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Abstract - It is highly desirable to protect data traffic 
from unexpected changes as well as provide effective 
network utilization in the internetworking era. In this 
paper the QoS management issue that utilizing the 
active network technology is discussed. Such algorithm 
is based on the proposed work presented in [15]. 
Active networks seem to be particularly useful in the 
context of QoS support. The Active QoS Routing 
(AQR) algorithm which is based on On-demand 
routing is implemented incorporating the product of 
available bit rate and delay for finding the best path for 
dynamic networks using the active network test bed 
ANTS. It is inferred that with background traffic, the 
AQR finds alternative paths very quickly and the delay 
and subsequently the jitter involved are reduced 
significantly. In this paper the variant of AQR 
implemented is demonstrated  to be more useful in 
reducing the jitter when the overall traffic in the 
network is heavy and has useful application in finding 
effective QoS routing in ad-hoc networks as well as 
defending DDoS attacks by identifying the attack 
traffic path using QoS regulations. The main 
achievement of this paper is the fast attack detection 
algorithm. Such algorithm based on performing cross 
correlation in the frequency domain between data 
traffic and the input weights of fast time delay neural 
networks (FTDNNs). It is proved mathematically and 
practically that the number of computation steps 
required for the presented FTDNNs is less than that 
needed by conventional time delay neural networks 
(CTDNNs). Simulation results using MATLAB 
confirm the theoretical computations. 
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I. Introduction  

The widespread growth of the Internet and the 
development of streaming applications directed the 
Internet society to focus on the design and 
development of architectures and protocols that would 
provide the requested level of Quality of Service (QoS) 
[15-26]. QoS is an intuitive concept defined as “the 
collective effect of the service performance which 
determines the degree of satisfaction of a user of the 
service” or “a measure of how good a service is, as 
presented to the user. It is expressed in user 
understandable language and manifests itself in a 
number of parameters, all of which have either 
subjective or objective values”. 

The goal of AN is to support customized protocol 
mechanisms that can be introduced in a network. 
Differences in known AN approaches concern, e.g., the 
question of whether remote applications should be able 
to download protocol mechanisms to a node (router) or 
whether this right should be reserved to the operators 
of nodes, and the question of whether the code for 
these mechanisms should be carried as an additional 
payload by the data packets in transit or whether 
shipping and installing such code should be separated 
from the issue of data transfer. Simulation results of 
this paper are compared with the results presented in 
[15] and high improvement in the QoS parameter jitter 
is appreciated when applied on active network with 
slight modifications in the application of the proposed 
algorithm. 

In addition, the main objective of this paper is to 
improve the speed of time delay neural networks for 
fast attack detection. The purpose is to perform the 
testing process in the frequency domain instead of the 
time domain. This approach was successfully applied 
for sub-image detection using fast neural networks 
(FNNs) as proposed in [1,2,3]. Furthermore, it was 
used for fast face detection [7,9], and fast iris detection 
[8]. Another idea to further increase the speed of FNNs 
through image decomposition was suggested in [7]. 
FNNs for detecting a certain code in one dimensional 
serial stream of sequential data were described in [4,5]. 
Compared with conventional neural networks, FNNs 
based on cross correlation between the tested data and 
the input weights of neural networks in the frequency 
domain showed a significant reduction in the number 
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of computation steps required for certain data detection 
[1,2,3,4,5,7,8,9,11,12].  Here, we make use of the 
previous theory on FNNs implemented in the 
frequency domain to increase the speed of time delay 
neural networks for fast attack detection.  

II. QoS Routing 
Active Networks (AN) is a framework where network 
elements, essentially routers and switches are 
programmable. Programs that are injected into the 
network are executed by the network elements to 
achieve higher flexibility and to present new 
capabilities. With the help of AN programs can be 
injected in to the network and executed with in the 
network itself without involving the end systems. QoS 
routing is a term used for routing mechanisms which 
consider QoS. It suffers from the static nature of 
networking today. QoS routing is bound to the use of 
common metrics and procedures which usually rely on 
distributed network performance data (increasing 
network traffic) and sophisticated algorithms 
(increasing the processor load on routers) but usually 
yield considerable improvements only for certain 
classes of applications. In [16], the authors used 
randomness at the link level to achieve balance 
between  the safety rate and delay of the routing path. 

