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I. INTRODUCTION 
unication systems, like ce

computer fields, the information is represented as a 
sequence of binary digits. The binary message is modulated to 
an analog signal and transmitted over a communication 
channel affected by noise that corrupt the transmitted signal. 
The channel coding is used to protect the information from 
noise and to reduce the number of error bits. 

One of the most used channel codes are convolutional 
codes, with the decoding strategy based on the Viterbi 
algorithm. The advantages of convolutional codes are used in 
Turbo Codes (TC), which can achieve performances within a 
2 dB of channel capacity [1]. These codes are parallel 
concatenation of two Recursive Systematic Convolutional 
(RSC) codes separated by an interleaver. The performances of 
the turbo codes are due to parallel concatenation of 
component codes, the interleaver schemes and the iterative 
decoding using the Soft Input Soft Output (SISO) algorithms 
[2], [3]. 

In this paper we study the decision reliability problem for 
turbo coding schemes in the case of two different decoding 
strategies: Maximum A Posteriori (MAP) algorithm and Soft 
Output Viterbi Algorithm (SOVA). For the MAP algorithm 

and Max-Log-MAP algorithms. The first one is a simplified 
algorithm which offers the same optimal performance with a 
reasonable complexity. The second one and the SOVA are  
less complex again, but give a slightly degraded performance. 

The paper is organized as follows. In Section II, the turbo 
encoder is presented. In Section III, the turbo decoder is 
ex
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plained in detail, presenting firstly the iterative decoding 
principle (turbo principle), specifying the concepts of a priori 
information, a posteriori information, extrinsic information, 
channel reliability and source reliability. Then, we review the 
MAP, Log-MAP, Max-Log-MAP and SOVA decoding 
algorithms for which we discuss the decision reliability. In 
Section IV is analyzed the influence of channel reliability 
factor on decoding performances for the mentioned decoding 
algorithms. Section V presents some simulation results, which 
we obtained. 

II. THE TURBO CODING SCHEME 
The turbo encoder can use 

ve Systematic Convolutional (RSC) code
arallel, see Fig. 1. 

es on the input bits represent
n their original order, while the sec

y 
the fram
o erates on the input bits which are permuted by the 
interleaver, frame u’, [4]. The output of the turbo encoder is 
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where frame c1 is the output of the first RSC and frame c2 is 
the output of the second RSC. If the input frame u is of length 
k and the output frame x is of length n, then the encoder rate is 

.  
For block encoding data is segmented into non-overlapping 

blocks of length k with each block encoded (and decoded) 
independently. This scheme imposes the use of a block 
interleaver with the constraint that the RSC’s must begin in 
the same state for each new block. This requires either trellis 
termination or trellis truncation. Trellis termination need 
appending extra symbols (usually named tail bits) to the input 
frame to ensure that the shift registers of the constituent RSC 
encoders starts and ends at the same zero state. If the encoder 
has code rate 1/3, then it maps k data bits into 3k coded bits 
plus 3m tail bits. Trellis truncation simply involves resetting 
the state of the RSC’s for each new block. 

The interleaver used for parallel concatenation is a device 
that permutes coordinates either on a block basis (a 
generalized “block” interleaver) or on a sliding window basis 
(a generalized “convolutional” interleaver). The interleaver 
ensures that the set of code sequences generated by the turbo 
code has nice weight properties, which reduces the probability 
that the decoder will mistake one codeword for another. 
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ensures that the set of code sequences generated by the turbo 
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that the decoder will mistake one codeword for another. 

The output codeword  is then modulated, for 
example with Binary Phase Shift Keying (BPSK), resulting 
the sequence x x , which is transmitted over an 
Additive White Gaussian Noise (AWGN) channel. 
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It is known that turbo codes are the best practical codes due 
to their performance at low SNR. One reason for their better 
performance is that turbo codes produce high weight code 
words [4]. For example, if the input sequence u is originally 
low weight, the systematic u and parity c1 outputs may 

produce a low weight codeword. However, the parity output 
e a low weight codeword due to the 

interleaver in front of it. The interleaver shuffles the input 
sequence u, in such a way that when introduced to the second 
encoder, it is more likely probable to produce a high weight 
codeword. This is ideal for the code because high weight code 
words result in better decoder performance. 

