
 

 

 

 

Abstract- Data fusion is a formal framework for combining and 
utilizing data originating from different sources. It aims at obtaining 

information of greater quality depending upon the application. There 

are many data fusion techniques that can be used to produce high-

resolution multispectral images from a high-resolution panchromatic 

(PAN) image and low-resolution multispectral (MS) images, including 

but not limited to, modified Intensity–hue–saturation, Brovey 

transform, Principal component analysis, Multiplicative transform, 

Wavelet resolution merge, High-pass filtering, and Ehlers fusion. One 

of the major problems associated with a data fusion technique is how 

to assess the quality of the fused (spatially enhanced) MS images. This 

paper represents a comprehensive analysis and evaluation of the most 

commonly used data fusion techniques. The performance of each data 

fusion method is qualitatively and quantitatively analyzed. Then, the 

methods are ranked according to the conclusions of the visual analysis 

and the results from quality budgets. An experiment based on 

Quickbird images shows that there is inconsistency between different 

performances measures used to evaluate data fusion techniques. 

 

Keywords— Data fusion, multispectral images, quality assessment, 
evaluation criteria, Quick-bird images  

 
I-INTRODUCTION 

ata fusion techniques are originally devised to allow 

integration of different information sources, may take 

advantages of the complementary spatial/spectral 

resolution characteristics typical of remote-sensing imagery 

[1]. One of the major applications of remotely-sensed data 

obtained from earth orbiting satellites is data fusion because 

of repetitive coverage at short intervals from different 

satellites with different sensors characteristics. Data fusion is 

useful in such diverse applications as photo-analysis. 

Automated tasks, such as feature extraction and segmentation/ 

classification, have also been found to benefit from data 

fusion [2]. There is a definite need for data fusion which 

automatically enhances both spatial and spectral 

characteristics of MS and PAN images. The concept of data 

fusion goes back to the 1950’s and 1960’s, with the search for 

practical methods of merging images from various sensors to 

provide a composite image which could be used to better 

identify natural and manmade objects. Terms such as 

merging, combination, synergy, integration, and several 

others that express more or less the same concept have since 

appeared in the literature [3]. In the remote sensing 

community, the following definition has been adopted: 
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 “Data fusion is a formal framework in which are expressed 

means and tools for the alliance of data originating from 

different sources. It aims at obtaining information of greater 

quality; the exact definition of ‘greater quality’ will depend 

upon the application” [1]. Many image fusion methods have 

been proposed for combining a high resolution panchromatic 

image (HRPI) with low resolution multispectral images 

(LRMIs). A detailed review on this issue was given by [4]. 

This paper is structured in five sections. The following 

section 2 explains the concept of data fusion techniques and 

introduces the mathematical models of several existing image 

fusion methods. In Section 3, the performances measures used 

to quantify the existing methods are analyzed. In Section 4, 

experiments conducted based on quick bird images are 

presented with their results. Finally, our conclusions are given 

in Section 5. 

 

II-DATA FUSION TECHNIQUES 

 

A variety of data fusion techniques are devoted to merge MS 

and PAN images which exhibit complementary characteristics 

of spatial and spectral resolutions [3].Such an application of 

data fusion is often called Pan sharpening. Several 

researchers have attempting to use different types of satellite 

images to address the data fusion problem. Several 

procedures of data fusion have been proposed which could 

aid in updating resource inventories. These methods include 

modified Intensity–Hue–Saturation (IHS), Brovey transform 

(BT), principal component analysis (PCA), Multiplicative 

Transform (MT), Wavelet Resolution Merge (WRM), High-

Pass Filtering (HPF), and Ehlers fusion. 

       Data fusion approaches may be broadly characterized 

into several groups.  Schowengerdt classified them into 

spectral domain techniques [5], spatial domain techniques, 

and scale space techniques.  Ranchin and Wald classified 

them into three groups [6]: projection and substitution 

methods, relative spectral contribution methods, and those 

relevant to the ARSIS ' Amelioration de la Resolution 

Spatiale Par Injection de Structures' concept [7]. 