A) QOS SUPPORT IN ACTIVE NETWORKS 

Possible utilizations of AN to support QoS roughly fall 
into the following categories [15]: 
1. Mechanisms which transfer application layer 
functionality into the network:  
2. Mechanisms which are usually associated with 
layers 3 or 4: AQR mechanism falls in this category. 
3. Mechanisms which rely on non-active QoS 
provisioning mechanisms: Here, AN are merely used to 
add greater flexibility to the specification of a QoS 
request. 

B) AQR OPERATION 
AQR is an on demand based QoS routing algorithm. 
The AQR algorithm can be described as follows as in 
[15].  
1. The AQR sender calculates all non-cyclic paths to 
the destination from the link state routing table.  
2. A probing packet carrying the QoS requirements, 
code for QoS calculation, the sender and receiver’s 
addresses and a list of visited nodes is sent to each first 
hop of these paths. 
3. Upon receiving an AQR probing packet, an AQR 
compliant transit node executes the AA code 
(contained in the packet or cached), which 
· checks if the minimum QoS requirements found in the 
packet can be met (if a threshold say a maximum delay 
is exceeded, the packet is dropped), 
· compares and updates the QoS data, 

adds itself to the list of already visited nodes, 
· Executes the code of the AQR sender, starting at step 
2 — except that no probing packets are sent to the 
source or to any other already visited node (packets are 
multicast in the proper direction at each AQR-
compliant transit node). 
4. Only packets which conform to the minimum QoS 
requirements reach the AQR receiver, where a list of 
valid paths is generated. After a predefined period, the 
best path is chosen and communicated to the sender. If 
there is more than one best path, the traffic is split 
among the best paths. 

C) DESIGN CONSIDERATIONS 

The resources used are network bandwidth and CPU 
cycles to load the network. The system assumes 
overlay mode of deploying active code in network. The 
security issues are taken care of by the ANTS system 
itself For AQR, these parameters are delay and 
available bandwidth. For each of these parameters, a 
channel is given the properties of the underlying 
network .The overall flow is depicted as follows. 
There are three important modules in the system. They 
are Application, Protocol and capsule modules. The 
application module consists of Router, Sender, 
Receiver sub modules. The capsule module consists of 
DataCapsule, Probecapsule and Replycapsule sub 
modules.  

 

III. Implementation Details 
The proposed AQR algorithm is implemented for the 
sample network topology shown below. In ANTS, the 
network topology is configured. The topology used is 
shown below. The routing protocol is implemented 
using the ANTS toolkit. ANTS is an EE running over 
the node OS Janos. The protocol is implemented as an 
active application that runs on each of the nodes of the 
network. In ANTS, there are three special classes to 
create capsules, protocols and active applications. The 
detailed information about ANTS is provided in [8].A 
new protocol is developed by sub classing the virtual 
class Protocol. This requires identifying all of the 
different types of packet that will enter the network by 
their different forwarding routines. Each type of packet 
and its forwarding routine is specified by sub classing 
the virtual class Capsule. 
· A new application is developed by sub classing the 
virtual class Application. 
· An instance of the class Node represents the local ants 
runtime. 
· A new protocol and application are used by creating 
instances of their classes and attaching them to node. 
The application is connected to the node in order to 
send and receive capsules from the network. 
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· The protocol is registered with the node in order for 
the network to be able to obtain its code when it is 
needed. 
 
This model allows customization by the network users 
assuming that a network of active nodes already exists 
and is up and running. The active nodes, however, will 
often be part of the system under study, particularly for 
experimentation with different topologies, application 
workloads, and node services. For these purposes, 
ANTS provides two facilities: 
 
· Configuration tools allow a network topology 
complete with applications to be managed. This 
includes the calculation of routes and the initialization 
of local node configurations. 
 
· A node extension architecture allows different nodes 
to support different service components, e.g., multicast, 
caching, trans coding, etc., as appropriate. Extensions 
are developed by sub classing the virtual class 
Extension. 

 
The Protocol class is extended to form the AQR 
Protocol class. There are three capsules – Probe 
Capsule, Reply Capsule and AQR Data Capsule. These 
capsules form the protocol itself. 
 

A) Capsule Types 

A capsule is a combination of a packet and its 
forwarding routine; the forwarding routine is executed 
at every active node the capsule visits while in the 
network. New types of capsule, with different 
forwarding routines, are developed by sub classing the 
virtual class Capsule. The capsule starts with the 
sequence id of the data capsule. Then the timestamp of 
when the capsule is sent is stored. Then some flags and 
index values are stored. The path index is the pointer to 
the next node to reach. The path valid is a flag that is 
set true when the capsule carries a path to travel. 
Otherwise default shortest path is used to reach the 
destination. There is another flag, aqrFlag which is set 
to differentiate between capsules sent using AQR and 
capsules sent using SPR. Finally the path to travel is 
stored.  
 