It is known that turbo codes are the best practical codes due 
to their performance at low SNR. One reason for their better 
performance is that turbo codes produce high weight code 
words [4]. For example, if the input sequence u is originally 
low weight, the systematic u and parity c1 outputs may 

produce a low weight codeword. However, the parity output 
c2 is less likely to be a low weight codeword due to the 
interleaver in front of it. The interleaver shuffles the input 
sequence u, in such a way that when introduced to the second 
encoder, it is more likely probable to produce a high weight 
codeword. This is ideal for the code because high weight code 
words result in better decoder performance. 

III. THE TURBO DECODING SCHEME III. THE TURBO DECODING SCHEME 

Let be the received sequence of length n, Let be the received sequence of length n, 1 2( , , )s p p=y y y y  
where the vector ys is formed only by the received information 
symbols 1 2( , ,..., )s s s s
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 and the vectors yp1 and yp2 

represents the received parity symbols  

and . These three streams are applied 
to the input of the turbo decoder presented in Fig. 2. 
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At time j, decoder 1 using partial received information 
1,s p

j jy y

( )

, makes its decision and outputs the a posteriori 

information s
jL x+

( ) ( ) ( )e s s s s

. Then, the extrinsic information is 

computed j j j c jL x L x L x L y+ −= − − . Decoder 2 makes its 

decision based on the extrinsic information ( )e s
jL x

2

 from 

decoder 1 and the received information ',s p
j jy y . The term 

( ')s
jL x+  is the a posteriori information derived from decoder 2 

and used by decoder 1 as a priori information about the 
received sequence, noted with ( ')s

jL x−

( )

. Now, the second 
iteration can begin, and the first decoder decodes the same 
channel symbols, but now with additional information about 
the value of the input symbols provided by the second decoder 
in the first iteration. After some iterations, the algorithm 
converges and the extrinsic information values remains the 
same. Now the decision about the message bits uj is made 
based on the a posteriori values s

jL x+ .  
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Fig. 2.  The turbo decoder. 
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Each constituent decoder operates based on the Logarithm 
Likelihood Ratio (LLR).  

A.    The Decision Reliability of MAP Decoder 
Bahl, Cocke, Jelinek and Raviv proposed the Maximum A 

Posteriori (MAP) decoding algorithm for convolutional codes 
in 1974 [1]. The iterative decoder developed by Berrou et al. 
[5] in 1993 has a greatly increased attention. In their paper, 
they considered the iterative decoding of two RSC codes 
concatenated in parallel through a non-uniform interleaver and 
the MAP algorithm was modified to minimize the sequence 
error probability instead of bit error probability.  

Because of its increased complexity, the MAP algorithm 
was simplified in [6] and the optimal MAP algorithm called 
the Log-MAP algorithm was developed. 

The LLR of a transmitted bit is defined as [2]: 
 

( 1)
( ) log ( )

( 1)

s We noteddef
js s

j js
j

P x
L x L x

P x
−

⎛ ⎞= +
= =⎜ ⎟⎜ ⎟= −⎝ ⎠

, (1) 

 
where the sign of the LLR ( )s

jL x  indicate whether the bit s
jx  

is more likely to be +1 or -1 and the magnitude of the LLR 
gives an indication of the correct value of s

jx . The term 

( )s
jL x−  is defined as the a priori information about s

jx . 
In channel coding theory we are interested in the 

probability that , based or conditioned on some 

received sequence 

1s
jx = ±

s
jy . Hence, we use the conditional LLR: 
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=

)
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The conditional probabilities ( 1|s s

j jP x y= ±  are the a 

posteriori probabilities of the decoded bit s
jx  and ( )s

jL x+  is the 

a posteriori information about s
jx , which is the information 

that the decoder gives us, including the received frame, the a 
priori information for the systematic symbols ys

j and the a 
priori information for symbol xs

j. It is the output of the MAP 
algorithm. 

