
 

 

  

Abstract—Evacuation operation, which is a process of 
evacuating residents from any dangerous sites to safer destination in 
the shortest possible time, is of prime importance in emergency 
management. Untimely assistance and poor coordination at the 
operation level have always been the major problem in evacuation 
process during flash floods. This paper focuses on evacuation vehicle 
routing solution using a modification of a discrete particle swarm 
optimization (DPSO) with a new search decomposition procedure. 
Comparative analysis of this algorithm and a genetic algorithm (GA) 
using the severe flash floods events datasets is performed. The 
findings indicate that the DPSO provides better performance in both 
solution quality and processing time. Further experimental analysis 
for a large evacuation dataset can be considered to confirm the 
performance of a modified DPSO. 
 
Keywords—Discrete particle swarm optimization, Evacuation 

operation, Flash floods, Genetic algorithm, Search decomposition.  

I. INTRODUCTION 

isasters have made news as catastrophic events had 
affected people and had incurred losses due to 
infrastructure damage. It had resulted in loss of life, 

properties and suffering from serious psychological stress 
which eventually leads to critical health condition [1]. In 
December 2006, 15 people had been reported dead and more 
than 100,000 people had to flee their homes in Johor state [2]. 
These circumstances have resulted from flash floods. The 
occurrence of flash flood is due to heavy rainfall that is 
associated with thunderstorms [3-4]. Table 1 shows the 
number of people affected of the flash flooded districts in 
Johor state for December, 2006 and January, 2007.  
 
Table 1 Flash flood figures for districts in Johor state [2]  

Number of people affected 
Districts 

December 2006 January 2007 

Johor Bharu 20,530 15,229 
Kota Tinggi 14,864 15,660 
Kluang 19,091 19,210 
Muar 34, 253 4,233 
Batu Pahat 30, 619 55,259 
Pontian 5,978 5,583 
Segamat 15,148 8,784 
Mersing 1,329 4,517 
Total 111,193 128,475 

 
 

 

Heavy rains and overflowing rivers have flooded towns and 
villages. Malaysia Metrological Department [3] has reported 
that Kota Tinggi district in Johor faced the most severe flash 
flood compared to other districts in Johor. This is due to the 
unusual heavy rainfall and the physiographic of the basin in 
Kota Tinggi. The seriousness of the situation leads this paper 
to concentrate on the flash flood evacuation operation in the 
district of Kota Tinggi. Evacuation datasets of these flash 
floods event were acquired and computationally experimented. 
The dataset is shown in Table 2.   

Evacuation operation, which is a process of evacuating 
residents from any dangerous sites to safer destination in the 
shortest possible time, is of prime importance in emergency 
management. Untimely assistance and poor coordination at the 
operation level have always been the major problem in 
evacuation process during flash floods. A lot of people have to 
be safely evacuated at the shortest possible time to avoid loss 
of lives during disaster. Much effort has been done in 
producing manual evacuation guideline [5-7], developing 
evacuation system [8], developing simulation [9-10], and 
developing a wide variety of algorithms [10-12] to facilitate 
the evacuation operation for different types of disasters. 

 During the evacuation process, the most challenging task is 
to move people to safer locations. As time is the decision 
factor in the evacuation process, urgent and firmly decisions 
are required. An evacuation plan should be efficiently 
constructed by taking into consideration the routes of vehicle. 
This paper addresses the evacuation vehicle routing problem 
(EVRP) that considers the routing of capacitated vehicles from 
a vehicle location (single source) to various numbers of 
potential flooded areas (PFA). This problem is seemed similar 
to vehicle routing problem (VRP).  

EVRP is associated with the routing of vehicles to 
destinations with limitations of vehicle capacity and depends 
on the standard travelling speed of each vehicle. Commonly, 
EVRP relies on the same core problem of the vehicle routing 
problem (VRP). The VRP which was introduced by Dantzig 
and Ramser in 1959 [13] is customer based oriented and 
involves the routing of an unlimited number of vehicles from 
the depot to customer locations and return to depot with the 
shortest travelling cost [14-15].  

