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Abstract—In this paper the authors consider a general method, 
based on time domain samples for spectral manipulation of the time-
limited signals. In this direction, all of the needed formulas for 
practical periodic time-limited interpolation in two cases of low pass 
and band pass has been derived. The work begins with dividing an 
arbitrary signal in time domain into the time limited non-overlapping 
frames, then each frame is processed to find the effective maximum 
frequency or equivalently the minimum number of samples that 
satisfy some error criteria. To find the optimum sampling frequency 
we used periodic interpolation for resampling and reconstruction, and 
suitable zero finding of the discrete variable nonlinear equation by 
combination of the time and frequency computation to increase the 
speed of convergence. 
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I.  INTRODUCTION 

T he Shannon's sampling theorem is based on the constant 

uniform period of sampling. If we have a signal with such 
slow local frequency variation, in some of its parts, we can 
expect to re-sample, and reconstruct these certain parts with a 
less number of data. If this idea and process works 
successfully, we could remove the redundant data, and 
consequently achieve to the data compression . 

The general view of this process leads to the non-uniform, 
or irregularly spaced sampling, and reconstruction. Shannon 
had remarked roughly this complex general type of sampling 
in the original work on sampling [1].However, the first regular 
statement  about this type of sampling attributed to Caushy[1].  
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The Yen's theorems are the first analytical work in some 
special cases on the non-uniform sampling[2]. The first 
general, and analytical manipulation, could be seen in the 
Beutler work, that marks a suitable statement, interpretation, 
and proof of the theorem known as a "folk theorem" [3].  
Higgins tried to change the form of Butler's formula similar to 
the usual cardinal series as in the Shannon reconstruction 
formula, about ten years after Butler [4]. Others handled, and 
worked in some aspect on the non-uniform sampling, as in the 
application on tomography [5], using the transformation 
method [6], applying the theory of almost periodic functions 
[7], application in the reconstruction of the image from 
irregularly spaced samples [8], interpolation from non-uniform  
samples [9], and so on. However these works generally are 
limited to the special cases. The other powerfully, applied, and 
analytical approach to the non-uniform sampling is achieved 
by Feichtinger, and Grochening [10], which mentions its 
application in the reconstruction of band-limited image from 
non-uniform sampling values [11]. 
The results of the investigation on the above paper, theorems, 
and applications show that the non-uniform sampling theorem 
is not planned and designed for removing the redundant data, 
and data compression. However some engineers were 
interested in this type of sampling because of some 
difficulties, and problems were encountered in the nature and 
practice [5,6,7,10,11].However, our aim is redundancy 
cancellation by non-uniform sampling, so we considered the 
piece-wise uniform distribution of data, and in fact we divided 
an arbitrary signal to the time-limited non-overlapping 
sections, and each section as a frame. Then with defining, and 
finding effective maximum frequency for each frame, we tried 
to sample, and reconstruct the time-limited parts 
independently from the adjacent frames. 
Therefore in the first step we considered the sampling and 
interpolation of each frame. Then we studied the methods for 
reducing the time of convergence, and finally we applied the 
results on the total signal. 
 

II. - EFFECTIVE MAXIMUM FREQUENCY 
We assume that the original signal for processing is the digital 
samples produced by suitable sampling from the analog signal 
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and stored in the vector ( )X . We denote the sampling 

frequency by , and the duration of the time limited 
frame by , which is contained by ( , uniformly spaced 
sampling values in the time interval 

1
1 1( s sf T −= )

0( )T )N

0[0, )I T= , such that: 
 

1( 1) , 1,...,n st n T n N= − =      (1) 

0 1 , ( ) ( )s nT N T X n X t= × =      (2) 
 