In addition, we will use the conditional LLR ( )|s s
j jL y x  

based on the probability that the receiver’s output would be 
s
jy  when the transmitted bit s

jx  was either +1 or -1: 
 

( ) ( )
( )

| 1
| log

| 1
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j j

P y x
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For AWGN channel using BPSK modulation, we can write 

the conditional probability density functions, [7]: 
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where  is the transmitted energy per bit, a is the fading 
amplitude and  is the noise variance. 

bE

0 / 2N
We can rewrite the (3) as follows: 
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where 04c bL a E N=  is defined as the channel reliability 

factor  [8], [16] and s
c jL y  is the information about the 

reliability of the channel for the transmitted information 
symbol s

jx . The term  is the transmitted energy per bit, a is 

the fading amplitude and  is the noise power. For non 
fading AWGN channels a = 1 and 

b

0N

E

/ 2

04c bL E N= . The  
ratio is defined as the Signal to Noise Ration (SNR) of the 
channel. 

0/bE N

The extrinsic information can be computed as [1], [2], [9]: 
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The a posteriori information defined in (2), can be written as 
the following [1], [10]: 
 

1

1

( ') ( ) ( ', )
( ) log

( ') ( ) ( ', )

e
j j js

j e
j j j

s s s s
L x

s s s s
−+ +

−−

α ⋅β ⋅ γ
=

α ⋅β ⋅ γ
∑
∑

,  (7) 

 
where 

+∑ is the summation over all possible transition 

branch pairs (s’,s) in the trellis, at time j, given the transmitted 
symbol xs

j = +1. Analog, 
−∑ is for transmitted symbol xs

j = 

-1. 
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The forward and backward terms, represented in Fig. 3 as 

transitions between two consecutive states from the trellis, can 
be computed recursively as following [7], [10], [11]: 
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'
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s
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For systematic codes, which is our case, the branch 

transition probabilities ( ', )j s sγ  are given by the relation: 
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At each iteration and for each frame y, ( )s

jL x+  is computed 
at the output of the second decoder and the decision is done, 
symbol by symbol  j = 1…k, based on the sign of ( )s

jL x+ , 
original information bit uj being estimated as [2], [3]: 

 
{ˆ ( )s

ju sign L x+= }j . (12) 

 
In the iterative decoding procedure, the extrinsic 

information ( )e s
jL x  is permuted by the interleaver and 

becomes the a priori information ( )s
jL x−  for the next decoder. 

If ( )s
jL x−  is a large (or small) positive number, then it would 

be difficult (or easier) to change the estimated symbol 
decision from +1 to -1 between to consecutive decoding 
stages.  

For high SNR, the channel reliability value Lc will be high 
and this information symbol will have a large influence on 

( )s
jL x+ . Conversely, for low SNR, the Lc is low and it’s 

influence on ( )s
jL x+  is insignificant. 

B.   The Decision Reliability of Max-Log-MAP Decoder sj-1 = s’                     
The MAP algorithm as described in previous section is 

much more complex than the Viterbi algorithm and with hard 
decision outputs performs almost identically to it. Therefore 
for almost 20 years it was largely ignored. However, its 
application in turbo codes renewed interest in this algorithm. 
Its complexity can be dramatically reduced without affecting 
its performance by using the sub-optimal Max-Log-MAP 
algorithm, proposed in [12]. This technique simplifies the 
MAP algorithm by transferring the recursions into the log 
domain and invoking the approximation:  

sj = s 
 

xs
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where 1 1 2 21 1
2 2

p p p
c j j c j jC L x y L x y= + p  does not depend on the 

transmitted bits s
jx  and so can be considered a constant and 

omitted. Hence the branch metric is equivalent to that used in 
the Viterbi algorithm, with the addition of the a priori LLR 
term ( )s s

j jx L x− . 
Finally, the a posteriori LLR ( )s

jL x+  which the Max-Log-
MAP algorithm calculates is: 
 

Fig. 3. Trellis states transitions. 
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In [12] and [13] the authors shows that the complexity of 

Max-Log-MAP algorithm is bigger than two times that of a 
classical Viterbi algorithm Unfortunately, the storage 
requirements are much greater for Max-Log-MAP algorithm, 
due to the need to store both the forward and backward 
recursively calculated metrics  and  before the ( )jA s ( )jB s

( )s
jL x+  values can be calculated. 