 

It is worth mentioning here that accurate spatial registration 

of the two original images is essential for most data fusion 

methods. This necessitates the use of geometric rectification 

algorithms that register the images to each other or to a 

standard map projection. Moreover some techniques require a 

radiometric balance between the two images. 
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1- Modified HIS 

IHS can only process three bands at a time (because of using 

the RGB to IHS method). However, the color consistency is 

so good that this implementation of the approach enables 

images with more than three bands to be merged by running 

multiple passes of the algorithm and merging the resulting 

layers. For example, you can merge an IKONOS 4,3,2 and an 

IKONOS 3,2,1, and the tool automatically layer stacks 4,3,2 

from the first merge with the 1 from the second to produce a 

merged image of all four IKONOS bands 

 

 

 

 

 

The technique works by assessing the spectral overlap between 

each multi-spectral band and the high resolution panchromatic 

band and weighting the merge based on these relative 

wavelengths. Therefore, it works best when merging bands 

where there is significant overlap of the wavelengths. As such, 

it may not produce good results when merging SAR imagery 

with optical imagery, the Modified IHS Method for Fusing 

Satellite Imagery was proposed by [8].  

      2-Brovey Transform 

     

It is a simple method for combining data from different sensors. 

In this transform, three bands are used according to the 

following formula:  

 

 

 

 

 

 

Here, Ri, Gi, and Bi are the pixel values of pixel i of each band, 

RFi, GFi, and BFi are the pixel values of pixel i of each band 

that is obtained by fusion process, and I = (Ri + Gi + Bi)/3. 

The Brovey Transform [9],[10] was developed to visually 

increase contrast in the low and high ends of an image’s 

histogram (i.e., to provide contrast in shadows, water and high 

reflectance areas such as urban features). Consequently, the 

Brovey Transform should not be used if preserving the original 

scene radiometry is important. However, it is good for 

producing RGB images with a higher degree of contrast in the 

low and high ends of the image histogram and for producing 

visually appealing images. Since the Brovey Transform is 

intended to produce RGB images, only three bands at a time 

should be merged from the input multispectral scene, such as 

bands 3, 2, 1 from a SPOT or Landsat TM image or 4, 3, 2 

from a Landsat TM image. The resulting merged image should 

then be displayed with bands 1, 2, 3 to RGB.  

 

3-Principal Component Analysis 

 

The major goal of this method is to retain the spectral 

information of the multispectral images. This algorithm is 

mathematically rigorous [11]. It is assumed that: 

 

• PC-1 contains only overall scene luminance; all 

inter-band variation is contained in the other PCs, 

and  

• Scene luminance in the Short Wave Infra Red 

(SWIR) bands is identical to visible scene 

luminance.  

 

With the above assumptions, the forward transform into PCs 

is made. PC-1 is removed and its numerical range (min to 

max) is determined. The high spatial resolution image is then 

remapped so that its histogram shape is kept constant, but it is 

in the same numerical range as PC-1. It is then substituted for 

PC-1 and the reverse transform is applied. This remapping is 

done so that the mathematics of the reverse transform do not 

distort the thematic information  

 

      

   (3)   

 

The (PCA) method is best used in applications that require 

the original scene radiometry (color balance) of the input 

multispectral image to be maintained as closely as possible in 

the output file. As this method scales the high resolution data 

set to the same data range as PC-1, before the Inverse 

Principal Component calculation is applied, the band 

histograms of the output file closely resemble those of the 

input multispectral image. Unfortunately, this radiometric 

accuracy comes at the price of a large computational 

overhead. The (PCA) method is slow and requires the most 

system resources. Its output file tends to have the same data 

range as the input multispectral file.  

 

    4-Multiplicative Transform    

 

This method uses a simple multiplicative algorithm: 

 (DNlow-resolution)(DNhigh-resolution)=DNfused-image                  (4) 

 

The algorithm is derived from the four component technique 

of [12]. It is argued that of the four possible arithmetic 

methods to incorporate an intensity image into a chromatic 

image (addition, subtraction, division, and multiplication), 

only multiplication is unlikely to distort the color. First the 

intensity component is removed via band ratios, spectral 

indices, or PC transform. The result is an increased presence 

of the intensity component. For many applications, this is 

desirable. People involved in urban or suburban studies, city 
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planning, and utilities routing often want roads and cultural 

features (which tend toward high reflection) to be pronounced 

in the image. 

This method is computationally simple; it is generally the 

fastest method and requires the least system resources. 

However, the resulting merged image does not retain the 

radiometry of the input multispectral image. Instead, the 

intensity component is increased, making this technique good 

for highlighting urban features (which tend to be higher 

reflecting components in an image).  

 

                5-Wavelet Resolution Merge 

The basic theory of Wavelet Resolution Merge (WRM) is that 

an image can be separated into various high- and low-

frequency components using various high- and low-pass filters. 

