
An Effective Routing Algorithm for Real-Time Applications

Hazem M. El-Bakry, Nikos Mastorakis

Abstract - It is highly desirable to protect data traffic
from unexpected changes as well as provide effective
network utilization in the internetworking era. In this
paper the QoS management issue that utilizing the
active network technology is discussed. Such algorithm
is based on the proposed work presented in [15].
Active networks seem to be particularly useful in the
context of QoS support. The Active QoS Routing
(AQR) algorithm which is based on On-demand
routing is implemented incorporating the product of
available bit rate and delay for finding the best path for
dynamic networks using the active network test bed
ANTS. It is inferred that with background traffic, the
AQR finds alternative paths very quickly and the delay
and subsequently the jitter involved are reduced
significantly. In this paper the variant of AQR
implemented is demonstrated to be more useful in
reducing the jitter when the overall traffic in the
network is heavy and has useful application in finding
effective QoS routing in ad-hoc networks as well as
defending DDoS attacks by identifying the attack
traffic path using QoS regulations. The main
achievement of this paper is the fast attack detection
algorithm. Such algorithm based on performing cross
correlation in the frequency domain between data
traffic and the input weights of fast time delay neural
networks (FTDNNs). It is proved mathematically and
practically that the number of computation steps
required for the presented FTDNNs is less than that
needed by conventional time delay neural networks
(CTDNNs). Simulation results using MATLAB
confirm the theoretical computations.

Keywords - Routing Algorithm, Data Protection, Best
Path, Dynamic Networks, Fast Attack Detection,
Neural Networks

Hazem M. El-Bakry, Faculty of Computer Science & Information
Systems, Mansoura University, EGYPT, helbakry20@yahoo.com

Nikos Mastorakis, Dept. of Computer Science, Military Institutions
of University Education , (MIUE) - Hellenic Academy, Greece

I. Introduction

The widespread growth of the Internet and the
development of streaming applications directed the
Internet society to focus on the design and
development of architectures and protocols that would
provide the requested level of Quality of Service (QoS)
[15-26]. QoS is an intuitive concept defined as “the
collective effect of the service performance which
determines the degree of satisfaction of a user of the
service” or “a measure of how good a service is, as
presented to the user. It is expressed in user
understandable language and manifests itself in a
number of parameters, all of which have either
subjective or objective values”.

The goal of AN is to support customized protocol
mechanisms that can be introduced in a network.
Differences in known AN approaches concern, e.g., the
question of whether remote applications should be able
to download protocol mechanisms to a node (router) or
whether this right should be reserved to the operators
of nodes, and the question of whether the code for
these mechanisms should be carried as an additional
payload by the data packets in transit or whether
shipping and installing such code should be separated
from the issue of data transfer. Simulation results of
this paper are compared with the results presented in
[15] and high improvement in the QoS parameter jitter
is appreciated when applied on active network with
slight modifications in the application of the proposed
algorithm.

In addition, the main objective of this paper is to
improve the speed of time delay neural networks for
fast attack detection. The purpose is to perform the
testing process in the frequency domain instead of the
time domain. This approach was successfully applied
for sub-image detection using fast neural networks
(FNNs) as proposed in [1,2,3]. Furthermore, it was
used for fast face detection [7,9], and fast iris detection
[8]. Another idea to further increase the speed of FNNs
through image decomposition was suggested in [7].
FNNs for detecting a certain code in one dimensional
serial stream of sequential data were described in [4,5].
Compared with conventional neural networks, FNNs
based on cross correlation between the tested data and
the input weights of neural networks in the frequency
domain showed a significant reduction in the number

INTERNATIONAL JOURNAL of COMMUNICATIONS

Issue 4, Volume 1, 2007 157 Manuscript Received April 5, 2007; Revised Received Dec. 9, 2007

of computation steps required for certain data detection
[1,2,3,4,5,7,8,9,11,12]. Here, we make use of the
previous theory on FNNs implemented in the
frequency domain to increase the speed of time delay
neural networks for fast attack detection.

II. QoS Routing
Active Networks (AN) is a framework where network
elements, essentially routers and switches are
programmable. Programs that are injected into the
network are executed by the network elements to
achieve higher flexibility and to present new
capabilities. With the help of AN programs can be
injected in to the network and executed with in the
network itself without involving the end systems. QoS
routing is a term used for routing mechanisms which
consider QoS. It suffers from the static nature of
networking today. QoS routing is bound to the use of
common metrics and procedures which usually rely on
distributed network performance data (increasing
network traffic) and sophisticated algorithms
(increasing the processor load on routers) but usually
yield considerable improvements only for certain
classes of applications. In [16], the authors used
randomness at the link level to achieve balance
between the safety rate and delay of the routing path.