C. The Decision Reliability of Log-MAP Decoder 
The Max-Log-MAP algorithm gives a slight degradation in 

performance compared to the MAP algorithm due to the 
approximation of (13). When used for the iterative decoding 
of turbo codes, Robertson found this degradation to result in a 
drop in performance of about 0.35 dB, [12]. However, the 
approximation of (13) can be made exact by using the 
Jacobian logarithm: 

 
( )(

( )

1 2
1 2 1 2

1 2 1 2 1 2

ln( ) max( , ) ln 1 exp | |
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x xe e x x x x )
x x f x x g x x

+ = + + − −

= + − =
 (21) 

 
where ( )f δ  can be thought of as a correction term. However, 
the maximization in (17) and (18) is completed by the 
correction term ( )f δ  in (21). This means that the exact rather 
than approximate values of  and  are calculated. 
For binary trellises, the maximization will be done only for 
two terms. Therefore we can correct the approximations in 
(17) and (18) by adding the term 

( )jA s ( )jB s

( )f δ , where δ  is the 
magnitude of the difference between the metrics of the two 
merging paths. This is the basis of the Log-MAP algorithm 
proposed by Robertson, Villebrun and Hoeher in [12]. Thus 
we must generalize the previous equation for more than two 

1x  terms, by nesting the 1 2( , )g x x  operations as follows: 
  

((( 1 3 2 1
1

ln , , , ( , )i

n
x

n n
i

e g x g x g x g x x−
=
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⎝ ⎠
∑ K ))) , (22) 

 
The correction term ( )f δ

δ

 need not to be computed for every 
value of , but instead can be stored in a look-up table. In 
[12], Robertson found that such a look-up table need contain 
only eight values for , ranging between 0 and 5. This means 
that the Log-MAP algorithm is only slightly more complex 
than the Max-Log-MAP algorithm, but it gives exactly the 
same performance as the MAP algorithm. Therefore, it is a 
very attractive algorithm to use in the component decoders of 
an iterative turbo decoder. 

δ

D.   The Decision Reliability of SOVA Decoder 
The MAP algorithm has a high computational complexity 

for providing the Soft Input Soft Output (SISO) decoding. 

However, we obtain easily the optimal a posteriori 
probabilities for each decoded symbol. 

The Viterbi algorithm provides the Maximum Likelihood 
(ML) decoding for convolutional codes, with optimal 
sequence estimation. The conventional Viterbi decoder has 
two main drawbacks for a serial decoding scheme: the inner 
Viterbi decoder produces bursts of error bits and hard decision 
output, which degrades the performance of the outer Viterbi 
decoder [3]. Hagenauer and Hoeher modified the classical 
Viterbi algorithms and they provided a substantially less 
complex and suboptimal alternative in their Soft Output 
Viterbi Algorithm (SOVA). The performance improvement is 
obtained if the Viterbi decoders are able to produce reliability 
values or soft outputs by using a modified metric [14]. These 
reliability values are passed on to the subsequent Viterbi 
decoders as a priori information. 

In soft decision decoding, the receiver doesn’t assign a zero 
or a one to each received symbol from the AWGN channel, 
but uses multi-bit quantized values for the received sequence 
y, because the channel alphabet is greater than the source 
alphabet [3]. In this case, the metric derived from Maximum 
Likelihood principle, is used instead of Hamming distance. 
For an AWGN channel, the soft decision decoding produces a 
gain of 2÷3 dB over hard decision decoding, and an eight-
level quantization offers enough performance in comparison 
with an infinite bit quantization [7]. 