The wavelet family can be thought of as a high-pass filter. 

Thus wavelet-based high- and low-frequency images can be 

created from any input image. By definition, the low-frequency 

image is of lower resolution and the high-frequency image 

contains the detail of the image.  

This process can be repeated recursively. The created low-

frequency image could be again processed with the kernels to 

create new images with even lower resolution. Thus, starting 

with a 5-meter image, a 10-meter low-pass image and the 

corresponding high-pass image could be created. A second 

iteration would create a 20-meter low- and, corresponding, 

high-pass images. A third recursion would create a 40-meter 

low- and, corresponding, high-pass images, etc.  

Using wavelets, one can decompose the 5-meter image through 

several iterations until a 40-meter low-pass image is generated 

plus all the corresponding high-pass images derived during the 

recursive decomposition. This 40-meter low-pass image, 

derived from the original 5-meter pan image, can be replaced 

with the 40-meter multispectral image and the whole wavelet 

decomposition process reversed, using the high-pass images 

derived during the decomposition, to reconstruct a 5-meter 

resolution multispectral image. The approximation component 

of the high spectral resolution image and the horizontal, 

vertical, and diagonal components of the high spatial resolution 

image are fused into a new output image. If all of the above 

calculations are done in a mathematically rigorously way, one 

can derive a multispectral image that has the high-pass (high-

frequency) details from the 5-meter image [13]-[15] In this 

scenario, it should be noted that the high-resolution image 

(panchromatic) is a single band and so the substitution image, 

from the multispectral image, must also be a single band. There 

are tools available to compress the multispectral image into a 

single band for substitution using the IHS transform or PCA 

transform. Alternately, single bands can be processed 

sequentially.  

Multisensor image fusion is a tradeoff between the spectral 

information from LRMI sensor and the spatial information 

from an HRPI sensor. With the wavelet transform fusion 

method, it is easy to control this tradeoff [16]. 

 

          

  6 High-Pass Filtering 

Improving wavelet-based Resolution Merge functionality led 

to advancement of the High Pass Filtering (HPF) add-back 

method to the level at which it yields results comparable to 

redundant wavelets but with much smaller computation time 

and data space requirements.  

The general algorithm [17], [18] is;  

a) The ratio between multispectral cell size to high-

resolution cell size is calculated for quick bird 

imagery, R=4 

b) Then HPF of high spatial resolution image is 

derived. This operation produces the HPF image. A 

high pass convolution filter kernel (HPK) is created 

and used to filter the high-resolution input data. The 

size of the HPK is a function of the relative input 

pixel sizes, R. All values of the kernel are set to –1 

except the center value. There are three possible 

values for the kernel center value. The lowest of the 

three values for each kernel size is the default.  

c) Resample the multi-spectral image to the pixel size 

of the high-pass image. The low spatial resolution 

image is resampled to the pixel size of the high 

resolution image using a bilinear algorithm (4 

nearest neighbors). The resulting image will, 

therefore, have the same pixel size as the high 

resolution image.  

d) Add the HPF image to each multi-spectral band. The 

value of the weight W applied to the HPF image, 

prior to addition to the multi-spectral image, depends 

on both R and the standard deviations (SD) of both 

the HPF image and multi-spectral band. In addition, 

the weight is allowed to vary so you can adjust the 

crispness of the result. The calculation for each band 

of the input image will then be:  

Pixel (out) = [Pixel (in)] + [HPF x W]  

e) Stretch the new multi-spectral image to match the 

mean and standard deviation of the original (input) 

multi-spectral image. 
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7-Ehlers Fusion 

 

    The first step is to transform the low resolution       

multispectral image into an Intensity-Hue-Saturation (IHS) 

image working with three selected bands (RGB). Next, the 

panchromatic image P and the intensity component I are 

transformed into the spectral domain using a two-

dimensional Fast Fourier Transform (FFT). The power 

spectrum of both images is used to design the appropriate 

low pass filter (LP) for the intensity component and high 

pass filter (HP) for the high resolution panchromatic image. 