The time limited frame suffers from the reciprocal spreading 
effect [12], therefore we relatively reduced this effect to bound 
the maximum frequency by spreading each frame in the time 
domain. Frame spreading is achieved by considering a time 
limited part as single period of the periodic signal. Now in 
order to define and compute the effective maximum frequency 
( me )f  for each frame required some error criteria, such as 
Mean Square Error (MSE), Signal to Noise Ratio (SNR) or 
Percent Root mean square Difference (PRD). In fact we 
consider PRD as MSE that is normalized by the signal power. 
If the vector  contained the original samples and the 
vector  denoted the reconstructed signal,. we will have: 

( )p
( )q

 

[ ]2
1

( , ) ( ) ( )
N

i

SSE p q p i q i
=

= −∑
     (3) 

( ) ( ,0)SS p SSE p=       (4) 

[ ]( , ) 100 ( , ) ( )PRD p q SSE p q SS p= ×
    (5) 

( , ) ( , )MSE p q SSE p q N=      (6) 
[ ]( , ) 10 log ( ) ( , )SNR p q SS p SSE p q= ×     (7) 
( )20 2 logSNR PRD= × −⎡⎣ ⎤⎦      (8) 

( )20100 10 SNRPRD −= ×       (9) 
 
 
Now we consider the PRD criteria and define the new 
distribution of data in the interval ( )I   that is stored in the 
vector  as below: ( )Y
 
 

2( 1) , 1,...,m su m T m M= − =    (10) 
0 2 , ( ) ( )s mT M T Y m Y u= × =    (11) 

 
Let PRDM be a maximum allowable error in PRD, and ( )MZ  
denote the reconstructed vector for original N points vector 
( )X  by using the new M points distribution ( , and 
consider the following inequality to define effective maximum 
frequency for this frame: 

)mu

 
1( , ) ( , )M MPRD X Z PRDM PRD X Z −≤ <  

2,...,M N=      (12) 
1

2 22se me s s

2, 1 0 (s )for M f DC Level= ⇒ = −   (14) 
 

As mentioned earlier, we must apply the periodic feature to 
reconstruct ( )MZ . In other words, we require the periodic 
interpolation, discussed in the following section. 
 

III.  PERIODIC INTERPOLATION 
Let ( )f t  be a periodic band-limited function with period 

1
0 0(T f )−= , and the largest harmonic , so that we use the 

following interpolation formula [13]: 
( )n

 
2 1N n= +      (15) 

0sT T T N= =      (16) 
0 2 0fω π= ×      (17) 

1

0

( ) ( ) ( )
N

k

f t f kT p t kT
−

=

= × −∑
   (18) 

0

0

2
( )

2

tSin N
p t

tN Sin

ω

ω

⎡ ⎤⎛ ⎞×⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦=
⎛ ⎞× ⎜ ⎟
⎝ ⎠

     (19) 

 
But, as we can see from the above equations the number  
is always odd. This problem is unsuitable for our application, 
thus we will prove the above formula in the general case, and 
also will consider some important  features of our extracted 
formula. Remember the conventional Shannon's formula and 
follow the below equations for 

( )N

( )f t : 
 

( ) ( ) ( )
k

f t f kT h t kT
+∞

=−∞

= × −∑    (20) 

( )
( ) 2 c

s

Sin t
h t

t
ω

ω
=      (21) 

m c s m me c s mef f f f OR f f f f< < − ≤ ≤ −  (22) 

( ) ( ) ( )
2

FT

c

fh t H f T
f

←⎯⎯→ = ×Π    (23) 

 
Define , and use the periodic characteristic of ( )p t ( )f t , 
results 

0( ) ( )
i

p t h t iT
+∞

=−∞

= −∑     (24) 

1

0

( ) ( ) ( )
N

k

f t f kT p t kT
−

=

= × −∑    (25) 

0( ) ( ) ( )
i

p t h t t iTδ
+∞

=−∞

= ∗ −∑    (26) 

 

0f f f T M T−= × = = =    (13) 
( )∗  Stand for convolution operation. 
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0( ) ( ) ( )
i

