 2 3 4 5 6 7 8 9 

Table 1 The times of the tasks execution 

p  : F1p  F9 ;  F2p  F4 ;  F3p  F5 ; F3p  F6 ;  F4p  F8 ;  

F5p  F8 ; F6p  F8 ; F7p  F4 ; F7p  F5

 
Fig.4 Gantt chart for optimization parallel system in basic 

mode 
To such identified parallel system tasks execution times is 

modified. All execution time vector’s [τi] parameters is 
decreased – the tasks has been shortened abut 1[s]. Such 
changed system is optimised again keeping identical 
precedence constraints. Figure 3 revealed first Graham’s 
anomaly, so  shortened tasks execution times caused elongated 
minimum makespan scheduling. 

 
τi [s] 1 7 7 29 29 29 5 8 9 

Fi 1 2 3 4 5 6 7 8 9 

Table 2 The modified times of the tasks execution 

 
Fig.5 Gantt chart for optimization parallel system in mode 

with tasks’ execution times shortened 
 
Due to present the second Graham’s anomaly fourth 

computing machine is added. The precedence constraints still 
remain identical to original version of the problem. Optimal 
scheduling presented at diagram number 4 proves, that even 
such intuitive operation like increasing parallel computation 
power of the cluster in special cases could cause worse 
solution towards makespan criterium. 
 

 
Fig.6 Gantt chart for optimization parallel system in 

mode with additional computation machine 
 

Third Graham’s anomaly concern elongated optimal time 
scheduling (Cmax) even though reduction selected precedence 
constraints. According to figure nr 5 presented  below 
excepting two constraints from set p  (F7p  F4 and F2p  F4) 
causes deterioration solution time by five second with relation 
to original problem. The constraints set is following:  

p  : F1p  F9 ;  F3p  F5 ; F3p  F6 ;  F4p  F8 ;  

F5p  F8 ; F6p  F8 ; F7p  F5
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Fig.7 Gantt chart for optimization parallel system in 

VII. CONCLUSION 
The results of the simulations presented in this paper show 

interesting phenomena which is opposite to standard parallel-
based computations. Sometimes the attempt at improvement 
tasks scheduling and gain increasing may causes significant 
elongated calculation’s cycle. An identification problem’s 
essence could be very difficult. 

The measure of single tasks taking execution time into 
account allows to simulate and detect potential Graham’s 
anomalies and consider it in parallel systems. The application 
created by the authors takes into considerations data 
transmission described by the user. Future research will 
concern the attempts at including the real image of network 
packages movement during TCP/IP transmission. 
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