A) QOS SUPPORT IN ACTIVE NETWORKS

Possible utilizations of AN to support QoS roughly fall
into the following categories [15]:
1. Mechanisms which transfer application layer
functionality into the network:
2. Mechanisms which are usually associated with
layers 3 or 4: AQR mechanism falls in this category.
3. Mechanisms which rely on non-active QoS
provisioning mechanisms: Here, AN are merely used to
add greater flexibility to the specification of a QoS
request.

B) AQR OPERATION
AQR is an on demand based QoS routing algorithm.
The AQR algorithm can be described as follows as in
[15].
1. The AQR sender calculates all non-cyclic paths to
the destination from the link state routing table.
2. A probing packet carrying the QoS requirements,
code for QoS calculation, the sender and receiver’s
addresses and a list of visited nodes is sent to each first
hop of these paths.
3. Upon receiving an AQR probing packet, an AQR
compliant transit node executes the AA code
(contained in the packet or cached), which
· checks if the minimum QoS requirements found in the
packet can be met (if a threshold say a maximum delay
is exceeded, the packet is dropped),
· compares and updates the QoS data,

adds itself to the list of already visited nodes,
· Executes the code of the AQR sender, starting at step
2 — except that no probing packets are sent to the
source or to any other already visited node (packets are
multicast in the proper direction at each AQR-
compliant transit node).
4. Only packets which conform to the minimum QoS
requirements reach the AQR receiver, where a list of
valid paths is generated. After a predefined period, the
best path is chosen and communicated to the sender. If
there is more than one best path, the traffic is split
among the best paths.

C) DESIGN CONSIDERATIONS

The resources used are network bandwidth and CPU
cycles to load the network. The system assumes
overlay mode of deploying active code in network. The
security issues are taken care of by the ANTS system
itself For AQR, these parameters are delay and
available bandwidth. For each of these parameters, a
channel is given the properties of the underlying
network .The overall flow is depicted as follows.
There are three important modules in the system. They
are Application, Protocol and capsule modules. The
application module consists of Router, Sender,
Receiver sub modules. The capsule module consists of
DataCapsule, Probecapsule and Replycapsule sub
modules.

III. Implementation Details
The proposed AQR algorithm is implemented for the
sample network topology shown below. In ANTS, the
network topology is configured. The topology used is
shown below. The routing protocol is implemented
using the ANTS toolkit. ANTS is an EE running over
the node OS Janos. The protocol is implemented as an
active application that runs on each of the nodes of the
network. In ANTS, there are three special classes to
create capsules, protocols and active applications. The
detailed information about ANTS is provided in [8].A
new protocol is developed by sub classing the virtual
class Protocol. This requires identifying all of the
different types of packet that will enter the network by
their different forwarding routines. Each type of packet
and its forwarding routine is specified by sub classing
the virtual class Capsule.
· A new application is developed by sub classing the
virtual class Application.
· An instance of the class Node represents the local ants
runtime.
· A new protocol and application are used by creating
instances of their classes and attaching them to node.
The application is connected to the node in order to
send and receive capsules from the network.

INTERNATIONAL JOURNAL of COMMUNICATIONS

Issue 4, Volume 1, 2007 158

· The protocol is registered with the node in order for
the network to be able to obtain its code when it is
needed.

This model allows customization by the network users
assuming that a network of active nodes already exists
and is up and running. The active nodes, however, will
often be part of the system under study, particularly for
experimentation with different topologies, application
workloads, and node services. For these purposes,
ANTS provides two facilities:

· Configuration tools allow a network topology
complete with applications to be managed. This
includes the calculation of routes and the initialization
of local node configurations.

· A node extension architecture allows different nodes
to support different service components, e.g., multicast,
caching, trans coding, etc., as appropriate. Extensions
are developed by sub classing the virtual class
Extension.

The Protocol class is extended to form the AQR
Protocol class. There are three capsules – Probe
Capsule, Reply Capsule and AQR Data Capsule. These
capsules form the protocol itself.