P f H f f f ifδ
+∞

=−∞

⎡ ⎤
= × × −⎢

⎢ ⎥⎣ ⎦
∑ 0 ⎥   (27) 

0

cfM
f

⎢ ⎥
= ⎢ ⎥
⎣ ⎦

     (28) 

 
Where the  is defined as the greatest integer less than or 
equal to . 

r⎢ ⎥⎣ ⎦
( )r

 

1
0( ) ( )

M

i M

P f N f ifδ
+

−

=−

= × −∑    (29) 

01( )
M

jm t

m M

p t N e ω
+

−

=−

= × ∑     (30) 

( ) 2

1
2

2

p qq jkj

k p

q pSin
e e

Sin

θ
θ

θ

θ

+⎛ ⎞
⎜ ⎟
⎝ ⎠

=

⎡ − + ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣= ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ⎦   (31) 

( ) 0

0

2 1
2

( )

2

tSin M
p t

tN Sin

ω

ω

⎡ ⎤⎛ ⎞+ ×⎜ ⎟⎢ ⎥
⎝ ⎠⎣=

⎛ ⎞× ⎜ ⎟
⎝ ⎠

⎦    (32) 

 
To have independent samples' value, the two equations below 
must hold: 
 

( 0) 1 2 1p t N M= = ⇒ = +    (33) 

0( ) kp t kT ≠= 0=     (34) 
 
Therefore N must be odd, and we can show that for the odd N 
the second equation also holds. 
Now to find M in terms of N, we select the cut-off frequency 

,to be the average of the maximum and minimum 
allowable values, thus we will have: 
( )cf

 

0 02 2
c sf f NM

f f
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

    (35) 

0

0

2 1
2 2

( )

2

tNSin
p t

tN Sin

ω

ω

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥ + ×⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎝ ⎠⎣=
⎛ ⎞× ⎜ ⎟
⎝ ⎠

⎦    (36) 

 
Some of the characteristics and properties of the above 
formulae are: 
 

1
( 0) 11

N odd
p t

N even
N

=⎧
⎪= = ⎨
+ =⎪⎩

   (37) 

( )
⎪⎩

⎪
⎨
⎧

=
−

=
=

≠ evenN
N
1

oddN0
)mT(p m

0m
  (38) 

( ) ( ) , 0,1,..., 1,
k odd k even

f kT f kT k N N even
= =

= = − =∑ ∑  (39) 

∫ −−=
0T

mn dt)mTt(p)nTt(pI   (40) 

( )[ ]TnmpTI mn −×=⇒    (41) 
 
As a result, we deduced that if N is an odd integer the set  
 
{ }1N,...,1,0k,)kTt(p −=−  
 
construct an orthogonal set. Also we can exactly show the 
following relations: 
 
 

[ ] [ ]{ }22 )kT(fE)t(fPower ==   (42) 

{ }( ) ( )DC f t E f kT= =     (43) 
 
Where: 
 

∫×=
0T0

dt)t(
T
1)t( ξξ    (44) 

{ }
1

0

1( ) ( )
N

k

E kT kT
N

ξ
−

=

= ×∑ξ    (45) 

 

IV.  BAND-PASS INTERPOLATION 
The periodic interpolation can be extended to the band-pass 
case. We briefly consider two types of band-pass 
interpolation, first order and second order [14].Let x tbp ( ) 
be a band-pass function such that the frequency component is 
vanished out of the frequency range ( )f f fl < h< . These 
two types of interpolation organize as below: 
 

A. - FIRST ORDER BAND-PASS 
INTERPOLATION 

 

max, 0 l

h l

f
k Integer k k

f f
⎢ ⎥

= ≤ ≤ = ⎢ ⎥−⎣ ⎦
   (46) 

2
1

h
s

2 lf f
f

k k
≤ ≤

+
     (47) 

l s clf kf f fl− + ≤ ≤     (48) 
( 1)h ch hf f f k fs≤ ≤ − + +     (49) 

