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Abstract— In this paper, a numerical investigation of raised-

cosine sampled chirped fiber Bragg grating (SCFG) has been 
presented. This multi channel filter is modeled by coupled mode 
theory and simulated by transfer matrix method. The optical period 
changes linearly at each section of the grating according to a negative 
period variation. To reduce ripples and side lobes, a raised-cosine 
apodization is applied. SCFG is proposed for the purpose of 
dispersion management in dense wavelength division multiplexing 
systems. Numerical results show that SCFG presents five channels in 
a bandwidth of 0.6 nm and with a dispersion of -1400 ps/nm. The 
wavelength spacing between two neighboring channels is 0.8 nm.

Keywords— Sampled chirped fiber grating, dispersion 
compensation, wavelength division multiplexing.

I. INTRODUCTION

Degradation of transmitted signals due to chromatic 
dispersion is one of the major limiting factors in long haul 
optical communication links, since transmission rates are 
constantly increasing and the loss of optical fiber becomes 
lower. Several techniques have been proposed to achieve 
dispersion compensation and pulse recompression as 
prechirped pulse transmission or dispersion shifted fibers. 
However, the first one does not cancel the dispersion 
completely, and the second one requires modifying existing 
fiber links. In recent years, there has been increasing interest in 
dispersion compensating fiber Bragg gratings because they are 
entirely passive and their size, cost and fiber compatibility 
make them very attractive devices [1].

The chirped fiber grating (CFG) has been successfully used 
to provide the necessary dispersion compensation in dispersed 
managed systems. However, in a wavelength division 
multiplexing (WDM) system, each channel must have its own 
CFG for dispersion compensation. The sampled chirped fiber 
grating (SCFG) [2] has brought forward. Comparing with 

CFG, it has the same length, but can compensate several 
WDM channels simultaneously. SCFG has a great prospect for 
dispersion compensation.

II. THEORY AND FUNDAMENTALS OF FIBER BRAGG 

GRATINGS

The feasibility of fabricating refractive index grating was 
discovered and reported by Hill et al. in 1978 [3]. 
Subsequently, Meltz et al. devised a method to control the 
fabrication of grating using UV laser [4]. Basically, when a
germanium-doped silica core fiber is exposed to ultraviolet 
(UV) radiation (with wavelength around 240 nm), it results in 
a permanent change in the refractive index of the germanium-
doped region, due to the photosensitivity nature of the fiber
and, using such an exposure, it is possible to obtain refractive 
index changes by factors as large as 10-3 in germanium-doped 
silica fiber. If the fiber is exposed to a pair of interfering UV 
beams as shown in Fig.1, then in regions of constructive 
interference which correspond to high UV intensity, the local 
refractive index will increase [5].
  At the same time, in regions of destructive interference, here 
the intensity of UV light is negligible, there is no index 
change. Therefore, an exposure to an interference pattern will 
result in a periodic refractive index modulation along the 
length of the fiber, the period of modulation being exactly 
equal to the spacing between the interference fringes [5].
Refractive index modulation is represented by [6]

Fig. 1. UV beams on optical fiber through a phase mask
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Where  zyxn ,,


is the average refractive index of the core, 

 zyxn ,, is the modulation of the refractive index, Λ is the 

Bragg period and  z is the grating phase.

A small amount of incident light is reflected at each periodic 
refractive index change. The entire reflected light waves are 
combined into one large reflection at a particular wavelength 
when the strongest mode coupling occurs. This is referred to as
the Bragg condition, and the wavelength at which this 
reflection occurs is called the Bragg wavelength. Only those 
wavelengths that satisfy the Bragg condition are affected and 
strongly reflected. The reflectivity of the input light reaches a 
peak at the Bragg wavelength. The Bragg grating is essentially 
transparent for incident light at wavelengths other than the 
Bragg wavelength where phase matching of the incident and 
reflected beams occurs [7].       Bragg wavelength λB is given 
by [7]

 effB n2                                                                      (2)

Where neff  is the effective refractive index. This is the
condition for Bragg resonance. From equation (2), we can see 
that the Bragg wavelength depends on the refractive index and 
the grating period [7].

The effective  refractive index neff  and Bragg period Λ are 
constant for the uniform Bragg grating. Fig. 2 shows the 
reflectance of the uniform Bragg grating, with the following 
parameters: neff = 1.447, L= 1 cm, δn= 0.0004.

The fiber Bragg grating has the advantages of a simple 
structure, low insertion loss, high wavelength selectivity, 
polarization insensitivity and full compatibility with general 
single mode communication optical fibers [8].