However, EVRP deals with different routing processes, 
vehicles from vehicle location travelled and picking up people 
at each PFA and then route them to relief centers. During a 
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pickup, each of vehicles is allocated with a number of people. 
The allocation is generated from [10]. It has been observed 
that EVRP is closely related to the capacitated vehicle routing 
problem (CVRP), primarily in its handling capacity constraints 
[16-19]. In particular, EVRP deals with routing of a number of 
vehicles to PFA, whereas CVRP deals with the delivery of 
goods to customers. Like EVRP, CVRP assumes that each 
customer is served by exactly one vehicle without exceeding 
the capacity constraints of each vehicle. Several optimization 
algorithms have been employed [13][15-17] for solving 
CVRP. For example, GA with local search is applied in [16] 
and DPSO with binary position and a hybrid of DPSO-SA in 
[17]. In general, they obtained an effective result in terms of 
processing time with no assurance for optimal results. 
The recent solution for the EVRP [18] had shown good 
performance for DPSO compared to GA for a single vehicle 
location to a single PFA. This paper concentrates on the 
performance of these algorithms considering the routing the 
capacitated vehicles from a single vehicle location to multiple 
PFA with the introduction of a search decomposition 
procedure in its solution representation.  

This paper is organized as follows. Section 2 reviews the 
PSO algorithm. Section 3 presents the problem formulation. 
Section 4 presents the EVRP solution and the modified DPSO 
algorithm. Section 5 explains the computational results and 
discussion. Finally, Section 6 concludes the paper and 
addresses some future work. 

II. PARTICLE SWARM OPTIMIZATION 

 
PSO was introduced by Kennedy and Eberhart in the mid-

1990s. It is a population-based stochastic approach which has 
been grouped under swarm intelligence [19-20] and 
evolutionary computation [22]. PSO can be used to solve 
continuous and discrete problems. PSO was derived from a 
concept of a flock of birds which fly everywhere to find food. 
Each bird is illustrated as a particle. Each particle moves 
stochastically in search space for a feasible solution. Each of 
the particles has its own velocity and position. PSO can 
indicate the velocity and position of particles in a multi-
dimensional space. By updating both velocity and position, a 
feasible solution can be achieved. The fitness values comprise 
of global (Gbest) and personal best (Pbest) derived from the 
simulated behavior of a group of particles [23]. Pbest is the 
solution offered by each of the particle while the Gbest is the 
best solution obtained from all particles.  

PSO algorithm has been used to solve continuous problem. 

The algorithm is shown in Algorithm 1 [20]. The algorithm 
starts with the initialization of the population of particles or 
swarm size, followed by the initialization of inertia weight (W) 
and acceleration constants (C1 and C2). Step 4 and 5 initialize 
the minimum value (Vinitialize(min)) and maximum value of 
velocity (Vinitialize(max)) and minimum position (Dmin) and 
maximum value of position (Dmax), respectively. Next is the 
calculation of Pbest and Gbest value for each particle. Step 9 
calculates the new velocity value for each particle using 
equation 1. Step 10 updates the new position, D(new) using 
Equation 2. Finally, Pbest (new) and Gbest (new) are determined 

based on the fitness value set for the problem. Iteration starts 
from step 7 until step 13 to update the current velocity and 
position of each particle. This iteration will be done until it 
satisfies the stopping condition. 

 
Algorithm 1 PSO 

1. Begin 

2.     Initialize number of particles and populations 

3.     Declare W, C1 and C2 

4.     Initialize Vinitialize(min) and Vinitialize(max) 

5.     Initialize Dmin and Dmax 

6.     Calculate  Pbest and Gbest value for each 

particle 

7.     Do 

8.       For each particle 

9.          Calculate new velocity value, V(new) 

10.          Calculate new position, D(new) 

11.          Calculate Pbest (new) 

12.         Calculate Gbest (new) 

13.     While (stopping condition is  reached) 

14. End 

 
PSO has the capability to explore regions of the search space 

and exploit the search to refine a feasible solution. These 
search strategies are influenced by the parameters; acceleration 
constants (C1 and C1) and inertia weight [20][24] that has been 
applied in the PSO algorithm. Equation 1 and 2 present the 
velocity and position formulas for the canonical PSO, 
respectively.  