( ) ( ) ( )bp bp bp
n

x t x nT h t nT
+∞

=−∞

= ∑ −    (50) 
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2[ ( ) ( )]
( ) ch cl

bp
s

Sin t Sin t
h t

t
ω ω

ω
−

=    (51) 

min
max

2 2
( )

1
1

h h
s

l

h l

f f
f

k f
f f

= =
+ ⎢ ⎥

+ ⎢ ⎥−⎣ ⎦

   (52) 

 

If the term l

h l

f
f f−

 is an integer number then 

 
min( ) 2( ) 2s h lf f f= − = Δf    (53) 

 
In this type of interpolation, generally we do not have the 
minimum possible number of independent samples. This fault 
is removed by the second order or exact band-pass 
interpolation, that is discussed in the following section. 
 

B.  SECOND ORDER BAND-PASS 
INTERPOLATION 

1
s hT f f− = = − lf     (54) 

( )r  satisfies 
,l u h u l sf f f f f rf≤ < = − +    (55) 

 
( k ) Must hold in the three following conditions: 
 

, 1, 2,.
( 1) s

nk n
r f

≠ =
+

..     (56) 

, 1, 2,.
s

nk n
rf

≠ = ..     (57) 

0k ≠       (58) 
2skγ ω=      (59) 

rβ γ=       (60) 
( 1)rα γ= +      (61) 

( ) ( )
( )

( )
h u

s

Cos t Cos t
t

Sin t
ω α ω

ω α
− − −

Φ =
α

                   (62) 
( ) (

( )
( )

u l

s

Cos t Cos t
t

Sin t
)ω β ω

ω β
− − −

Ψ =
β

               (63) 
( ) ( ) ( )S t t t= Φ +Ψ     (64) 

( ) [ ( ) ( ) ( ) ( )]bp bp bp
n

x t x nT S t nT x nT k S nT k t
+∞

=−∞

= − + +∑ + −

 
     (65) 

 
 
In practice data is biased to a DC-Level, so that we remove 
this DC-Level and then consider the band-pass periodic 
function as below: 
 

0( ) ( )
q

bp n n
n p

x t A Cos n tω φ
=

= × × × +∑    (66) 

 
Define the minimum and maximum frequency by: 

0
1( )
2lf p f= −      (67) 

0
1( )
2hf q f= +      (68) 

 
Now we can extend periodic interpolation  to the band-pass 
case in the two following sections: 
 

C.  FIRST ORDER PERIODIC BAND-PASS 
INTERPOLATION 

 
 

0sf Nf=       (69) 

2
s
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k f

f
×
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s
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k
f

f+ ×
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0
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L
f

⎢ ⎥
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⎣ ⎦

     (72) 

0
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M

f
⎢ ⎥
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0 0
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(2 1) (2 1)
2 2( )

2 2

t tSin M Sin L
t

t tN Sin N Sin

ω ω

γ
ω ω

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ × − ×⎪ ⎪⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦= −⎨ ⎬
⎛ ⎞ ⎛ ⎞⎪ ⎪× ×⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 (74) 

1

0

( ) ( ) ( )
N

bp bp
n

x t x nT t nγ
−

=

= × −∑ T    (75) 

 
 

D.   SECOND ORDER BAND-PASS 
PERIODIC INTERPOLATION 

First choose the suitable parameter, that is introduced in part 
B. 

2
1l l

l l s h
2

s s

f
f f rf f r

f f
≤ − + < ⇒ ≤ < +

f
  (76) 

2
1l

s

f
r

f
ξ ξ ξ= ⇒ ≤ < +     (77) 

1
Integer

r
Integer

ξ ξ
ξ ξ

=⎧
= ⎨ + ≠⎢ ⎥⎣ ⎦⎩

    (78) 

1
( 0.5) s

k
r f

=
+ ×

    (79) 

0( 1)s h lf f f q p f Nf0= − = − + =    (80) 

0
1(
2u l sf f rf rN p f= − + = − + )    (81) 