The active code of this capsule is the forwarding 
routine to guide the capsule to the destination. It checks 
for the pathValid flag and if set uses the path in the 
capsule to travel. Otherwise shortest path is used to 
forward the capsule to the destination. For valid path, 
the next node is obtained from the path stored using the 
path index pointer. The data capsule is then forwarded 
to this node. Once the nodes in the path stored get over, 
it indicates that the capsule has reached the destination. 

The capsule is then delivered to the receiver 
application. 
 
B) Application 
Applications are the entities that make use of the 
network to send and receive capsules as well as run 
independent activities. New applications are developed 
by sub classing the virtual class Application. It 
provides access to the node and its services. 
 
C) Other modules 

The data traffic is generated by a thread AQR Data 
Sender. It is run on the sender node. This data traffic is 
received by another application on the receiver node, 
AQR Data Receiver. There are also other utility 
classes. 
 

IV. Configuration  
Experimenting with an active network requires that a 
network topology and ANTS provides some tools and 
infrastructure conventions to automate this process. 
First, entire network configurations, node addresses, 
applications and all initialization parameters are 
specified text files that are read by Configuration 
Manager Class to start one of its nodes locally. This 
includes creating the node runtime, applications, and 
extensions, connecting them to each other, and starting 
their operation. 

A) Performance Analysis 
The algorithm is run under various test scenarios and 
the test results are presented in this section. The QoS 
performance is analyzed for data traffic with and 
without background traffic .TG is a packet Traffic 
Generator (TG) tool that can be used to characterize the 
performance of packet-switched network 
communication protocols. The TG program generates 
and receives one-way packet traffic streams transmitted 
from the UNIX user level process between traffic 
source and traffic sink nodes in a network. TG is used 
for generating the background traffic. The TG serving 
as the traffic source always logs datagram transmit 
times. This mode of operation may be useful for 
analyzing network blocking characteristics or for 
loading a network. The TG serving as a traffic sink 
logs all received data grams. The behavior of the 
protocol is analyzed after the intermediate routers are 
loaded to make the default shortest path congested. For 
the same topology the shortest path routing is tested. 
Two applications are run on the source and destination 
nodes. The active code in the capsule is used to route 
the capsule through the shortest path. The delay 
changes and the routes taken are recorded and 
analyzed. 
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B)  Performance analysis without background traffic 
In this test run, the data capsules of length 100 bytes 
are used to test the protocol. No background traffic is 
used to load the shortest path. Instead the routers along 
the shortest path are loaded to increase the delay along 
the shortest path. In this scenario the test is run and the 
results shown below. The delay values are relative and 
are not exact with respect to the sender in all the data 
presented. 
 
C) Performance analysis with background traffic type 1 
In this test run, the data capsules of length 100 bytes 
are used to test the protocol. Also background traffic is 
introduced along the shortest path to increase the delay 
along the shortest path. The traffic is introduced using 
the tool TG. The background traffic is udp. Packets of 
length 500 bytes at a rate of 100Mbps are used for the 
traffic.  

V. Fast Attack Detection using Neural Networks 
Finding a certain attack, in the incoming serial data, is 
a searching problem. First neural networks are trained 
to classify attack from non attack examples and this is 
done in time domain. In attack detection phase, each 
position in the incoming matrix is tested for presence 
or absence of an attack. At each position in the input 
one dimensional matrix, each sub-matrix is multiplied 
by a window of weights, which has the same size as the 
sub-matrix. The outputs of neurons in the hidden layer 
are multiplied by the weights of the output layer. When 
the final output is high, this means that the sub-matrix 
under test contains an attack and vice versa. Thus, we 
may conclude that this searching problem is a cross 
correlation between the incoming serial data and the 
weights of neurons in the hidden layer.   