A) Capsule Types

A capsule is a combination of a packet and its
forwarding routine; the forwarding routine is executed
at every active node the capsule visits while in the
network. New types of capsule, with different
forwarding routines, are developed by sub classing the
virtual class Capsule. The capsule starts with the
sequence id of the data capsule. Then the timestamp of
when the capsule is sent is stored. Then some flags and
index values are stored. The path index is the pointer to
the next node to reach. The path valid is a flag that is
set true when the capsule carries a path to travel.
Otherwise default shortest path is used to reach the
destination. There is another flag, aqrFlag which is set
to differentiate between capsules sent using AQR and
capsules sent using SPR. Finally the path to travel is
stored.

The active code of this capsule is the forwarding
routine to guide the capsule to the destination. It checks
for the pathValid flag and if set uses the path in the
capsule to travel. Otherwise shortest path is used to
forward the capsule to the destination. For valid path,
the next node is obtained from the path stored using the
path index pointer. The data capsule is then forwarded
to this node. Once the nodes in the path stored get over,
it indicates that the capsule has reached the destination.

The capsule is then delivered to the receiver
application.

B) Application
Applications are the entities that make use of the
network to send and receive capsules as well as run
independent activities. New applications are developed
by sub classing the virtual class Application. It
provides access to the node and its services.

C) Other modules

The data traffic is generated by a thread AQR Data
Sender. It is run on the sender node. This data traffic is
received by another application on the receiver node,
AQR Data Receiver. There are also other utility
classes.

IV. Configuration
Experimenting with an active network requires that a
network topology and ANTS provides some tools and
infrastructure conventions to automate this process.
First, entire network configurations, node addresses,
applications and all initialization parameters are
specified text files that are read by Configuration
Manager Class to start one of its nodes locally. This
includes creating the node runtime, applications, and
extensions, connecting them to each other, and starting
their operation.

A) Performance Analysis
The algorithm is run under various test scenarios and
the test results are presented in this section. The QoS
performance is analyzed for data traffic with and
without background traffic .TG is a packet Traffic
Generator (TG) tool that can be used to characterize the
performance of packet-switched network
communication protocols. The TG program generates
and receives one-way packet traffic streams transmitted
from the UNIX user level process between traffic
source and traffic sink nodes in a network. TG is used
for generating the background traffic. The TG serving
as the traffic source always logs datagram transmit
times. This mode of operation may be useful for
analyzing network blocking characteristics or for
loading a network. The TG serving as a traffic sink
logs all received data grams. The behavior of the
protocol is analyzed after the intermediate routers are
loaded to make the default shortest path congested. For
the same topology the shortest path routing is tested.
Two applications are run on the source and destination
nodes. The active code in the capsule is used to route
the capsule through the shortest path. The delay
changes and the routes taken are recorded and
analyzed.

INTERNATIONAL JOURNAL of COMMUNICATIONS

Issue 4, Volume 1, 2007 159

B) Performance analysis without background traffic
In this test run, the data capsules of length 100 bytes
are used to test the protocol. No background traffic is
used to load the shortest path. Instead the routers along
the shortest path are loaded to increase the delay along
the shortest path. In this scenario the test is run and the
results shown below. The delay values are relative and
are not exact with respect to the sender in all the data
presented.

C) Performance analysis with background traffic type 1
In this test run, the data capsules of length 100 bytes
are used to test the protocol. Also background traffic is
introduced along the shortest path to increase the delay
along the shortest path. The traffic is introduced using
the tool TG. The background traffic is udp. Packets of
length 500 bytes at a rate of 100Mbps are used for the
traffic.

V. Fast Attack Detection using Neural Networks
Finding a certain attack, in the incoming serial data, is
a searching problem. First neural networks are trained
to classify attack from non attack examples and this is
done in time domain. In attack detection phase, each
position in the incoming matrix is tested for presence
or absence of an attack. At each position in the input
one dimensional matrix, each sub-matrix is multiplied
by a window of weights, which has the same size as the
sub-matrix. The outputs of neurons in the hidden layer
are multiplied by the weights of the output layer. When
the final output is high, this means that the sub-matrix
under test contains an attack and vice versa. Thus, we
may conclude that this searching problem is a cross
correlation between the incoming serial data and the
weights of neurons in the hidden layer.