0
1( )
2uw rN p f w f= − ⇒ = +    (82) 

θ ω= 0 t      (83) 
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2 2( )
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Cos q Cos W
t

N Sin Sin

θ θα α
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⎡ ⎤ ⎡+ − − + −⎢ ⎥ ⎢⎣ ⎦ ⎣Γ =
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⎤
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⎝ ⎠

⎤
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( ) ( ) ( )g t t= Γ + Λ t     (86) 
1

0
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N

bp bp bp
n

x t x nT g t nT x nT k g nT k t
−

=
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V.  . PRACTICAL DIFFICULTIES 
In this part we focused on the LP-periodic interpolation, which 
can modify and extend to the BP case. Consider the (FIG.1) as 
a typical wave form for a basic frame. We reconstructed this 
frame by the following three important methods: MATLAB 
SPLINE, SHANNON and PERIODIC, in (FIG.2) through 
(FIG.4) respectively. All of them suffer from the tail effect 
that is unsuitably interpolated between the last new sample 
and the end of the frame. The fitness of the MATLAB 
SPLINE is nearly insufficient. The SHANNON method likes 
to vanish rapidly at the two ends of the time-limited part; 
because it supposes the zero samples at the two ends. The 
PERIODIC method smoothly varies such that to reach the first 
sample value at the end of the frame. Therefore the amount of 
the tail effect depends on the frame behavior. We tried to 
reduce this dependency of error and thus reduced the amount 
of error due to the tail effect that is discussed in the following 
section. 
 

VI. . TAIL EFFECT REDUCTION 
Various schemes could be considered to reduce the tail effect. 
We will select the simplest method which is acceptable and 
has high quality. If we spread one frame to the two or three 
frames by considering the mirror image signals at the end or 
two end sides of the original signals, the volume of 
computation will increase. Referring to the previous figures, 
we see that the tail effect considerably occurs between the end 
of frame ( ( ))X N , and the last new sample . In other 
words, the tail effect occurs in the interval (

( ( ))Y M
)J  : 

J u tM N= ( , )

] )

     (88) 
We thus decided to store the last sample in each frame, using 
this sample as a key data during the process of interpolation. 
In fact, after the conventional desirable interpolation is 
achieved in the interval ( [ ,I J u M− = 0 , we constructed 
signal by suitable interpolation in the interval ( )J . Consider 
Polynomial Interpolation for the end of frame. The auxiliary 
points for interpolation are the first and last sample in the 
interval ( )J , and all the new reconstructed points out of the 
interval ( )J , that is produced by conventional desirable 
interpolation that have good fitness and accuracy. 
We claim that the linear interpolation is the best and confident 
polynomial interpolation. Practically in each frame with any 

length, the duration of interval ( )J  is very small with respect 
to the total interval ( , so that any well-defined curve may be 
approximated by the line. On the other hand we will show by 
illustration and numerical values that increasing the order of 
polynomial generally could not decrease end error. Remember 
that as the order of polynomial increases, the behavior and 
shape of the variation becomes more complex. To illustrate 
the above statement we consider the (FIG.4) through (FIG.6) 
that was constructed by the periodic method as a desirable 
conventional interpolation. In figures 7, 8, and 9 we magnified 
the end of (FIG.4) through (FIG.6) respectively, and showed 
the end interpolation by three forms of polynomial: first order 
or Linear (Solid), second order (Dot), and third order(Dash 
dot), together with the original signal (Solid). The values of 
error in PRD are collected in the (TABLE.1). 

)I

Although in (FIG.8) we saw that the error due to the linear 
interpolation increased, but this increase is not so critical and 
important, and remember that the duration of interval ( )J  
against the total interval is (1 . Thus in general 
the linear interpolation in addition to the simplicity is a 
suitable case for our work as it will be seen when we apply our 
method to an arbitrary total signal at the following sections. 