 
Vid(new)= W *Vid + C1* r1* (Pbest(id) - Xid + C2*  r2 * 

(Gbest(id)-Xid)                                             (1) 
Xid(new)=Xid + Vid(new)                                  (2) 

 
where:   
 Vid(new)       = new velocity of the ith particle in dth dimension 
 Vid           = current velocity of the ith particle in dth dimension 

Xid            = current position of the ith particle in dth dimension 
Xid(new)        = new position of the ith particle in dth dimension 
W             = inertia weight 
 C1 and C2= acceleration coefficient 

r1 and r2  = random function in the range of [0,1] 
 Pbest(id)  = position of the personal best of the ith particle in dth 

dimension 
Gbest(id)  =position of the global best derived from all particles 

in the swarm. 
 
A considerable amount of research has been directed towards 

the modification of canonical PSO to solve several types of 
continuous problems. The inventors of PSO explored discrete 
binary PSO with special attention to discrete problems, leading 
to a new means of updating the position of particles [25] to 
accommodate discrete binary problems. The particle position 
is determined based on sigmoid function [25]. The use of 
DPSO with multiple discrete values (rather than binary) was 
also explored. Mohemmed et al employed a discrete particle 
position to represent nodes in the shortest path problem [26]. 
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Izakian et al mapped a grid job scheduling problem to direct 
and indirect representation for the particle position [27]. Direct 
representation used binary value while indirect representation 
used multi discrete value. Direct representation is shown faster 
than indirect representation. For the direct representation, the 
particle position is calculated based on the new formulation for 
the velocity which only considers the Pbest.  

III. PROBLEM FORMULATION 

The EVRP involves a static routing of a number of vehicles 
from vehicle location to a single and multiple PFA. EVRP 
addresses the objective function to find the minimum total 
travelling time for all capacitated vehicles from vehicle 
location to the PFA. This problem is mathematically 
formulated based on the SPP formulation [28]. The problem 
can be formally defined as follows: Let G = (N, E) be a 
weighted directed graph. Define N = {N0, N1,…, Nn}. N0 
represents the vehicle location and Nn is the destination node 
(PFA). E is the set of edges. tij represents the travelling cost of 

traversing from i to j. For each edge (i, j) ∈ E, travel time tij≥ 

0, is a non negative integers. H={H1, H2, ....,Hk} is the set of all 
vehicles that are able to move from node i and j. The objective 
function is to find the minimum total travelling time for all 
vehicles from N0 to Nn. The EVRP is mathematically 
formulated as shown below:   

 

Minimize                                 (3)          

Subject to: 

           –   =          (4)   

                                                                                                            
                       

                                                (5) 

       
  where:  

i = index of nodes, i   

j = index of nodes, j   

k = index of vehicle H, k  

    Tijk= represents the travelling time of  vehicle k traversing 
from i to j. 

     Xij = is a binary variable which is 1 if the node i to node j is 
traversed, otherwise it is 0. 

                                             
Constraints 4 ensure that the path starts at N0, end at Nn, and 
either pass through or avoid every other node j. Constraint 5 is 
the set of bound decision variables. 

IV. EVRP SOLUTION  

The solution of EVRP has adopted the similar process of 
nodes expansion and the random selection of PV as discussed 
in [28]. The calculation of travelling time, total travelling time 
for each of the vehicle travelled through valid path, and the 
total travelling time for all vehicles that travelled through all 
the valid paths can be referred to [18]. In EVRP, each array of 
PV is assigned to each of the vehicles where the number of PV 
at each level comprises of a number of child nodes (Cn) 
multiples with the number of vehicles (Vm), or Cn x Vm for each 
level of the expansion of the graph as illustrated in Fig. 1 and 
2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1 The illustration of search decomposition procedure into 
branches 

 

N0 - N1 N0 - N2 

 
PV1 PV2  V1 

PV1 PV2  V2 

PV1 PV2  . 

. .  . 

PV1 PV2  Vm 

   
Fig 2. Illustration of a sub-particle for the Level 1 

 
Each particle is represented in 3-dimensions, which consist 

of number of search decomposition (Dt), Cn, and Vm, or Dt x Cn 
x Vm. The procedure of the search decomposition is shown in 
Fig. 3. The decomposition imposes the expansion of nodes 
from source node. This procedure would enable some 
limitation on the search space for the movement of particles as 
illustrated in Fig. 1. 
 