III. MODELING OF FIBER BRAGG GRATING

We have chosen Coupled Mode Theory (CMT) for the 
analysis and modeling of fiber Bragg gratings because it is 
straight forward, intuitive and one of the most important tools 
to understand the main optical properties of gratings. Besides,
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                Fig.2.Reflectance of uniform fibre Bragg grating

it gives quantitative information about diffraction efficiency 
and spectral dependence of fiber gratings and can model with a 
high level of accuracy the optical properties of interest [9].

The CMT theory leads to a pair of differential coupled 
equations that define the reflectivity of the structure, that can 
be computed following two different approaches, direct 
numeric integration or piecewise-uniform techniques. We have 
chosen the second one, known as Transfer Matrix Method, 
because it is simple to implement, provides sufficient accuracy 
and it is the fastest method, what is a very important constraint 
in this type of modeling applications [9].

The basic idea of the coupled-mode theory is that the 
electrical field of the waveguide with a perturbation can be 
represented by a linear combination of the modes of the field 
distribution without perturbations.

The transverse component of the electric field at position z 
in the perturbed fiber can be described by a linear 
superposition of the ideal guided modes of the unperturbed 
fiber, which can be written as [6]

       
j

jjt tzyxEtzyxEtzyxE ,,,,,,,,,


                  (3)

The coupling coefficient k(z) and the local detuning σ^(z) 
are two important parameters in the coupled mode equations 
[10]. They are fundamental parameters in the calculation of the 
spectral response of the fiber Bragg gratings. The general 
(DC) self coupling coefficient σ^(z) can be represented by [10]
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d
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12
                                                      (4)

Where  
dz

d
2

1 describes a possible chirp of the grating period,  

 is the grating phase and effn is the refractive index change. 

The detuning  is represented by [10]
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Where D is the design wavelength for Bragg reflectance.

The coupling coefficient  zk   is written by [10]

   vzgnzk eff



                                                               (6)

Where  zg is the apodization function, and v is the fringe 

visibility.
A non-uniform fiber Bragg grating can be divided into many 

uniform sections along the fiber. The incident light wave
propagates through each uniform section i that is described by 
a transfer matrix Fi. For the structure of the fiber Bragg 
grating, the matrix Fi can be described as [10]
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Where k is described by equation (6), ̂ is described by 
equation (4) and B is represented by [11]

 2222    kkB                                                    (8)
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 2222    kkiB                                                  (9) 

A. Group delay and dispersion

The group time delay and dispersion of the grating can be 
obtained from the phase information of the reflection 
coefficient.
The delay time p for light reflected in a grating is defined as 

follows [10]
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The dispersion pd (in ps/nm ) is defined as follows [10]
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IV. CHIRPED FIBER BRAGG GRATING

A chirped Bragg grating is a grating that has a varying 
grating period. There are two variables that can be changed to 
obtain a chirped grating: one is to change the Bragg period; 
another is to change the refractive index along the propagation 
direction of the fiber.

Fig. 3  shows a linear chirped Bragg grating. In this case, the 
period of the grating varies linearly with the position. This 
makes the grating reflect different wavelengths (or 
frequencies) at different points along its length. Changing the 
refractive index has the same effect as changing the period 
along the z -direction. This means the optical period is 
changed even though the physical period of the grating is 
fixed. So these two variables can be merged, and described by 
one variable.

Fig. 4 shows a chirped grating, designed from N sections 
each one with different chirp. The length of each section l
depends on the total length of the grating and the number of 
sections. In our work, the refractive index is changed in each 
section linearly.

Fig.3. Linear chirped Bragg grating

                  Fig.4. Chirped grating with linear change in the refractive index

The phase term in equation (4) for a linear chirped grating is
[10]
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          Where 
dz

d d is the chirp variable, and b is the rate of change of 

the refractive index in each section.
Fig. 5 shows the reflectivity and time delay of two chirped 

gratings with changed chirp variable
dz

d d . If the chirp variable

is positive, the period of the linear chirped grating increases 
along the propagation direction. On the other hand, if it is 
negative, the period of the linear chirped grating reduces along 
the propagation direction.

In a fiber with negative period variation (negative 
dispersion), we remark that higher wavelength penetrates into 
the grating more deeply and delays more time after to be 
reflected. Therefore, in a fiber with positive dispersion higher 
wavelength makes a short delay to be reflected at each section 
of the grating.
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To increase the bandwidth of a grating (i.e negative 
dispersion) and at the same time the reflectivity peak, we 
should increase the refractive index change effn (Fig. 6). 