The convolution theorem in mathematical analysis says 
that a convolution of f with h is identical to the result 
of the following steps: let F and H be the results of the 
Fourier Transformation of f and h in the frequency 
domain. Multiply F and H* in the frequency domain 
point by point and then transform this product into the 
spatial domain via the inverse Fourier Transform. As a 
result, these cross correlations can be represented by a 
product in the frequency domain. Thus, by using cross 
correlation in the frequency domain, speed up in an 
order of magnitude can be achieved during the 
detection process [1,2,3,4,5,7,8,9,14]. Assume that the 
size of the attack code is 1xn.  In attack detection 
phase, a sub matrix I of size 1xn (sliding window) is 
extracted from the tested matrix, which has a size of 
1xN. Such sub matrix, which may be an attack code, is 
fed to the neural network. Let Wi be the matrix of 
weights between the input sub-matrix and the hidden 
layer. This vector has a size of 1xn and can be 

represented as 1xn matrix. The output of hidden 
neurons h(i) can be calculated as follows:  

⎟
⎟
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⎞
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⎝
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1k iWgih               (1) 

where g is the activation function and b(i) is the bias of 
each hidden neuron (i). Equation 1 represents the 
output of each hidden neuron for a particular sub-
matrix I. It can be obtained to the whole input matrix Z 
as follows: 
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Eq.2 represents a cross correlation operation. Given 
any two functions f and d, their cross correlation can be 
obtained by: 
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Therefore, Eq. 2 may be written as follows [1]: 
( )ibZiWgih +⊗=                    (4) 

where hi is the output of the hidden neuron (i) and hi (u) 
is the activity of the hidden unit (i) when the sliding 
window is located at position (u) and (u) ∈ [N-n+1].  

Now, the above cross correlation can be expressed in 
terms of one dimensional Fast Fourier Transform as 
follows [1]: 

( ) ( )( )iW*FZF1FZiW •−=⊗               (5) 

Hence, by evaluating this cross correlation, a speed up 
ratio can be obtained comparable to conventional 
neural networks. Also, the final output of the neural 
network can be evaluated as follows:  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

+=
q

1i
ob)u(ih (i)oWgO(u)              (6) 

where q is the number of neurons in the hidden layer. 
O(u) is the output of the neural network when the 
sliding window located at the position (u) in the input 
matrix Z. Wo is the weight matrix between hidden and 
output layer. 
The complexity of cross correlation in the frequency 
domain can be analyzed as follows: 
1-  For a tested matrix of 1xN elements, the 1D-FFT 
requires a number equal to Nlog2N of complex 
computation steps [13]. Also, the same number of 
complex computation steps is required for computing 
the 1D-FFT of the weight matrix at each neuron in the 
hidden layer.  
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2-  At each neuron in the hidden layer, the inverse 1D-
FFT is computed. Therefore, q backward and (1+q) 
forward transforms have to be computed. Therefore, 
for a given matrix under test, the total number of 
operations required to compute the 1D-FFT is 
(2q+1)Nlog2N. 

3- The number of computation steps required by 
FTDNNs is complex and must be converted into a real 
version. It is known that, the one dimensional Fast 
Fourier Transform requires (N/2)log2N complex 
multiplications and Nlog2N complex additions [13]. 
Every complex multiplication is realized by six real 
floating point operations and every complex addition is 
implemented by two real floating point operations. 
Therefore, the total number of computation steps 
required to obtain the 1D-FFT of a 1xN matrix is: 

ρ=6((N/2)log2N) + 2(Nlog2N)                  (7) 

which may be simplified to: 

ρ=5Nlog2N                              (8) 

4- Both the input and the weight matrices should be dot 
multiplied in the frequency domain. Thus, a number of 
complex computation steps equal to qN should be 
considered. This means 6qN real operations will be 
added to the number of computation steps required by 
FTDNNs.  

5- In order to perform cross correlation in the 
frequency domain, the weight matrix must be extended 
to have the same size as the input matrix. So, a number 
of zeros = (N-n) must be added to the weight matrix. 
This requires a total real number of computation steps 
= q(N-n) for all neurons. Moreover, after computing 
the FFT for the weight matrix, the conjugate of this 
matrix must be obtained. As a result, a real number of 
computation steps = qN should be added in order to 
obtain the conjugate of the weight matrix for all 
neurons.  Also, a number of real computation steps 
equal to N is required to create butterflies complex 
numbers (e-jk(2Πn/N)), where 0<K<L. These (N/2) 
complex numbers are multiplied by the elements of the 
input matrix or by previous complex numbers during 
the computation of FFT. To create a complex number 
requires two real floating point operations. Thus, the 
total number of computation steps required for 
FTDNNs becomes: 

σ=(2q+1)(5Nlog2N) +6qN+q(N-n)+qN+N        (9) 
which can be reformulated as: 

           σ=(2q+1)(5Nlog2N)+q(8N-n)+N          (10) 

6- Using sliding window of size 1xn for the same 
matrix of 1xN pixels, q(2n-1)(N-n+1) computation 
steps are required when using CTDNNs for certain 
attack detection or processing (n) input data. The 

theoretical speed up factor η can be evaluated as 
follows: 

   N n)-q(8N N) 1)(5Nlog(2q
 1)n-1)(N-q(2n

2 +++
+

=η         (11) 

CTDNNs and FTDNNs are shown in Figures 6 and 7 
respectively. 