 
 
 
 
 
 
 
 
 

1: Begin 

2:  Initialize the search tree 

3:  Do 

4:    If there is no leaf 

5:     Failure 

6:   Else 

7:    Expand node 

8:    Choose one path in a random selection and assigned     

    PVmin to this path 

9:    Calculate traveling time for each vehicle 

10:  While (all nodes expanded or there no leaf to expand) 

11: End 

N5 
N6 

Level 3 
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Travelling Speed) 

Level 1 
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Fig 3. A search decomposition procedure 
The new solution representation for EVRP that is discussed 

above is implemented in DPSO as shown in Algorithm 2. The 
algorithm starts with the normal process of PSO. Step 2 and 3 
initialize the number of population and the coefficient values 
C1 and C2, respectively. Step 4 performs the initialization of 
PV and velocities. Step 5 retrieves vehicle's information which 
includes the vehicle id, vehicle capacity, and its standard 
travelling speed. Step 6 and 7 perform the search 
decomposition procedure for each of the vehicle.  In this step, 
only one path is selected and the selected node is assigned with 
PVmin upon selection of the path as demonstrated in Fig. 3 
After all nodes are expanded, the Pbest and Gbest of each 
particle are calculated. Pbest is the total distance for each 
particle, whereas Gbest is the minimum total distance obtained 
from all particles. The iteration process starts at step 9 through 
22 until a maximum iteration is achieved. In this iteration, each 
particle is updated with a new velocity and new position value 
(PV) at step 10 until 12. The new velocity and position value 
are in the form of positive integer. Then, PV for all sub 
particles is updated using step 13. Step 14 performs the 
decomposition procedure of PV. Pbest(new) and Gbest(new) are 
calculated at step 15 and 16, respectively. Finally, steps 17 
through 21 are the conditions for the selection of the best 
current fitness for each of the iteration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. COMPUTATIONAL RESULTS AND DISCUSSION 

The performances of these algorithms are analyzed based on 
the objective function to find the minimum total travelling time 
for all the capacitated vehicles from vehicle location to PFA. 
The comparison involves two aspects: total travelling time for 
all vehicles from vehicle location to PFA, and the processing 

time. The selection of parameters was selected based on 
previous research [13]. DPSO is compared to GA with one 
point crossover using the same solution representation. 
Datasets for the computational experiment are from flash flood 
evacuation in Malaysia starting from VR1_PFAs_06 until 
VR5_PFAs_07 with various number of destinations (multiple 
PFA) are shown in Table 2. 

 
Table 2 EVRP datasets 

Dataset 
Number 

of PFA 

Number of 

nodes 

Number 

people 

Number 

of 

vehicles 

generated 

from [10] 

VR1_PFAs_06 2 47 1416 174 

VR2_PFAs_06 3 59 2631 260 

VR3_PFAs_06 4 83 3155 370 

VR4_PFAs_06 5 119 4584 508 

VR5_PFAs_06 6 140 5032 612 

VR6_PFAs_06 2 47 7269 750 

VR7_PFAs_06 3 59 8484 1316 

VR8_PFAs_06 4 83 9008 1366 

VR1_PFAs_07 2 49 1566 238 

VR2_PFAs_07 3 61 3106 374 

VR3_PFAs_07 4 88 3180 355 

VR4_PFAs_07 5 109 3800 496 

VR5_PFAs_07 6 133 3996 516 

 

A.  Performance of a modified DPSO 

This section discusses the results for the datasets involved 
with more than one PFA. The experiments for those datasets 
used  30 population of particles, 30 experiments and based on 
the iteration up to 200 or until all vehicles arrived at PFA. The 
performance of the algorithms is based on the total travelling 
time (fitness value) obtained by all the travelled vehicles and 
processing time. Average of the total travelling time and 
processing time is calculated based on 30 experiments. The 
results are tabulated in Table 3 until Table 15. Table 3 
compares the results of the travelled vehicles from vehicle 
location to the two PFA. It is apparent that DPSO 
outperformed the other algorithms at average of 2.699 KM. As 
can be seen in the table, although, average of processing time 
is 0.469 seconds for DPSO which is of about 0.010 second 
more than the average of processing time for GA. This shows 
that there is very little difference in terms of processing time.  