The convolution theorem in mathematical analysis says
that a convolution of f with h is identical to the result
of the following steps: let F and H be the results of the
Fourier Transformation of f and h in the frequency
domain. Multiply F and H* in the frequency domain
point by point and then transform this product into the
spatial domain via the inverse Fourier Transform. As a
result, these cross correlations can be represented by a
product in the frequency domain. Thus, by using cross
correlation in the frequency domain, speed up in an
order of magnitude can be achieved during the
detection process [1,2,3,4,5,7,8,9,14]. Assume that the
size of the attack code is 1xn. In attack detection
phase, a sub matrix I of size 1xn (sliding window) is
extracted from the tested matrix, which has a size of
1xN. Such sub matrix, which may be an attack code, is
fed to the neural network. Let Wi be the matrix of
weights between the input sub-matrix and the hidden
layer. This vector has a size of 1xn and can be

represented as 1xn matrix. The output of hidden
neurons h(i) can be calculated as follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∑

=
= ib(k)I(k)

n

1k iWgih (1)

where g is the activation function and b(i) is the bias of
each hidden neuron (i). Equation 1 represents the
output of each hidden neuron for a particular sub-
matrix I. It can be obtained to the whole input matrix Z
as follows:

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
−=

++=
n/2

n/2k i bk) Z(uk)(iWg(u)ih (2)

Eq.2 represents a cross correlation operation. Given
any two functions f and d, their cross correlation can be
obtained by:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

∞−=
+=⊗

n
n)d(n)f(xf(x)d(x) (3)

Therefore, Eq. 2 may be written as follows [1]:
()ibZiWgih +⊗= (4)

where hi is the output of the hidden neuron (i) and hi (u)
is the activity of the hidden unit (i) when the sliding
window is located at position (u) and (u) ∈ [N-n+1].

Now, the above cross correlation can be expressed in
terms of one dimensional Fast Fourier Transform as
follows [1]:

() ()()iW*FZF1FZiW •−=⊗ (5)

Hence, by evaluating this cross correlation, a speed up
ratio can be obtained comparable to conventional
neural networks. Also, the final output of the neural
network can be evaluated as follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

+=
q

1i
ob)u(ih (i)oWgO(u) (6)

where q is the number of neurons in the hidden layer.
O(u) is the output of the neural network when the
sliding window located at the position (u) in the input
matrix Z. Wo is the weight matrix between hidden and
output layer.
The complexity of cross correlation in the frequency
domain can be analyzed as follows:
1- For a tested matrix of 1xN elements, the 1D-FFT
requires a number equal to Nlog2N of complex
computation steps [13]. Also, the same number of
complex computation steps is required for computing
the 1D-FFT of the weight matrix at each neuron in the
hidden layer.

INTERNATIONAL JOURNAL of COMMUNICATIONS

Issue 4, Volume 1, 2007 160

2- At each neuron in the hidden layer, the inverse 1D-
FFT is computed. Therefore, q backward and (1+q)
forward transforms have to be computed. Therefore,
for a given matrix under test, the total number of
operations required to compute the 1D-FFT is
(2q+1)Nlog2N.

3- The number of computation steps required by
FTDNNs is complex and must be converted into a real
version. It is known that, the one dimensional Fast
Fourier Transform requires (N/2)log2N complex
multiplications and Nlog2N complex additions [13].
Every complex multiplication is realized by six real
floating point operations and every complex addition is
implemented by two real floating point operations.
Therefore, the total number of computation steps
required to obtain the 1D-FFT of a 1xN matrix is:

ρ=6((N/2)log2N) + 2(Nlog2N) (7)

which may be simplified to:

ρ=5Nlog2N (8)

4- Both the input and the weight matrices should be dot
multiplied in the frequency domain. Thus, a number of
complex computation steps equal to qN should be
considered. This means 6qN real operations will be
added to the number of computation steps required by
FTDNNs.

5- In order to perform cross correlation in the
frequency domain, the weight matrix must be extended
to have the same size as the input matrix. So, a number
of zeros = (N-n) must be added to the weight matrix.
This requires a total real number of computation steps
= q(N-n) for all neurons. Moreover, after computing
the FFT for the weight matrix, the conjugate of this
matrix must be obtained. As a result, a real number of
computation steps = qN should be added in order to
obtain the conjugate of the weight matrix for all
neurons. Also, a number of real computation steps
equal to N is required to create butterflies complex
numbers (e-jk(2Πn/N)), where 0<K<L. These (N/2)
complex numbers are multiplied by the elements of the
input matrix or by previous complex numbers during
the computation of FFT. To create a complex number
requires two real floating point operations. Thus, the
total number of computation steps required for
FTDNNs becomes:

σ=(2q+1)(5Nlog2N) +6qN+q(N-n)+qN+N (9)
which can be reformulated as:

 σ=(2q+1)(5Nlog2N)+q(8N-n)+N (10)

6- Using sliding window of size 1xn for the same
matrix of 1xN pixels, q(2n-1)(N-n+1) computation
steps are required when using CTDNNs for certain
attack detection or processing (n) input data. The

theoretical speed up factor η can be evaluated as
follows:

 N n)-q(8N N) 1)(5Nlog(2q
 1)n-1)(N-q(2n

2 +++
+

=η (11)

CTDNNs and FTDNNs are shown in Figures 6 and 7
respectively.