The original Viterbi algorithm searches for an information 
sequence u that maximizes the a posteriori probability 

, s being the states sequence generated by the message 
u. Using the Bayes theorem and taking into account that the 
received sequence y is fixed for the metric computation and it 
can be discarded, the maximization of  is: 

( | )P s y

( | )P s y
 

{ } {max ( | ) max ( | ) ( )P P=
u u

s }Py y s s .          (23) 

 
For a systematic code, this relation can be expanded to: 
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Taking into account that: 
 

( )
( ) ( ) (

1 2
1

1 1 2 2

( , , ) | ,

| | |

s p p
j j j j j

s s p p p p
j j j j j j

P y y y s s

P y x P y x P y x

− =

= ⋅ ⋅ ) ,
 (25) 

 
where 1( , )j js s−  denotes the transitions between the states at 
time j-1 and the states at time j, the SOVA metric is obtained 
from (24) as [15]: 
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log log ,

( 0)| 1
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where *

1, 2,( , , )j j j jx u c c=  is the RSC output code word at time 
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j, at channel input and * 1( , , )s p p
j j j j

2y y y y=  is the channel 
output. The summation is made for each pair of information 
symbols ( , s

j ju y ) and for each pair of parity symbols ( 1
1, , p

j jc y ) 

and ( 2,2,
p

j jy

1
*

c ). 
According [14] and [7], the relation (26) can be reduced as: 
 

* *
c j j ( )j jj jM M L−= +∑ x y u L u+

( )

, (27) 

 
where the source reliability jL u , defined in (26), is the log-
likelihood ratio of the binary symbol uj. The sign of ( )jL u

)
 is 

the hard decision of uj and the magnitude of ( jL u  is the 
decision reliability. 

According [10], the SOVA metric includes values from the 
past metric Mj-1, the channel reliability Lc and the source 
reliability ( )jL u

(

, as an a priori value. If the channel is very 
good, the second term in (27) is greater than the third term and 
the decoding relies on the received channel values. If the 
channel is very bad, the decoding relies on the a priori 
information )jL u .  

If M1
j, M2

j are two metrics of the survivor path and 
concurrent path in the trellis, at time j, then the metric 
difference is defined as [7]: 

 
0 1 21

2j j jM M−

) (s

m

Δ = . (28) 

 
The probability of path m, at time j, is related as: 
 

( )/ 2m
jM(path ) expm

jP m P= = . (29) 

 
where js  is a states vector and m

jM  is the metric. The 
probability of choosing the survivor path is: 
 

0

0

1)(path(correc
ath 1) (path 2) 1

j

j

P eP
P P e

Δ

Δ
= =

+ +
t)

(p
. (30) 

 
 The reliability of this path decision is calculated as: 
 

0(correct)
orrect)

log
1- (c j
P
P

= Δ . (31) 

 
The reliability values along the survivor paths, for a 

particular node and time j, are denoted as d
jΔ , where d is the 

distance from the current node at time j. If the survivor path 
bit for  is the same with the associated bit on the 
competing path, then there would be no error if the competing 
path is chosen. The reliability value remains unchanged.  

d j=

To improve the reliability values an updating process must 
be used, so the “soft” values of a decision symbol are: 

 

0

( ' ) '
d

i
j d j d

i
L u u− −

=
j= Δ∑ , (32) 

 
which can be approximated as: 
 

{ }
0...

( ' ) ' min i
j d j d i d

L u u− − = j= ⋅ Δ . (33) 

 
The SOVA algorithm described in this section is the least 

complex of all the SISO decoders discussed in this section. In 
[12], Robertson shows that the SOVA algorithm is about half 
as complex as the Max-Log-MAP algorithm. However, the 
SOVA algorithm is also the least accurate of the algorithms 
described in this section and, when used in an iterative turbo 
decoder, performs about 0.6 dB worse than a decoder using 
the MAP algorithm. If we represent the outputs of the SOVA 
algorithm they will be significantly more noisy than those 
from the MAP algorithm, so an increased number of decoding 
iterations must be used for SOVA to obtain the same 
performances as for MAP algorithm.  

The same results are reported also for the iterative decoding 
(turbo decoding) of the turbo product codes, which are based 
on two concatenated Hamming block codes not on 
convolutional codes [19]. 

IV. THE INFLUENCE OF LC ON DECODING PERFORMANCE 
 In this section we analyze the importance of an accurate 
estimate of the channel reliability factor Lc is to the good 
performance of an iterative turbo decoder which uses the 
MAP, SOVA, Max-Log-MAP and Log-MAP algorithms. 

In the MAP algorithm the channel inputs and the a priori 
information are used to calculate the transition probabilities 
from one state to another, that are then used to calculate the 
forward and backward recursion terms [2], [8]. Finally, the a 
posteriori information ( )s

jL x+  is computed and the decision 
about the original message is made based on it.  