Based on the ratio of pixel sizes between the high and low 

resolution images, cut-off frequencies for these filters can be 

established [19]. Filtering will be directly performed in the 

frequency domain as it involves only multiplications. An 

inverse FFT transforms both components back into the 

spatial domain. The low pass filtered intensity (I
LP
) and the 

high pass filtered panchromatic band (P
HP
) are added and 

matched to the original intensity histogram. At the end, an 

inverse IHS transform converts the fused image back into the 

RGB domain 

 

III- EVALUATION CRITERIA FOR DATA 

 FUSION TECHNIQUES 

 

In the preceding section, the mathematical models of the seven 

methods were expressed. The performances of each method 

will be assessed by comparison to a reference. Then, the 

methods will be ranked according to the conclusions of the 

visual analysis and the results from quality budgets. We will 

use the consistency property recommend by [20] which states 

that any synthetic image, once degraded to its original 

resolution, should be as close as possible to the original image. 

In other words, spatial degradation of the fused image should 

lead to the original image or close. Consistency, however, is a 

necessary condition, and its fulfillment does not imply a correct 

fusion. Many of the methods tested during this contest use 

multi-scale approaches in order to inject high spatial frequency 

components while preserving low spatial frequency 

components. Fusion methods adopting such approaches usually 

check this property [7]. When reference MS images are 

available for comparisons with fusion results, assessment of 

fidelity to the reference usually requires computation of a 

number of different indices as indicated below. 

 

1- Average Correlation Coefficients (CC) 

 

  The correlation between each band of the fused image and 

reference MS images is calculated. Lower value of correlation 

indicates higher spectral distortion and vice versa. 

 

2- Bias in the Mean and standard deviation 

 

The bias between fused and MS image indicate the amount 

of deviation of the fused image. 

 

 

 

 

3- Root Mean Square Error (RMSE) 

  

The comparison is also made on the basis of the mean 

squared error (MSE) between the true MS images and the 

fused images.  

 

 

 

Where n and m are number of pixels, fi represents the true 

MS image intensity value at the i
th
 pixel and f'i is the 

corresponding fused MS image intensity. 

 

4- Average angle error 

 

Given two spectral vectors v and  vf, both having L 
components, in which v =  {v1, v2, . . . , vL} is the original 

spectral pixel vector, while  vf = { v1,  v2, . . . ,   vL} is 

the distorted vector obtained by applying fusion to the 

coarser resolution  MS data, the Spectral Angle Mapper 

(SAM) denotes the absolute value of the  spectral angle 

between the two vectors. 

 

 

A value of SAM (1) equal to zero denotes absence of 

spectral distortion, but radiometric distortion is possible 

(the two pixel vectors are parallel but have different 

lengths). SAM is measured in either degrees or radians and 

is usually averaged over the whole image to yield a global 

measurement of spectral distortion. 

 

 

5- Relative dimensionless global error in synthesis (ERGAS) 

 

 Error index offers a global picture of the quality of the     

fused product. This is given by: 
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 dh/dl is the ratio between the pixel sizes of Pan and MS, e.g., 1/4  

  for Ikonos and QuickBird data. 

  µ(l) is the mean (average) of the l
th
 band,  

  L is the number of bands.  

  The ideal value of ERGAS is zero. 

 

6- Quality index Q4 

 

Q4 [21], [22] is obtained through the use of correlation 

coefficient CC between hyper-complex numbers, quaternion, 

representing spectral pixel vectors. Q4 is made of three 

different factors: The first is the modulus of the hyper-
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complex CC between the two spectral pixel vectors and is 

sensitive to both the loss of correlation and to spectral 

distortion between the two MS data sets. The second and 

third terms, respectively, measure contrast changes and mean 

bias on all bands simultaneously. 

The modulus of the hyper-complex CC measures the 

alignment of the spectral vectors. Therefore, its low value 

may be detected when radiometric distortion is accompanied 

by spectral distortion. Thus, both radiometric and spectral 

distortions may be encapsulated in a unique parameter. 

All statistics are calculated as averages on N × N blocks, 

either N = 16 or N = 32. Eventually, Q4 is averaged over the 

whole image to yield the global score index. The highest 

value of Q4, attained if and only if the test MS image is equal 

to the reference, is one; the lowest value is zero. 