Time delay neural networks accept serial input data
with fixed size (n). Therefore, the number of input
neurons equals to (n). Instead of treating (n) inputs, the
proposed new approach is to collect all the incoming
data together in a long vector (for example 100xn).
Then the input data is tested by time delay neural
networks as a single pattern with length L (L=100xn).
Such a test is performed in the frequency domain as
described in section II. The combined attack in the
incoming data may have real or complex values in a
form of one or two dimensional array. Complex-valued
neural networks have many applications in fields
dealing with complex numbers such as
telecommunications, speech recognition and image
processing with the Fourier Transform [6,10].
Complex-valued neural networks mean that the inputs,
weights, thresholds and the activation function have
complex values. In this section, formulas for the speed
up ratio with different types of inputs (real /complex)
will be presented. Also, the speed up ratio in case of a
one and two dimensional incoming input matrix will be
concluded. The operation of FTDNNs depends on
computing the Fast Fourier Transform for both the
input and weight matrices and obtaining the resulting
two matrices. After performing dot multiplication for
the resulting two matrices in the frequency domain, the
Inverse Fast Fourier Transform is determined for the
final matrix. Here, there is an excellent advantage with
FTDNNs that should be mentioned. The Fast Fourier
Transform is already dealing with complex numbers,
so there is no change in the number of computation
steps required for FTDNNs. Therefore, the speed up
ratio in case of complex-valued time delay neural
networks can be evaluated as follows:

1) In case of real inputs

A) For a one dimensional input matrix
Multiplication of (n) complex-valued weights by (n)
real inputs requires (2n) real operations. This produces
(n) real numbers and (n) imaginary numbers. The
addition of these numbers requires (2n-2) real
operations. The multiplication and addition operations
are repeated (N-n+1) for all possible sub matrices in
the incoming input matrix. In addition, all of these
procedures are repeated at each neuron in the hidden
layer. Therefore, the number of computation steps

INTERNATIONAL JOURNAL of COMMUNICATIONS

Issue 4, Volume 1, 2007 161

required by conventional neural networks can be
calculated as:

θ=2q(2n-1)(N-n+1) (12)
The speed up ratio in this case can be computed as
follows:

 N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(2n

2 +++
+

=η (13)

Practical speed up ratio for searching short successive
(n) data in a long input vector (L) using complex-
valued time delay neural networks is shown in Figure
8. This has beed performed by using a 700 MHz
processor and MATLAB.

B) For a two dimensional input matrix
Multiplication of (n2) complex-valued weights by (n2)
real inputs requires (2n2) real operations. This produces
(n2) real numbers and (n2) imaginary numbers. The
addition of these numbers requires (2n2-2) real
operations. The multiplication and addition operations
are repeated (N-n+1)2 for all possible sub matrices in
the incoming input matrix. In addition, all of these
procedures are repeated at each neuron in the hidden
layer. Therefore, the number of computation steps
required by conventional neural networks can be
calculated as:

θ=2q(2n2-1)(N-n+1) 2 (14)

The speed up ratio in this case can be computed as
follows:

 N)n-q(8N)N log1)(5N(2q

 1)n-1)(N-2q(2n
222

2
2

22

+++
+

=η (15)

Practical speed up ratio for detecting (nxn) real valued
submatrix in a large real valued matrix (NxN) using
complex-valued time delay neural networks is shown
in Fig. 9. This has beed performed by using a 700 MHz
processor and MATLAB.

2) In case of complex inputs

A) For a one dimensional input matrix
Multiplication of (n) complex-valued weights by (n)
complex inputs requires (6n) real operations. This
produces (n) real numbers and (n) imaginary numbers.
The addition of these numbers requires (2n-2) real
operations. Therefore, the number of computation steps
required by conventional neural networks can be
calculated as:

θ=2q(4n-1)(N-n+1) (16)

The speed up ratio in this case can be computed as
follows:

 N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(4n

2 +++
+

=η (17)

Practical speed up ratio for searching short complex
successive (n) data in a long complex-valued input
vector (L) using complex-valued time delay neural
networks is shown in Fig. 10. This has beed performed
by using a 700 MHz processor and MATLAB.