Time delay neural networks accept serial input data 
with fixed size (n). Therefore, the number of input 
neurons equals to (n). Instead of treating (n) inputs, the 
proposed new approach is to collect all the incoming 
data together in a long vector (for example 100xn). 
Then the input data is tested by time delay neural 
networks as a single pattern with length L (L=100xn). 
Such a test is performed in the frequency domain as 
described in section II. The combined attack in the 
incoming data may have real or complex values in a 
form of one or two dimensional array. Complex-valued 
neural networks have many applications in fields 
dealing with complex numbers such as 
telecommunications, speech recognition and image 
processing with the Fourier Transform [6,10]. 
Complex-valued neural networks mean that the inputs, 
weights, thresholds and the activation function have 
complex values. In this section, formulas for the speed 
up ratio with different types of inputs (real /complex) 
will be presented. Also, the speed up ratio in case of a 
one and two dimensional incoming input matrix will be 
concluded. The operation of FTDNNs depends on 
computing the Fast Fourier Transform for both the 
input and weight matrices and obtaining the resulting 
two matrices. After performing dot multiplication for 
the resulting two matrices in the frequency domain, the 
Inverse Fast Fourier Transform is determined for the 
final matrix. Here, there is an excellent advantage with 
FTDNNs that should be mentioned. The Fast Fourier 
Transform is already dealing with complex numbers, 
so there is no change in the number of computation 
steps required for FTDNNs. Therefore, the speed up 
ratio in case of complex-valued time delay neural 
networks can be evaluated as follows: 

1) In case of real inputs  

A) For a one dimensional input matrix 
Multiplication of (n) complex-valued weights by (n) 
real inputs requires (2n) real operations. This produces 
(n) real numbers and (n) imaginary numbers. The 
addition of these numbers requires (2n-2) real 
operations. The multiplication and addition operations 
are repeated (N-n+1) for all possible sub matrices in 
the incoming input matrix. In addition, all of these 
procedures are repeated at each neuron in the hidden 
layer. Therefore, the number of computation steps 
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required by conventional neural networks can be 
calculated as: 

θ=2q(2n-1)(N-n+1)                    (12) 
The speed up ratio in this case can be computed as 
follows: 

 
   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(2n

2 +++
+

=η          (13) 

Practical speed up ratio for searching short successive 
(n) data in a long input vector (L) using complex-
valued time delay neural networks is shown in Figure 
8. This has beed performed by using a 700 MHz 
processor and MATLAB.  

B) For a two dimensional input matrix 
Multiplication of (n2) complex-valued weights by (n2) 
real inputs requires (2n2) real operations. This produces 
(n2) real numbers and (n2) imaginary numbers. The 
addition of these numbers requires (2n2-2) real 
operations. The multiplication and addition operations 
are repeated (N-n+1)2 for all possible sub matrices in 
the incoming input matrix. In addition, all of these 
procedures are repeated at each neuron in the hidden 
layer. Therefore, the number of computation steps 
required by conventional neural networks can be 
calculated as: 

θ=2q(2n2-1)(N-n+1) 2                 (14)  

The speed up ratio in this case can be computed as 
follows: 

 
   N )n-q(8N )N log1)(5N(2q

 1)n-1)(N-2q(2n
222

2
2

22

+++
+

=η      (15) 

Practical speed up ratio for detecting (nxn) real valued 
submatrix in a large real valued matrix (NxN) using 
complex-valued time delay neural networks is shown 
in Fig. 9. This has beed performed by using a 700 MHz 
processor and MATLAB.  

2) In case of complex inputs  

A) For a one dimensional input matrix 
Multiplication of (n) complex-valued weights by (n) 
complex inputs requires (6n) real operations. This 
produces (n) real numbers and (n) imaginary numbers. 
The addition of these numbers requires (2n-2) real 
operations. Therefore, the number of computation steps 
required by conventional neural networks can be 
calculated as: 

θ=2q(4n-1)(N-n+1)                    (16)  

The speed up ratio in this case can be computed as 
follows: 

 
   N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(4n

2 +++
+

=η         (17) 

Practical speed up ratio for searching short complex 
successive (n) data in a long complex-valued input 
vector (L) using complex-valued time delay neural 
networks is shown in Fig. 10. This has beed performed 
by using a 700 MHz processor and MATLAB.   