In the iterative decoding with MAP algorithm, the channel 
reliability is calculated from the received channel values. At 
first iteration, the decoder 1 has no a priori information 
available (the ( )s

jL x−  is zero) and the output from the 
algorithm is calculated based on channel values. If an 
incorrect value of Lc is used the decoder will make more 
decision errors and the extrinsic information from the output 
of the first decoder will have incorrect values, for the soft 
channel inputs [16]. 

In the SOVA algorithm the channel values  are used to 

recursively calculate the metric 

*
c jL y

jM  for the current state s 

along a path from the metric 1jM −  for the previous state along 
that path added to an a priori information term and to a cross-
correlation term between the transmitted and the received 
channel values, *

jx  and *
jy , using (27). The channel reliability 

factor  is used to scale this cross-correlation. When we use cL
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an incorrect value of , e.g.  , we are scaling the 
channel values applied to the inputs of component decoders 
by a factor of one instead of the correct value of . This has 
the effect of scaling all the metrics by the same factor, see (8), 
and the metric differences are also scaled by the same factor, 
see (9). This scaling of the metrics do not affect the path 
chosen by the algorithm as a survivor path or as a Maximum 
Likelihood (ML) path, so the hard decisions given by the 
algorithm are not affected by using an incorrect value of Lc 
[16]-[18].  

cL

( )jB s

1cL =

cL

c

In the iterative decoding with SOVA algorithm, in the first 
iteration we assume that no a-priori information about the 
transmitted bits is available to the decoder (the a-priori 
information is zero), the first component decoder takes only 
the channel values. If channel reliability factor  is incorrect, 
the channel values are scaled, the extrinsic information will be 
also scaled by the same factor land the a-priori information for 
the second decoder will also be scaled. Because of the 
linearity of the SOVA, the effect of using an incorrect value of 
the channel reliability factor is that the output LLR from the 
decoder is scaled by a constant factor. The relative importance 
of the two inputs to the decoder, the a priori information and 
the channel information, will not change, since the LLRs for 
both these sources of information will be scaled by the same 
factor. In the final iteration, the soft outputs from the final 
component decoder will have the same sign as those that 
would have been calculated using the correct value of . So, 
the hard outputs from the turbo decoder using the SOVA 
algorithm are not affected by the channel reliability factor 
[16]. 

L

cL

 The Max-Log-MAP algorithm has the same linearity that is 
found in the SOVA algorithm. Instead of one metric, now two 
metrics  and  are calculated, for forward and 
backward recursions, see (17), (18) and (19), were are used 
only simple additions of the cross-correlation of the 
transmitted and received symbols. But, if an incorrect value of 
the channel reliability value is used, all the metrics are simply 
scaled by a factor as in the SOVA algorithm. The soft outputs 
given by the differences in metrics between different paths 
will also be scaled by the same factor, with the sign 
unchanged and the final hard decisions given by the turbo 
decoder will not be affected. 

( )jA s

The Log-MAP algorithm is identical to the Max-Log-MAP 
algorithm, except for a correction term ( )( ) ln exp( )f δ = −δ1+ , 
used in the calculation of the forward and backward metrics 

 and ( )jA s ( )jB s ,  and the soft output LLRs. The function 
( )f δ  is not a linear function, it decreases asymptotically 

towards zero as δ  increases. Hence the linearity that is 
present in the Max-Log-MAP and SOVA algorithms is not 
present in the Log-MAP algorithm. This effect of non-
linearity determines more hard decision errors of the 
component decoders if the channel reliability factor  is 
incorrect, and the extrinsic information derived from the first 
component decoder have incorrect amplitudes, which become 

the a-priori information for the second decoder in the first 
iteration. Both decoders in subsequent iterations will have 
incorrect amplitudes relative to the soft channel inputs. 

cL

In the iterative decoding with Log-MAP algorithm, the 
extrinsic information exchange from one component decoder 
to another, determines a rapid decrease in the BER as the 
number of iterations increases. When the incorrect value of 

 is used, no such rapid fall in the BER occurs due to the 
incorrect scaling of the a priori information relative to the 
channel inputs. In fact, the performance of the decoder is 
largely unaffected by the number of iterations used. 