B) For a two dimensional input matrix
Multiplication of (n2) complex-valued weights by (n2)
real inputs requires (6n2) real operations. This produces
(n2) real numbers and (n2) imaginary numbers. The
addition of these numbers requires (2n2-2) real
operations. Therefore, the number of computation steps
required by conventional neural networks can be
calculated as:

θ=2q(4n2-1)(N-n+1)2 (18)

The speed up ratio in this case can be computed as
follows:

 N)n-q(8N)N log1)(5N(2q
 1)n-1)(N-2q(4n

222
2

2

22

+++
+

=η (19)

Practical speed up ratio for detecting (nxn) complex-
valued submatrix in a large complex-valued matrix
(NxN) using complex-valued neural networks is shown
in Fig. 11. This has beed performed by using a 700
MHz processor and MATLAB.

An interesting point is that the memory capacity is
reduced when using FTDNN. This is because the
number of variables is reduced compared with
CTDNN. The neural algorithm presented here can be
inserted very easily in any Anti-Attack gateway
software.

VI. CONCLUSION
The AQR protocol is implemented using ANTS and
the performance of the AQR algorithm is analyzed. It
is inferred that with background traffic, the AQR finds
alternative paths quickly. It reduces the delay and
subsequently reduces the jitter involved. The variant of
AQR using the product of available bit rate and delay
for finding the best path is useful in reducing the jitter
where the overall traffic in the network is heavy. It
helps to maintain the jitter in networks with more
bursty traffic. It is also inferred that the performance of
AQR is better than that of SPR in both cases.
Performance is analyzed for various traffic classes. The
probe capsules are sent along each path from the source
to the destination to find the best path. By tuning the
probing frequency to an optimal value, the traffic
caused by the probe capsules can be reduced.
Comparing with the data traffic, probe capsules are

INTERNATIONAL JOURNAL of COMMUNICATIONS

Issue 4, Volume 1, 2007 162

small in number. The topology should be known by all
nodes to find the best path. In this paper dynamic
topology is considered and flooding is used to find the
best path. This finds application in finding effective
QoS routing in ad-hoc networks as well as defending
DDoS attacks by identifying the attack traffic path
using QoS regulations. The flooding overhead involved
is unavoidable and some pay off measures need to be
identified. It is also proposed to choose the best path
based on error rate so that the loss of probe capsules
can also be taken into consideration. A new approach
for fast attack detection has been presented. Such
strategy has been realized by using a new design for
time delay neural networks. Theoretical computations
have shown that FTDNNs require fewer computation
steps than conventional ones. This has been achieved
by applying cross correlation in the frequency domain
between the incoming serial data and the input weights
of time delay neural networks. Simulation results have
confirmed this proof by using MATLAB. Furthermore,
the memory complexity has been reduced when using
the fast neural algorithm. In addition, this algorithm
can be combined in any Anti-attack gateway software.

REFERENCES
[1] H. M. El-Bakry, and Q. Zhao, “A Modified Cross Correlation

in the Frequency Domain for Fast Pattern Detection Using
Neural Networks,” International Journal of Signal
Processing, vol.1, no.3, pp. 188-194, 2004.

[2] H. M. El-Bakry, and Q. Zhao, “Fast Object/Face Detection
Using Neural Networks and Fast Fourier Transform,”
International Journal of Signal Processing, vol.1, no.3, pp.
182-187, 2004.

[3] H. M. El-Bakry, and Q. Zhao, “Fast Pattern Detection Using
Normalized Neural Networks and Cross Correlation in the
Frequency Domain,” EURASIP Journal on Applied Signal
Processing, Special Issue on Advances in Intelligent Vision
Systems: Methods and Applications—Part I, vol. 2005, no.
13, 1 August 2005, pp. 2054-2060.

 [4] H. M. El-Bakry, and Q. Zhao, “A Fast Neural Algorithm for
Serial Code Detection in a Stream of Sequential Data,”
International Journal of Information Technology, vol.2, no.1,
pp. 71-90, 2005.