 

 

IV- EXPERIMENTAL RESULTS AND EVALUATIONS 

  

In order to validate the theoretical analysis, the performance of 

the representative methods discussed above was further 

evaluated by experimentation. A quick-bird panchromatic 

image HRPI (455–900 nm) of 0.7-m resolution and the red 

(631.9–697.7 nm), green (520–600 nm), blue (450–520 nm) 

and NIR (760–890 nm) bands of the 2.8-m resolution LRMIs 

were used in this experiment. The images cover the area of the 

pyramid, Cairo, Egypt acquired on 2000. The pair of images 

was geometrically registered to each other after being 

resampled to 0.7 m resolution using cubic convolution 

technique. Quick-bird data was collected at 11 bits per pixel 

(2048 gray tones). This means that there is more definition in 

the gray scale values and the viewer can see more detail in the 

image. In order to benefit from this additional information, the 

processing and evaluation were entirely based on the original 

11-bit data and the data was converted to eight-bit for display 

purposes only. Fig. 1 shows the HRPI. and the natural color 

image of the original LRMIs (red–green–blue combination) is 

shown in Fig. 2. The NIR band is not shown but was processed 

and numerically evaluated as well. The study area is composed 

of various features such as cars, buildings, trees, lawn, etc., 

ranging in size from less than 1 m up to 100 m. It is obvious 

that the HRPI has better spatial resolution than the LRMIs and 

more detail can be seen from the HRPI. Table-3 gives the 

correlation coefficients (CCs) between the HRPI (down-

sampled to 2.8-m pixel size) and the original LRMIs, which 

show that the CC of the NIR band is comparable with the CCs 

of other bands, indicating that the Quick-bird NIR band is very 

important to the Quick-bird PAN band as the other bands.  

 
Table 3.  Correlation Coefficients for the Quick-Bird HRPI 

(Resampled at 4-m Pixel Size) and the Original LRMIS 

 

 

 

  

  

The modified IHS and Brovey Transform methods can only 

handle three bands. In order to evaluate the NIR band as well, 

we selected the red–green–blue combination for true natural 

color and the NIR–red–green combination for false color. 

The resolution ratio between the Quick-bird HRPI and the 

LRMIs is 1: 4. Therefore, in the HPF resolution merge a 5 X 

5 boxcar filter was used. 

The fused results of the PCA, Multiplicative, Brovey, 

Modified HIS, HPF, WRM, and Ehlers methods are displayed 

in Figs. 3–9, respectively. Since the results are too large to be 

assessed together, for better evaluation, Fig. 10 shows sub-

scenes from the original natural color composite and the 

corresponding results together. The performance of each 

fusion method should be evaluated in terms of the quality of 

the degraded fused image compared with the original LRMIs. 

It should be as identical as possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Original HRPI (panchromatic band). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Original LRMIs (RGB)  
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                         Fig. 3. Result of the PCA Method.                                         Fig. 4. Result of the Multiplicative Method 

 

 

 

 

 

 

 

 

   

 

 

 
                     Fig. 5. Result of the Brovey Method                                               Fig. 6. Result of the modified IHS 

 

 

 

 

 

 

 

 

 

 

 

 
                        Fig. 7. Result of the HPF Method                                                Fig. 8 Result of WRM Method                                        

   

 

 

 

   

 

                                                  

                          

 

 

 

 
Fig. 9. Result of Ehlers Method. 
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Fig. 10. Subscenes of the original LRMIs, HRPI and the fused resulting HRMIs by different methods (double zoom). 

                   (Left to right sequence, row by row). Original LRMIs, Original HRPI, PCA, Multiplicative, Brovey, HIS, HPF, 

                                      WRM, and Ehlers. 

 

Visual inspection provides an overall impression of the detailed 

information and the similarity of the original and resultant 

images. Comparing the spatial quality of all the resultant 

images (Figs. 3–9) with that of the original images (Figs. 1-2) 

visually, it is obvious that the spatial resolutions of the resultant 

images are higher than that of the original images. Some small 

features such as building edges, which were not interpretable in 

the original image, can be identified individually in each of the 

resultant images. Trees and buildings are much sharper in the 

resultant images than in the original images. It is easy to see 

this effect in Fig. 10. This means that all of the used methods 

can improve spatial quality via the fusion process. In figures  

 

4 and 6 multiplicative and HIS methods produce a significant 

color distortion with respect to the original LRMSI. In Fig. 3 

the PCA methods produce noticeable color distortion with 

respect to the original image, however it looks better. In Figs. 7 

and 8, the HPF and WRM methods produce color distortion in 

instances such as water bodies and vegetated areas. In Fig. 7, 

the HPF method also exhibits slight color distortion, as in the 

bright built up area, for instance, but better than WRM methods 

(see also Fig. 10). This may be due to the large ripple outside 

its band-pass in the frequency response of its low-pass filter. 

Nevertheless the Ehlers method looks better than all of the 

other methods in terms of the quality of spectral information.  

 

The HPF and WRM methods look sharper than the others. 