Algorithm 2 Modified DPSO 

1: Begin 

2:   Initialize number of  population 

3:   Declare  C1 and C2 

4:   Initialize PV, Vintialize(min)  and Vinitialize(max) for all 

particles in random 

5:   Retrieve vehicle's information from[10]  

6:   For each vehicles  

7:     Perform search decomposition procedure 

8:     Calculate Pbest and Gbest 

9:    Do 

10:    For each particle  

11:      Calculate V(new) 

12:      Calculate PV(new)  

13:      Update PV for all sub particles 

14:      Perform step 6 and 7 

15:      Calculate Pbest (new)   

16:      Calculate Gbest (new) 

17:      If (Gbest (new) > Gbest) 

18:        Assign Gbest as the best current fitness 

19:     If (Gbest (new) =< Gbest) 

20:       Gbest= Gbest (new) 

21:      Assign Gbest(new) as the best current fitness 

22: While (maximum iteration is achieved) 

23: End 
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Table 3 Performance of DPSO and GA using dataset 
VR1_PFAs_06 

DPSO GA 
 

ttvs PT (s) iter ttvs PT (s) iter 

Avg 2.699 0.469 1 2.702 0.459 1 
Min 2.654 0.421 1 2.654 0.421 1 
Max 2.750 0.605 1 2.750 0.577 1 

Std Dev 0.049 0.047 0 0.049 0.034 0 

* ttvs – total travelling time (hour), PT - processing time (second), iter - 

number of iteration 

 
Table 4 shows the results of VR2_PFAs_06. It clearly shows 
from the table that DPSO gave better result compared to the 
other three algorithms whereas GA failed to obtain any results 
for 200 iterations.  
 
Table 4 Performance of DPSO and GA using dataset 
VR2_PFAs_06 

DPSO GA 
 

ttvs PT (s) iter ttvs PT (s) iter 

Avg 6.618 1.809 1 6.783 1.946 1 

Min 2.654 0.453 1 6.727 1.794 1 

Max 6.822 2.153 1 6.913 2.278 1 

Std Dev 0.750 0.288 0 0.056 0.096 0 

* ttvs – total travelling time (hour), PT - processing time (second), iter - 

number of iteration 

 
As shown in Table 5, on average, DPSO has shown a better 

fitness value but requires about 0.009 seconds more for the 
average of processing time when compared to GA. Although 
GA gives less processing time, the average of total travelling 
time is slightly higher than DPSO. What is interesting here is 
the achievement of DPSO in terms of total travelling time. 
Hence, this algorithm with the new solution representation 
provides better performance in finding solutions to EVRP 
focusing on the multiple PFA. This is supported by the results 
of VR1_PFAs_06 and VR2_PFAs_06, VR4_PFAs_06, 
VR5_PFAs_06, VR6_PFAs_06, VR7_PFAs_06, and 
VR8_PFAs_06.  

 
Table 5 Performance of DPSOs and GAs using dataset 
VR3_PFAs_06 

DPSO GA 
 

ttvs PT (s) iter ttvs PT (s) iter 

Avg 10.518 14.254 1 10.573 14.147 1 

Min 10.313 9.001 1 10.313 9.360 1 

Max 11.137 40.498 1 11.137 16.863 1 

Std Dev 0.245 5.190 0 0.267 1.247 0 

* ttvs – total travelling time (hour), PT - processing time (second), iter - 

number of iteration 

 
The findings support that the embedded search 

decomposition procedure and random selection of PV brings a 
significant contribution to the solution of EVRP, in this case 
for multiple PFA. The random selection assist in obtaining fast 

convergence because of the limitations of search space 
required. Overall, DPSO gave a better solution quality 
(minimum total travelling time) than the other three algorithms 
for the multiple PFA and competitive to GA for some datasets. 
 