Another solution for increasing the negative dispersion of a 
chirped grating by keeping the reflectivity peak constant; is to 
increase its total length (Fig. 7).

V. APODIZED FIBER BRAGG GRATING

The refractive index change is constant in uniform fiber
Bragg gratings. The reflectance spectrum of a finite-length 
Bragg grating with a uniform modulation of the refractive 
index is accompanied by a series of side lobes at the adjacent 
wavelengths. It is very important to minimize and, if possible, 
eliminate the reflectivity of these side lobes [12].

From all figures showed above, we remark that the 
reflectivity spectrum presents side lobes and group delay 
presents some ripples. These features should be improved for 
application in communication systems and especially in 
dispersion compensation applications. One method is by using 

apodization [10]. Apodization can be achieved by a contoured 
exposure to UV light to reduce the refractive index excursions 
towards both ends of the grating.

The effect of the apodization in the models of the Bragg 
grating can be represented by using a z -dependent function 
g(z) in the refractive index [13].

The refractive index of an apodized Bragg grating can be 
written as
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Where n is the depth of the modulation, and  zg is the 

modulation function (also called the apodization function). 
Generally, this function can be gaussian, raised cosine, sinc, 
blackman, hamming, Kaiser etc. The apodization function is 
  1zg for unapodized Bragg grating.

The raised cosine function has been chosen for the 
apodization of the coupling coefficient. This function can be 
written as [10]
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Where α is the raised-cosine parameter and L is the total length 
of the grating. The modulation function is plotted on Fig. 8. 
We can increase the reflectivity peak and the bandwidth of the 
spectral response by incrementing the raised cosine parameter 
α.

Fig. 9 and Fig. 10 illustrate the difference between 
unapodized and a raised cosine grating. On Fig. 9, we remark 
side lobes on the spectral response of unapodized grating. 
With a variable couplage, side lobes were suppressed (Fig. 9 
(b)).
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(b) Raised cosine grating
Fig.9. Reflectivity of unapodized and raised cosine grating
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On the time delay of unapodized grating, ripples higher than 
100 ps occur (Fig. 10 (a)). That is not acceptable in optical 
transmission links because NRZ code in the reception module
will contain errors. With a raised cosine apodization ripples 
are reduced less than 50 ps (Fig. 10 (b)).
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       Fig.10. Time delay of unapodized and raised cosine grating

VI. SAMPLED FIBER BRAGG GRATING

A. Principle

Fig. 11 is a schematic representation of a sampled grating 
structure, where LA is the sampling period and LB is the range 
that was exposed by UV light. We define the duty cycle, R, 
which is the ratio between the section length and the sampling 
period

A

B

L

L
R                                                                               (15)

        
The range LA-LB, between two grating sections, is without 

exposure to UV light. This range can be represented by the 
phase shift matrix [10]
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Where i is the value of the phase shift, it can be written as

[10]

z
neff 





4
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Where Δz is the separation between two grating sections.

Fig.11. Schematic of sampled grating structure
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B. Characteristics of sampled grating

The frequency spacing between two adjacent channels can 
be written as [2]

Aeff Ln

c
f

2
                                                                     (18) 

The channel spacing is defined as follows

Aeff Ln2

2                                                                    (19)

Thus, the wavelength between two neighboring channels is 
only determined exactly by sampling period.

Defining the wavelength range between the first reflection 
zero point at the two sides of Bragg wavelength as the width of 
reflectivity, we can get the approximate expression of 
bandwidth [2]

   2
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Where n is the refractive index change and LB is the length 
of a chirped Bragg section. The channel’s number is the 
quotient of the bandwidth  and the channel spacing  .

Since 1
BnL

 , Equation (20) can be rewritten as [2]

Beff Ln

2
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Then, from Equations (18) and (21), the channel number of 
the sampled grating can be described as [2]

1
2


R
m                                                                     (22)

Where R is the duty cycle.

C. Simulation results

Fig. 12 and 13 show the reflectivity and group delay of 
raised cosine sampled chirped gratings with the sampling 
periods of 4.1068 mm and 2.0534 mm respectively.
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Fig.12. Sampled grating with channel spacing of 0.2 nm
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Fig.13. Sampled grating with channel spacing of 0.4 nm
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On Fig. 12 the sampled fiber presents ten channels, each one
has a bandwidth of 0.25 nm in a total bandwidth of 2.5 nm. 
When we decrease the sampling period the number of channels 
decreases automatically, the sampled fiber in the second case 
presents five channels; each one has a bandwidth of 0.4 nm 
(Fig. 13). The total length of this grating is 4 mm. We remark 
that the group delay of each channel increases according to 
wavelengths, because the variable chirp is negative. The rate 
of change of optical period in each section, b, equals to 1.1 
nm. This chirp permits to increase the total bandwidth of the 
grating.