00 / 4.35%)M =

 

VII. . PRD CURVE 
In this section we investigated the general shape and behavior 
of the typical PRD curve. In section II we saw that the 

( , )MPRD X Z  was a function of discrete variable ( )M  so that 
we denoted ( , )MPRD X Z  by the function   . Note that 
for computing the , first we resampled the original 
vector  to produce vector ( , and then interpolated the 
new vector  to extract the constructed vector 

( )PRD M
( )PRD M

( )X )Y
( )Y ( )MZ , and in 

these procedures we applied the tail effect reduction, 
quantization, and clipping process, if necessary, so that due to 
the interpolation processes the time of computation was 
relatively high. Now, consider the (FIG.10) as a typical PRD 
curve. The results of experimental works showed that the PRD 
curve generally decreased, except at the beginning when the 
curve had an oscillatory variation. At the critical value of PRD 
existed a knee in the curve where  we chose the optimum 
value (3 10 30.46 20)PRDM SNRM< < ⇔ > > . In fact finding 
the optimum value for ( )M  or, in other words, computing the 
effective maximum frequency equivalent to solve the 
following nonlinear discrete type equation: 
 

( , ) ( )MPRD X Z PRD M PRDM= =    (89) 
At the above equation we named the nearest ( )M  that 
produces ( )PRD M PRDM≤  as a "ZERO" of the nonlinear 
discrete type equation. 
 

VIII. . INCREASING THE SPEED OF CONVERGENCE 
As known, there are some classical methods for zero finding 
of the continuous nonlinear equation such as: Bisection, False 
Position, Newton Raphson Slope Search, Secant, etc.[15]. The 
direct applying of this method to discrete function  ( )PRD M

INTERNATIONAL JOURNAL OF COMMUNICATIONS 
Issue 2, Volume 2, 2008

159



produces the problem of divergence, oscillation, and 
instability. Therefore, we first modified the above methods by 
suitable programming, and then used nonlinear bisection 
which has extracted by experimental works and the 
information on the behavior of the PRD curve in the vicinity 
of the critical region at the knee part of the PRD curve. 
Marginal points: 
 

 { } { }, ( ) , , ( )LEFT L PRD L RIGHT R PRD R= =   (90) 
 
Nonlinear function for bisection:  
 

2( ) ( ) ( )PRD M PRD R A M R− = × −    (91) 
 
Constant ( )A  computed by the left point. 
 

A.  FREQUENCY DOMAIN COMPUTATION 
As for the time PRD, we defined frequency domain PRD ,say 
FPRD, and used the advantages of the FFT computation to 
achieve the FPRD curve in the frequency domain, to find near 
approximation to the effective maximum frequency or 
equivalently optimum ( )M .Since the PRD and FPRD curves 
are different we can not extract optimum value solely by the 
frequency domain, however the frequency domain is able to 
produce a good estimation of near marginal point, that could 
be handled by the time process to reach the optimum value. 
 

B.  COMBINATION OF TIME AND FREQUENCY 
COMPUTATIONS 
As mentioned above, we combined the frequency and time 
domain computation to reach the optimum response as soon as 
possible. This procedure started with some initialization for 
time and frequency and then followed by the procedure such 
as the simplified version that is shown  by the flow chart in 
(FIG.13) to reach the end and then the net time domain 
analysis continued. 

IX.  SIMPLE EXAMPLE 
We are now in a position to apply our method on the total 
signal. We considered the (FIG.11) as a simple example, and 
defined the following parameters: 
#Samples= Number of Samples 
SPF= #Samples per each Frame 
#Frames= Number of Frames 
SPLF= # of Samples per Last Frame 
CR=Compression Ratio=(#Samples after Removing 
Redundancy)/(#Samples) 
PRDM=PRD-MAX (Let PRDM=7, SNRm=SNR-MIN=23.1) 
T=Total Time of Computation in Second 
The (FIG.12) show the reconstructed wave-form together with 
the absolute error signal for (FIG.11), and we see that the 
ability of method especially in keeping and preserving the 
edges of each frame and consequently the high performance 
and ability of applying the method on any arbitrary signal. 
Some of the important details are collected in the (TABLE.2). 