[5] H. M. El-Bakry, and H. Stoyan, “FNNs for Code Detection in
Sequential Data Using Neural Networks for Communication
Applications, ” Proc. of the First International Conference on
Cybernetics and Information Technologies, Systems and
Applications: CITSA 2004, 21-25 July, 2004. Orlando,
Florida, USA, Vol. IV, pp. 150-153.

[6] A. Hirose, “Complex-Valued Neural Networks Theories and
Applications”, Series on innovative Intellegence, vol.5.
Nov. 2003.

[7] H. M. El-Bakry, “Face detection using fast neural networks
and image decomposition,” Neurocomputing Journal, vol.
48, 2002, pp. 1039-1046.

[8] H. M. El-Bakry, “Human Iris Detection Using Fast
Cooperative Modular Neural Nets and Image
Decomposition,” Machine Graphics & Vision Journal
(MG&V), vol. 11, no. 4, 2002, pp. 498-512.

[9] H. M. El-Bakry, “Automatic Human Face Recognition Using
Modular Neural Networks,” Machine Graphics & Vision
Journal (MG&V), vol. 10, no. 1, 2001, pp. 47-73.

[10] S. Jankowski, A. Lozowski, M. Zurada, “ Complex-valued
Multistate Neural Associative Memory,” IEEE Trans. on
Neural Networks, vol.7, 1996, pp.1491-1496.

[11] H. M. El-Bakry, and Q. Zhao, “Fast Pattern Detection Using
Neural Networks Realized in Frequency Domain,” Proc. of
the International Conference on Pattern Recognition and
Computer Vision, The Second World Enformatika Congress
WEC'05, Istanbul, Turkey, 25-27 Feb., 2005, pp. 89-92.

[12] H. M. El-Bakry, and Q. Zhao, “Sub-Image Detection Using
Fast Neural Processors and Image Decomposition,” Proc. of
the International Conference on Pattern Recognition and
Computer Vision, The Second World Enformatika Congress
WEC'05, Istanbul, Turkey, 25-27 Feb., 2005, pp. 85-88.

[13] J. W. Cooley, and J. W. Tukey, "An algorithm for the
machine calculation of complex Fourier series," Math.
Comput. 19, 297–301 (1965).

[14] R. Klette, and Zamperon, "Handbook of image processing
operators, " John Wiley & Sonsltd, 1996.

[15] Michael Welzl, Alfred Cihal, Max Mühlhäuser, “An
Approach to Flexible QoS Routing with Active Networks”,
Proceedings of the Fourth Annual International Workshop
on Active Middleware Services (AMS’02), 2002.

[16] Wang Jianxin, Wang Weiping, Chen Jian'er, Chen
Songqiao.” A randomized QoS routing algorithm on
networks with inaccurate link-state information”, Proc. the
16th World Computer Conference, International
Conference of Communication Technology, Beijing, Aug.,
2000, pp.1617-1622.

[17] Stavros Vrontis, Irene Sygkouna, Maria Chantzara and
Eystathios Sykas, “Enabling Distributed QoS Management
utilizing Active Network technology”, National Technical
University of Athens.

[18] David J. Wetherall, John V. Guttag and David L.
Tennenhouse, “ANTS: A Toolkit for Building and
Dynamically Deploying Networks Protocols”, Software
Devices and Systems Group, Laboratory for Computer
Science, Massachusetts Institute of Technology, April 1998.

[19] Juraj Sucík, Ing. František Jakab, “Measurement and
Evaluation of Quality of Service Parameters in Computer
Networks”, Department of Computers and Informatics,
Technical University of Košice, Letná 9, 041 20 Košice,
Slovak Republic.

[20] Roche A. Guérin , Ariel Orda, “QoS routing in networks
with inaccurate information: Theory and algorithms”,
IEEE/ACM Transactions on Networking (TON), v.7 n.3,
p.350-364, June 1999

[21] Dean H. Lorenz , Ariel Orda, “QoS routing in networks with
uncertain parameters”, IEEE/ACM Transactions on
Networking (TON), v.6 n.6, p.768-778, Dec. 1998

[22] Rajagopalan B, Saadick H, “A Framework for QoS-based
Routing in the Internet”, RFC 2386, IETF, Aug., 1998.

[23] M. Reisslein, K. W. Ross, and S. Rajagopal, ”Guaranteeing
statistical QoS to regulated traffic: The single node case”,
Proceedings of IEEE INFOCOM’99, pages 1061–1062,
New York, March 1999.