cL

For wireless communications, some of them modeled as 
Multiple Input Multiple Output (MIMO) systems [23], the 
channel is considered to be Rayleigh or Rician fading channel. 
If the Channel State Information (CSI) is not known at the 
receiver, a natural approach is to estimate the channel impulse 
response and to use the estimated values to compute the 
channel reliability factor  required by the MAP algorithm 
to calculate the correct decoding metric. 

cL

In [20], the degradation in the performance of a turbo 
decoder using the MAP algorithm is studied when the channel 
SNR is not correctly estimated. The authors propose a method 
for blind estimation of the channel SNR, using the ratio of the 
average squared received channel value to the square of the 
average of the magnitudes of the received channel values. In 
addition, they showed that using these estimates for SNR 
gives almost identical performances for the turbo decoder to 
that given using the true SNR.  

In [8], the authors proposes a simple estimation scheme for 
 from the statistical computation on the block observation 

of matched filter outputs. The channel estimator includes the 
error variance of the channel estimates. In [24], is used the 
Minimum Mean Squared Error (MMSE) estimation criterion 
and is studied an iterative joint channel MMSE estimation and 
MAP decoding. 

cL

None of above works requires a training sequence with 
pilot symbols to estimate the channel reliability factor. Other 
studies used pilot symbols to estimate the channel parameters, 
like [22] and [25].   

In [22] it is shown that it is not necessary to estimate the 
channel SNR for a turbo decoder with Max-Log-MAP or 
SOVA algorithms. If the MAP or the Log-MAP algorithm is 
used then the value of  does not have to be very close to the 
true value for a good BER performance to be obtained.  

cL

 

V. SIMULATION RESULTS 
This section presents some simulation results for the turbo 

codes ensembles, with MAP, Max-Log-MAP, Log-MAP and 
SOVA decoding algorithms. The turbo encoder is the same for 
the four decoding algorithms and is described by two identical 
RSC codes with constraint length 3 and the generator 
polynomials  and . No tail bits 
and no puncturing are performed. The two constituent 
encoders are parallel concatenated by a classical block 
interleaver, with dimensions variable according to the frame 

21fG = + D D 21bG D= + +
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size. The binary input message is randomly generated and it is 
divided into frames of length k. The coded symbols are BPSK 
modulated and transmitted over an AWGN channel with 
signal to noise ratio Eb/N0 variable between 0 ÷ 4 dB and 
without fading (the fading amplitude is a = 1 ). 

A fixed number of iterations are used for the iterative 
decoding process. The Bit Error Rate (BER) is computed over 
50 or 500 different frames. For comparison, the BER for 
uncoded system is calculated and plotted in the figures. 

All the simulation parameters are mentioned in the figure 
caption. 

A.   Decision based on a posteriori information for MAP 
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Fig. 4.  BER(Eb/N0) performance for different decoding steps  

and decision based on a posteriori information.  
(frame size 4900 bits, 70x70 block interleaver, 500 frames, MAP). 

In the iterative MAP decoder, the information exchange 
between one decoder and another determine a rapid decrease 
in BER of the turbo decoder as the number of decoding steps 
increase, see Fig. 4. The decisions about the transmitted bits 
are based on the a posteriori information after 1, 2, 3 and 10 
decoding steps, which corresponds to the outputs of decoder 1 
at iteration 1, decoder 2 at iteration 1, decoder 1 at iteration 2 
and decoder 2 at iteration 5.  

 
B.   Decision based on extrinsic information for MAP 
If the decisions are based only on extrinsic information the 

simulation results for the MAP decoder are presented in Fig. 
5. The performances obtained for this kind of decision are 
worse, with 0.5 dB for BER = 10-4 and for 3 decoding steps, 
compared with the decisions based on a posteriori 
information, from Fig. 4. 