Table 6 Performance of DPSOs and GAs using dataset 
VR4_PFAs_06 

DPSO GA 
 

ttvs PT (s) iter ttvs PT (s) Iter 

Avg 17.977 22.141 1 18.174 21.594 1.033 

Min 16.405 13.930 1 16.405 13.400 1 

Max 20.429 25.973 2 21.185 24.197 2 
Std 
Dev 

1.067 1.875 0.183 1.082 2.638 0.305 

* ttvs – total travelling time (hour), PT - processing time (second), iter - 

number of iteration 

 
Table 7 Performance of DPSOs and GAs using dataset 
VR5_PFAs_06 

DPSO GA 
 

ttvs PT (s) iter ttvs PT (s) Iter 

Avg 23.897 55.378 1 24.230 55.352 1 
Min 22.838 45.302 1 22.888 46.582 1 
Max 25.611 67.205 1 25.793 99.372 1 
Std 
Dev 

0.787 5.927 0 1.028 9.700 0 

* ttvs – total travelling time (hour), PT - processing time (second), iter - 

number of iteration 

 
Table 8 Performance of DPSOs and GAs using dataset 
VR6_PFAs_06 

DPSO GA 
 

ttvs PT (s) iter ttvs PT (s) Iter 

Avg 11.364 2.478 1 11.377 2.592 1 

Min 11.101 1.809 1 11.101 1.856 1 

Max 12.641 4.508 1 11.522 4.337 1 

Std Dev 0.342 0.803 0 0.204 0.818 0 

* ttvs – total travelling time (hour), PT - processing time (second), iter - 

number of iteration 

 
Table 9 Performance of DPSOs and GAs using dataset 
VR7_PFAs_06 

DPSO GA 
 

ttvs PT (s) iter ttvs PT (s) Iter 

Avg 24.047 6.083 1 24.110 6.510 1 

Min 23.594 5.163 1 23.594 5.741 1 

Max 24.305 7.909 1 24.852 6.942 1 

Std Dev 0.303 0.426 0 0.311 0.212 0 

* ttvs – total travelling time (hour), PT - processing time (second), iter - 

number of iteration 
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Table 10 Performance of DPSOs and GAs using dataset 
VR8_PFAs_06 

DPSO GA 
 

ttvs PT (s) iter ttvs PT (s) Iter 

Avg 25.491 12.588 1 25.696 13.518 1 

Min 24.916 11.123 1 24.916 11.700 1 

Max 26.728 15.475 1 26.767 25.678 1 

Std Dev 0.467 0.682 0 0.483 2.366 0 

* ttvs – total travelling time (hour), PT - processing time (second), iter - 

number of iteration 

 

Results for DPSO performed better than the GA as shown in 
Table 11. The total travelling time for GA is a slightly lower 
than this algorithm.  

 
Table 11 Performance of DPSOs and GAs using 
VR1_PFAs_07 

DPSO GA 
 

ttvs PT (s) iter ttvs PT (s) iter 

Avg 10.170 3.314 1 10.173 3.452 1 

Min 10.167 0.920 1 10.167 1.482 1 

Max 10.187 5.132 1 10.193 8.596 1 

Std 
Dev 

0.009 1.085 0 0.007 1.565 0 

* ttvs – total travelling time (hour), PT - processing time (second), iter - 

number of iteration 

 
The next comparison highlights (Table 12) the results of the 

VR2_PFAs_07. So far, the proposed DPSO has shown good 
results with one iteration for convergence (all vehicles arrive at 
the assigned PFA). Although an average of processing time of 
DPSO is slightly higher than GA for VR2_PFAs_07, the total 
travelling time for this algorithm is 0.29% lower than GA, 
which is about 1.98 minutes. With a minimum total travelling 
time, all people can be picked-up by the assigned vehicles at 
each of the PFA at the shortest time.  
 

Table 12 Performance of DPSOs and GAs using 
VR2_PFAs_07 

DPSO GA 
 

ttvs PT (s) iter ttvs PT (s) Iter 

Avg 11.494 9.358 1 11.527 9.095 1 

Min 11.385 3.978 1 11.385 4.493 1 

Max 11.723 22.433 1 13.583 21.419 1 

Std 
Dev 

0.090 3.826 0 0.391 4.141 0 

* ttvs – total travelling time (hour), PT - processing time (second), iter - 

number of iteration 

 
As shown in Table 13, the result validates the employment of 
DPSO in solving EVRP. This algorithm provides the best 
results with less total processing time compared to GA to 
move all vehicles from vehicle location to four PFAs, using 
VR3_PFAs_07. This result again ensures all vehicles arrive at 

PFA at a minimum total travelling time, which is important in 
evacuation operation.  
Table 13 Performance of DPSOs and GAs using 
VR3_PFAs_07 