Assuming that a single mode fiber presents 17 ps/nm, the 
designed raised cosine sampled chirped grating should 
compensate a maximum dispersion of 1445 ps/nm 
corresponding to an optical transmission link of 85 km. To 
achieve the compensation of this dispersion, grating channels 
must have a bandwidth between 0.6 and 0.7 nm.

For a determined optical link, with a specified length Lf and 
dispersion parameter Df, we can design a Bragg grating that 
can achieve the opposite dispersion level of the transmission 
fiber. The minimum length required to compensate the
dispersion introduced by the fiber link is [9]

eff

ff

n

LDc
L

20


                                                               (23) 

Where c is the light velocity, effn is the refractive index of 

the fiber and  is the bandwidth to compensate for chromatic 
dispersion. fD and fL are the dispersion and the length of the 

transmission fiber. In fact, L0 is the required length for a 
uniform grating, but for apodized gratings we should use a 
greater length to compensate the reduction of the coupling 
strength caused by the apodization profile at the grating ends 
[1]. Therefore, we can calculate the real or effective length of 
the grating Leff in function of the apodization profile selected. 
The effective length is defined as follows [1]

0LLeff                                                                          (24)

Where  is the apodization factor.

If the condition chirp  is verified, the residual 

dispersion can be written as [14]

0LDLDD gffresid                                              (25)

Where chirp is the chirped grating bandwidth and gD is the 

chirped grating dispersion.
As we have said before, a fiber that has a negative variable 

chirp presents a negative dispersion. The maximum value of 
the chirp in the optical period until the last section of the 
grating equals to 1.1 nm.   We note that channel spacing, , is 
0.8 nm, thus the sampling period must be 1.0267 mm. To 
increase the bandwidth of each channel we have decreased the 
number of channels, by taking the standard frequency spacing 
of transmission system 100 GHz.

Since the power of each channel decreases as the number of 
channels increases, it is very difficult to produce fiber Bragg 
gratings with many channels. In order to compensate the 
reduction of power, it is necessary to increase refractive index 

amplitude modulation effn in theoretical limits and if it is not 

enough, it is necessary to increase the length of the grating.
Fig. 14 shows that a 10 cm of sampled grating, according to 

the characteristics recapitulated in Table I, presents five 
channels centered on 1552.34 nm, 1551.52 nm, 1550.7 nm, 
1549.88 nm and 1549.05 nm. The reflectivity peak of each 
channel is about 0.8~0.9 (Fig. 15). Each channel presents a 
bandwidth of 0.64 nm (Fig. 15).

Fig. 16 shows dispersion spectrum of raised cosine sampled 
chirped grating. We remark that each channel presents a 
negative and sufficient dispersion to the compensation of the 
dispersion of 85 km of a single mode fiber.

Among the five channels, the difference of dispersion is 
small, showing a good consistence. Numerical results are put 
in Fig. 17.

Table I.  SCFG simulation parameters

L(cm) 10

n0 1.447

Section’s
number

300

δn 0.0006

dλD/db    
(nm/cm)

-1

b (nm) 1.1

LA(mm) 1.0267

Raised-
cosine 

parameter

0.15
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         Fig. 14. The reflectivity of raised cosine sampled chirped 
grating
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Fig. 15. Simulation results of sampled grating
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Fig. 16. Sampled grating dispersion

Fig. 17. Simulation results of sampled grating

VII. CONCLUSION

In this paper, the raised-cosine chirped sampled fiber Bragg 
grating is simulated. The coupled mode theory is a suitable 
tool to analyze this optical filter. Reflectivity and dispersion 
spectrum of the multichannel filter with different parameter 

values (coupling coefficient, raised-cosine parameter, linear 
chirp, length of SCFG, sampling period and duty cycle) are 
simulated and discussed. A raised-cosine apodization is made 
to reduce group delay ripples and reflectivity side lobes. A 
linear chirp is applied to the optical period of the grating, 
resulting in an increased time delay response according to 
wavelengths. The sampling period is chosen to have the 
smallest number of channels with the target bandwidth for 
dispersion compensation.

SCFG gives five channels spaced by 0.8 nm, with a 
reflectivity peak of 90% and with a dispersion of -1400 ps/nm, 
in a bandwidth of 0.6 nm. All These characteristics allow using 
this component in dense wavelength division multiplexing 
(DWDM) transmission systems as a dispersion compensation 
module.
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