 
C.   Incorrect values for channel reliability factor 
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Fig. 6 shows the performance of turbo decoder using a one 
and two iterations for the iterative decoder and the MAP 
algorithm for the constituent decoders. For the channel 
reliability factor Lc we suppose two cases: firstly, the Lc is 
calculated exactly using the known channel SNR at the 
decoder, and hence the correct value of Lc is used. Secondly, 
the real value of Lc is not known at the decoder and we 
consider a value of  Lc = 1, which corresponds to a value of  
Eb/N0 of -3 dB for the channel SNR. For MAP algorithm, the 

performances of iterative turbo decoder are drastically 
affected by the value of Lc used. If the incorrect value of Lc is 
used, no such rapid fall in the BER occurs and an increased 
number of iterations is needed for a certain BER. For a fixed 
value of Lc, correct or incorrect, if the number of iterations 
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Fig. 5.  BER(Eb/N0) performance for different decoding steps  1 iteration and decision based on extrinsic info.  
(frame size 4900 bits, 70x70 block interleaver, 500 frames, MAP). 

2 iterations 

Eb/N0 (dB)
Fig. 6.  BER(Eb/N0) performance for different cL  values. (frame 

size 2000 bits, 40x50 block interleaver, 50 frames, MAP).
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increases, the BER decreases. For higher Eb/N0 (> 2.5 dB) and 
two decoding iterations, the BER dependence tends to be flat, 
because of a small number of bits (2000 bits x 50 fram

0.00001

0.0001

0.001

0.01

0.1

1

4 6 8 10 12 14

es = 
10

D.   Log-MAP, Max-Log-MAP and SOVA performances 

omplexity, so the MAP algorithm is not present in 
this figure.  

at BER = 10-4, independently of the decoding 
ite
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bu
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va

 algorithm perform about 1dB better 
than SOVA algorithm. 

0000 bits) which were coded in the simulated system. 

comparison 
Fig. 7 shows the performances of a turbo decoder using 

different decoding algorithms (Log-MAP, Max-Log-MAP and 
SOVA) for a different number of iterations. As we discussed 
in Section IV, the decoding performances for the MAP and 
Log-MAP algorithms are the same, with some differences 
only in the c

MAP

SOVA

B
it 

Er
ro

r R
at

e 

L

 
As the number of iterations increases from 1 to 5 iterations, 

the Log-MAP algorithm performs significantly better (about 1 
dB at BER=10-4). Similar results are obtained when using the 
Max-Log-MAP or SOVA algorithms. Also, it can be seen that 
the Max-Log-MAP and SOVA algorithms gives a degradation 
in performance of 0.3 dB, respectively 0.5 dB, compared to 
Log-MAP, 

rations.  
So, the Log-MAP algorithm offers better error correction 

performances than the Max-Log s, 
t with increased complexity. 

E.   The dependence of BER on channel reliability factor 
The simulation results for frame sizes k = 200 and k = 5000, 

in Fig. 8, concludes that the MAP an ances 
[4] H. Jin, R. J. McEliece, “Coding Theorems for Turbo Code Ensembles”, 

IEEE Trans. Inform. Theory, vol. 48, No. 6, pp. 1451-1463, June 2002. 
ries with channel reliability factor Lc.  
For Lc < 6 dB the BER is almost the same. For BER 

between 6 dB and 10 dB, the differences between the 
algorithms, for a fixed frame size, increases. If the Lc is bigger 
that 10 dB, the difference remain constant and the dependence 
BER(Lc) tend to be flat. Also, both algorithms work better for 

e sizes. For the same frame size, and for 
4BER 10−= , the MAP

bigger fram

 

VI. CONCLUSION 
In this paper we have described the turbo coding system, 

with two parallel concatenated RSC codes at the transmitter 
side and with the iterative decoding which uses the MAP, 
Log-MAP, Max-Log-MAP and SOVA algorithms for 
constituent decoders, at the receiver side and we have 
analyzed and simulated the reliability of decision for each 
decoding algorithm.  

It is shown that the hard decision based on a posteriori 
information is better than on extrinsic information. Also, the 
BER decrease as the number of decoding iterations increase. 

Using a correct value of channel reliability factor, the BER 
performance increase and a decreased number of iterations is 
needed for a certain BER. Finally, is analyzed the influence of 
channel reliability factor on the BER performances of turbo 
coded system. 
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