B) For a two dimensional input matrix 
Multiplication of (n2) complex-valued weights by (n2) 
real inputs requires (6n2) real operations. This produces 
(n2) real numbers and (n2) imaginary numbers. The 
addition of these numbers requires (2n2-2) real 
operations. Therefore, the number of computation steps 
required by conventional neural networks can be 
calculated as: 

θ=2q(4n2-1)(N-n+1)2                     (18)  

The speed up ratio in this case can be computed as 
follows: 

   N )n-q(8N )N log1)(5N(2q
 1)n-1)(N-2q(4n

222
2

2

22

+++
+

=η       (19) 

Practical speed up ratio for detecting (nxn) complex-
valued submatrix in a large complex-valued matrix 
(NxN) using complex-valued neural networks is shown 
in Fig. 11. This has beed performed by using a 700 
MHz processor and MATLAB. 

An interesting point is that the memory capacity is 
reduced when using FTDNN. This is because the 
number of variables is reduced compared with 
CTDNN. The neural algorithm presented here can be 
inserted very easily in any Anti-Attack gateway 
software.  
 

VI. CONCLUSION 
The AQR protocol is implemented using ANTS and 
the performance of the AQR algorithm is analyzed. It 
is inferred that with background traffic, the AQR finds 
alternative paths quickly. It reduces the delay and 
subsequently reduces the jitter involved. The variant of 
AQR using the product of available bit rate and delay 
for finding the best path is useful in reducing the jitter 
where the overall traffic in the network is heavy. It 
helps to maintain the jitter in networks with more 
bursty traffic. It is also inferred that the performance of 
AQR is better than that of SPR in both cases. 
Performance is analyzed for various traffic classes. The 
probe capsules are sent along each path from the source 
to the destination to find the best path. By tuning the 
probing frequency to an optimal value, the traffic 
caused by the probe capsules can be reduced. 
Comparing with the data traffic, probe capsules are 
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small in number. The topology should be known by all 
nodes to find the best path. In this paper dynamic 
topology is considered and flooding is used to find the 
best path. This finds application in finding effective 
QoS routing in ad-hoc networks as well as defending 
DDoS attacks by identifying the attack traffic path 
using QoS regulations. The flooding overhead involved 
is unavoidable and some pay off measures need to be 
identified. It is also proposed to choose the best path 
based on error rate so that the loss of probe capsules 
can also be taken into consideration. A new approach 
for fast attack detection has been presented. Such 
strategy has been realized by using a new design for 
time delay neural networks. Theoretical computations 
have shown that FTDNNs require fewer computation 
steps than conventional ones. This has been achieved 
by applying cross correlation in the frequency domain 
between the incoming serial data and the input weights 
of time delay neural networks. Simulation results have 
confirmed this proof by using MATLAB. Furthermore, 
the memory complexity has been reduced when using 
the fast neural algorithm. In addition, this algorithm 
can be combined in any Anti-attack gateway software.  
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Table 1. Performance data without background traffic. 

 SPR AQR 
Max. delay (ms) 8364 7006 
Min. delay (ms) 5554 5554 
Avg. delay (ms) 5760 5584 
Max. jitter (ms) 2810 1452 

 
Table  2.  Performance data with background traffic type 1 
 SPR AQR 
Max. delay (ms) 1825 1827 
Min. delay (ms) 1806 1806 
Avg. delay (ms) 1808 1806 
Max. jitter (ms) 19 21 

 

 

 

 

 

 

 

    
Fig. 1. Data flow diagram. 

 
 

Fig. 2. Sample network topology. 
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Fig. 3. Structure of AQR protocol. 

 

 
 

Fig. 4   Delay response without background traffic. 
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Fig.5. Delay response with background traffic type 1. 
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Fig.6. Classical time delay neural networks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7. Fast time delay neural networks. 
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Fig. 8.  Practical speed up ratio for time delay neural networks in case of one dimensional real-valued input matrix and 

complex-valued weights. 
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Fig. 9. Practical speed up ratio when using FTDNNs in case of two dimensional real-valued input matrix and complex-valued 

weights. 
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Fig. 10.  Practical speed up ratio when using FTDNNs in case of one dimensional complex-valued input matrix and complex-
valued weights. 
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Fig. 11. Practical speed up ratio when using FTDNNs in case of two dimensional complex-valued input matrix and complex-

valued weights. 
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