[24] M. Reisslein, K. W. Ross, and S. Rajagopal. Guaranteeing
statistical QoS to regulated traffic: The multiple node case”,
Proceedings of 37th IEEE Conference on Decision and
Control (CDC), pages 531–531, Tampa, December 1998.

[25] David Wetherall, Ulana Legedza, and John Guttag,
“Introducing New Internet Services: Why and How”,
Software Devices and Systems Group, Laboratory for

INTERNATIONAL JOURNAL of COMMUNICATIONS

Issue 4, Volume 1, 2007 163

Computer Science, Massachusetts Institute of Technology,
July 1998.

[26] P. Hurley, J.-Y. Le Boudec, P. Thiran, and M. Kara.ABE,”
Providing a Low-Delay Service within Best Effort”, IEEE
Network Magazine, v 15, no 3,May/June 2001.

Table 1. Performance data without background traffic.

 SPR AQR
Max. delay (ms) 8364 7006
Min. delay (ms) 5554 5554
Avg. delay (ms) 5760 5584
Max. jitter (ms) 2810 1452

Table 2. Performance data with background traffic type 1
 SPR AQR
Max. delay (ms) 1825 1827
Min. delay (ms) 1806 1806
Avg. delay (ms) 1808 1806
Max. jitter (ms) 19 21

Fig. 1. Data flow diagram.

Fig. 2. Sample network topology.

QoS
improvement

Behavior in
split Traffic

Behavior under
Tolerance
parameter

Comparison
with shortest
path routing

Active QoS
routing

INTERNATIONAL JOURNAL of COMMUNICATIONS

Issue 4, Volume 1, 2007 164

Fig. 3. Structure of AQR protocol.

Fig. 4 Delay response without background traffic.

INTERNATIONAL JOURNAL of COMMUNICATIONS

Issue 4, Volume 1, 2007 165

Fig.5. Delay response with background traffic type 1.

 IN

I1

Output

Input
Layer

Hidden
 Layer

In

In-1

I2

Dot multiplication in time domain
between the (n) input data and
weights of the hidden layer.

Output
 Layer

Serial input data 1:N in groups of (n) elements
shifted by a step of one element each time.

INTERNATIONAL JOURNAL of COMMUNICATIONS

Issue 4, Volume 1, 2007 166

Fig.6. Classical time delay neural networks.

Fig.7. Fast time delay neural networks.

0
5

10
15
20
25
30
35
40

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06
Length of one dimensional input matrix

Sp
ee

d
up

 R
at

io

Practical Speed up ratio (n=400)
Practical Speed up ratio (n=625)
Practical Speed up ratio (n=900)

Fig. 8. Practical speed up ratio for time delay neural networks in case of one dimensional real-valued input matrix and

complex-valued weights.

I1

Output

Hidden
 Layer

IN

IN-1

I2

Cross correlation in the frequency
domain between the total (N) input data
and the weights of the hidden layer.

Output
 Layer

INTERNATIONAL JOURNAL of COMMUNICATIONS

Issue 4, Volume 1, 2007 167

0

5

10

15

20

25

30

35

40

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

Sp
ee

d
up

 R
at

io

Speed up Ratio (n=20)
Speed up Ratio (n=25)
Speed up Ratio (n=30)

Fig. 9. Practical speed up ratio when using FTDNNs in case of two dimensional real-valued input matrix and complex-valued

weights.

0
10
20
30
40
50
60
70
80

10000 2E+05 5E+05 1E+06 2E+06 3E+06 4E+06
Length of one dimensional input matrix

Sp
ee

d
up

 R
at

io

Practical Speed up ratio (n=400)
Practical Speed up ratio (n=625)
Practical Speed up ratio (n=900)

INTERNATIONAL JOURNAL of COMMUNICATIONS

Issue 4, Volume 1, 2007 168

Fig. 10. Practical speed up ratio when using FTDNNs in case of one dimensional complex-valued input matrix and complex-
valued weights.

0

10

20

30

40

50

60

70

100 300 500 700 900 1100 1300 1500 1700 1900

Size of two dimensional input matrix

Sp
ee

d
up

 R
at

io

Speed up Ratio (n=20)
Speed up Ratio (n=25)
Speed up Ratio (n=30)

Fig. 11. Practical speed up ratio when using FTDNNs in case of two dimensional complex-valued input matrix and complex-

valued weights.

INTERNATIONAL JOURNAL of COMMUNICATIONS

Issue 4, Volume 1, 2007 169