DPSO GA 
 

ttvs PT (s) iter ttvs PT (s) iter 

Avg 12.170 7.594 2.300 12.174 17.006 2.400 

Min 11.736 4.025 1.000 11.625 3.931 1.000 

Max 13.466 22.479 5.000 13.257 309.620 10.00 

Std 
Dev 

0.535 3.836 1.343 0.552 55.332 1.905 

* ttvs – total travelling time (hour), PT - processing time (second), iter - 

number of iteration 

 
DPSO outperformed GA for both of VR4_PFAs_07 and 

VR5_PFAs_07 as shown in Table 14 and 15 in its total 
travelling time and processing time. It is noted that the use of 
DPSO has successfully achieved the best performance among 
the other three algorithms. Thus, these results validate that this 
algorithm satisfy the objective function which is to find the 
minimum total travelling time. 
 
Table 14 Performance of DPSOs and GAs using 
VR4_PFAs_07 

DPSO GA 
 

ttvs PT (s) iter ttvs PT (s) Iter 

Avg 17.965 19.537 1.100 18.029 19.549 1.259 

Min 17.232 10.249 1.000 17.315 9.891 1.000 

Max 19.943 31.731 2.000 19.991 60.707 2.000 

Std 
Dev 

0.573 5.987 0.305 0.716 9.662 0.447 

* ttvs – total travelling time (hour), PT - processing time (second), iter - 

number of iteration 

 

Table 15 Performance of DPSOs and GAs using 
VR5_PFAs_07 

DPSO GA 
 

ttvs PT (s) iter ttvs PT (s) Iter 

Avg 20.426 19.716 1.5 20.429 20.467 1.6 

Min 19.511 13.603 1.0 19.647 13.962 1.0 

Max 22.616 28.797 5.0 23.027 29.578 4.0 

Std 
Dev 

0.693 4.106 0.9 0.900 5.104 0.9 

* ttvs – total travelling time (hour), PT - processing time (second), iter - 

number of iteration 

 

B.  Discussion 

This paper produced results which corroborate the solution 
of [28] for SPP. With some modification to the solution, the 
findings confirmed that DPSO proved to perform better than 
GA in getting the minimum total travelling time. Although the 
processing time obtained was statistically different between 
these algorithms, on average DPSO consumed less time. The 
use of multi-valued discrete particle position (PV) with the 
employment of search decomposition and random selection of 
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PV was observed to have successfully achieved good 
performance for a small number datasets.  

The suggested mean of limiting the movement of particles in 
search space, using the search decomposition procedure and 
random selection support this algorithm. The decomposition of 
graph with random selection of PV depends on the number of 
expanded branches. Hence, the number of nodes traversed by 
each vehicle is dependent on the branch that was randomly 
selected. With this procedure at least one vehicle can traverse 
from vehicle location until PFA using a valid path because the 
selection of PV is limited to the number of branches. Based on 
the findings provided by DPSO, it can be illustrated that 
several valid paths were able to be determined using 30 
populations of particles granted a higher possibility of using 
less travelling time for the vehicles travelled from vehicle 
location to multiple PFA. With the high possibility of getting a 
valid node, the best solution would become faster and lead to 
the fast convergence due to the less search space. This 
confirmed what was mentioned in the literature review that the 
DPSO has a capability of finding optimal solution and fast 
convergence compared to the GA.  

The calculation of velocity involving exploitation, and 
exploration of particles in DPSO has contributed to the 
solution. The exploitation presents means of particles to 
perform a local search while the exploration is globally 
seeking the best solution, which was gathered from the 
selection of Gbest.  

VI. CONCLUSION 

This paper discusses the solution to evacuation process in 
achieving the objective function which is to find the minimum 
total travelling time for all the capacitated vehicles from 
vehicle location to the multiple PFA. A new solution 
representation incorporates the search decomposition 
procedure and random of PV selection were addressed. The 
new solution is embedded in DPSO. They were compared to 
GA in which using the same solution representation. Overall, it 
can be concluded that DPSO that was applied with a new 
solution representation provided better results compared to GA 
for multiple PFA. Further experiment can be done using 
dataset from PFA to relief centers for the EVRP incorporating 
the limitations of the capacity at the relief center and for large 
evacuation scenarios. 
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