However, this is probably due to over-enhancement along the 

edge area because these additive methods have not considered 

the differences in high-frequency information between the 

panchromatic band and the multispectral bands, so this should 

not be considered as a merit of the HPF and WRM methods. 

The quality of spectral information is the principal criterion. In 

Fig. 10, it can be seen that the Ehlers method also gives better 

spatial quality than the HPF method. Overall, it is obvious by 

visual inspection that the Ehlers method gives the synthesized 

result closest to what the corresponding multi sensors would 

observe at the high-resolution level. 

In addition to the visual analysis, the performance of each 

method was further quantitatively analyzed by checking the 

(next or following) seven properties. The correlation 

coefficient (CC), bias in mean, bias in standard deviation,  

Root mean squared error (RMSE) between the original MS 

images and the fused images, SAM, ERGAS, and Q4.  

 

ERGAS and Q4 indicate the evidence of quality in terms of 

spatial details, while the RMSE, SAM, bias in mean, bias in 

standard deviation and correlation values reflect the fidelity 
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of spectral information. For example, the   RMSE, bias in 

mean, SAM, and ERGAS should be as low as possible. On 

the contrary, the higher the correlation coefficient and Q4 are, 

the better the fusion is. The obtained results are summarized 

in Table 4.  

 
Table 4. Quantitative Assessment of the Fusion Results Provided 

By the Considered Techniques Applied To the Quick Bird Data 

Set: (A) Band 2, (B) Band 3, (C) Band 4 (The IHS and BT 

Techniques Have Been Applied To Bands 2, 3, and 4 False-Color 

Compositions) 

 

 

As can be observed from the table, the measures used to 

evaluate data fusion techniques can be divided into two groups, 

group indicate the spectral characteristics of fused image 

including CC, bias in mean, bias in standard deviation, RMSE, 

and SAM. The other one measure the spatial characteristics 

including ERGAS and Q4.   

Firstly regardless of spectral evaluation, as correlation 

coefficients between original LRMIs and fused images go high, 

it is an indication that the fused image exhibits same spectral 

characteristics as original image. It is clear that Ehlers followed 

by WRM have the highest correlation values. On the other hand 

HPF shows smallest shift, bias in mean, between original and 

fused images distribution followed by PCA. While Wavelet 

Resolution Merge introduces the best curve fitting, standard 

deviation bias, between the two distributions of original and 

fused images, also it provides the best value of RMSE. SAM 

which indicate the absence of spectral distortion, PCA comes 

with the best value followed by HIS  As can be seen from the 

results of spectral evaluation using the previous measures, there 

is a conflict between the measures, this is due to the following:  

Bias in mean and stander deviation give an over all imagery of 

the distribution between original and fused images, distortion of 

fused image is not noticeable due to engage in recreation of 

these measures. 

CC is insensitive to a constant gain and bias between two 

images and does not allow subtle discrimination of possible 

fusion artifacts. 

SAM with value of zero, denotes absence of spectral distortion, 

but radiometric distortion is possible (the two pixel vectors are 

parallel but have different lengths).  

Secondly regardless of spatial evaluation, ERGAS measure 

shows that Ehlers is the best followed by HPF and WRM while 

Q4 introduce HIS as the best one followed by HPF. Again there 

is a conflict between which technique is the best. The reason of 

this conflict due to:  

ERGAS offers a global picture of the quality of the fused 

product. It depends upon mean and RMSE of each band which 

introduce vagueness indications. 

Although Q4 measures the alignment of the spectral vectors (its 

good when radiometric distortion is accompanied by spectral 

distortion). All statistics are calculated as averages on N × N 

blocks. Eventually, Q4 is averaged over the whole image to 

yield the global score index. This average process may 

introduce uncertainty results. 

 

CONCLUSION 

 

The performance of many existing image fusion techniques 

including, modified Intensity–Hue–Saturation (IHS), Brovey 

Transform (BT), Principal Component Analysis (PCA), 

Multiplicative Transform (MT), Wavelet Resolution Merge 

(WRM), High-Pass Filtering (HPF), and Ehlers fusion, are 

assessed and evaluated. Visual and objective performance 

evaluations of the used techniques have been conducted using 

Quickbird data. Both spectral and spatial qualities of the 

fused products were assessed. It can be concluded that; From 

experimental results, by combination of the visual inspection 

results and the quantitative results, it is possible to see that 

there is inconsistency between the different used measures. 

The visual analysis has been confirmed by the quantitative 

evaluation. 
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