X.  OTHER RESULTS 
In this section we introduced the results of applying our 
method to some known signals in the  "Windows 3.1" such as 
Ding, Tada, Chord, and Chimes. The results are collected in 
the following table (TABLE.3). 

XI.  CONCLUSION 
All of the results show that the method is powerful and works 
successfully. We guess as well as suggest that the suitable 
combination of this method by knowledge of the source 
information could produce new results. We also suggest the 
generalization of this procedure to the two dimensional spaces 
and specially for image processing. However all of the above 
suggestions need huge amounts of experimental work, which 
we hope will prove to be valuable. 
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(TABLE.1): The results and values of error in PRD for the figures 4 
to 9 

The Values of Error in PRD Solid Dot Dash Dot 

FIG End of (N,M) Periodic Linear Order 2 Order 3 

7 FIG.4 191,19 8.7075 3.4632 3.6832 5.3683 

8 FIG.5 229,23 8.1310 8.8065 8.1294 8.1150 

9 FIG.6 191,15 26.2650 9.3057 11.2997 14.2108 
 
 
 
 
 

(TABLE.2): The numerical results for different sample values(M) 
and the error for each  frame(PRD) for the Fig.11 

PRDM=7, #Samples=1280, SPF=128, SPLF=0, T=12 

CR=6.2, PRD=3.4, SNR=29.4 

Frame# 1 2 3 4 5 6 7 8 9 10 

M 11 9 1 105 41 7 3 1 2 4 

PRD 5.5 3.6 0.7 1.9 0.8 6.4 1.6 0.0 2.3 5.0 

 

 

 

 
(TABLE.3): The numerical results obtained by applying our method 
to some known audio signals such as Ding, Tada, Cord and Chimes 

RESULTS FIG.11 Ding Tada Chord Chimes 

#Samples 1280 11554 27760 24938 15876 

SPF 128 128 128 128 128 

#Frames 10 91 217 195 125 

SPLF 0 34 112 106 4 

T 11 16 108 23 25 

CR 6.2 14.4 5.3 17.2 12.7 

PRD 3.4 3.97 6.1 3.3 29.5 

SNR 29.4 28.02 24.34 29.5 26.4 
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FIG.1 Periodic interpolation with N(Initial Samples)=191 , M(Test 

Samples)=19  
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FIG.2 Reconstructed signal by interpolation with spline 

method(dotted curve) and error curve(solid) 
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FIG.3 Reconstructed signal by shannon method(dotted curve 
PRD=9.1) and error curve(solid) 
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FIG.4 Reconstructed signal by periodic interpolation 

method(PRD=8.7 , dotted curve) and error curve(solid) 
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FIG.5 Periodic interpolation method with parameters: 
B(M,N)=(229,23), PRD=8.1 and the corresponding error 

curve(dotted) 
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FIG.6 Periodic interpolation method with new Parameters: 

C(M,N)=(191,15), PRD=26.3 and the corresponding error curve 
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FIG.7 Corresponding to Fig.4: Comparison of different interpolation 
methods: linear(solid), 2nd order(dotted curve), 3rd order(dashed-dot 

curve), original (solid)   
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FIG.8 Corresponding to Fig.5: comparison of different interpolation 
methods in periodic interpolation linear(solid) 2nd order(dotted), 3rd 

order(dashed-dot), original(solid) 
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FIG.9 Corresponding to Fig.6: comparison of different interpolation 

methods in periodic interpolation linear(solid). 2nd order(dotted), 3rd 
order(dashed-dot), original (solid) 
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FIG.10 Root mean square difference(PRD)curve 
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FIG.11 Original(test) audio signal 
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FIG.12  Reconstructed test signal and  

the  corresponding error curve 
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