

Abstract—In today’s world the majority of information is
accessible via the World Wide Web. A common way to access this
information is through information retrieval applications like web
search engines. We already know that web search engines flood their
users with enormous amount of data from which they cannot figure
out the essential and most important information. These
disadvantages can be reduced with question answering systems. The
basic idea of question answering systems is to be able to provide
answers to a specific question written in natural language. The main
goal of question answering systems is to find a specific answer. This
paper presents an architecture of our ontology-driven system that
uses semantic description of the processes, databases and web
services for question answering system in the Slovenian language.

Keywords—Ontology, Natural language processing,
Question answering system, Semantic web, Web ontology
language, Web services, Semantic web.

I. INTRODUCTION

owadays the internet is becoming a huge dump of
documents, links and all other sorts of information. Most

common possibilities to explore this information are
information retrieval applications such as web search engines
[7]. We already know that web search engines flood their users
with enormous amount of data from which they cannot figure
out the essential and most important information.

Despite the fact that search engines are doing an excellent
job, they still return too much inaccurate information. The
solution to this problem can be found in the form of question
answering systems, where the user gives a question in natural
language, similarly to talking with another person. The answer
is the exact information instead of a list of possible results.
These answers can be retrieved from domain-specific
knowledge corpuses or other external resources like web
services.

This article is segmented into eight chapters. The following
chapter describes ontologies and semantic description of
domain-specific knowledge. The third chapter describes the
process used for ontology mapping to the relational database.
The following chapter interprets the use of question templates.
The fifth chapter describes integration of external knowledge
resources. This chapter also explains semantic description of

web services. The sixth chapter reveals the importance of user
behavior. The seventh chapter describes the architecture and
processes of our question answering system. The eighth
chapter presents the complexity of application user interface.
Chapter nine concludes with the summary and suggestions for
our future work.

II. SEMANTIC DESCRIPTION OF DOMAIN SPECIFIC

KNOWLEDGE

The majority of information available on the web is suitable
for human use. This is the main reason why computer
applications have a problem understanding this data [2].

Fortunately, this problem can be solved by using the
semantic web. Semantic web is an extension of the World
Wide Web. As the name itself suggests, the purpose of the
semantic web is to precisely define unambiguous computer
understandable metadata, thus enabling computers and people
to work in cooperation [4]. The main purpose of the Semantic
Web is driving the evolution of the current Web by allowing
users to use it to its full potential thus allowing users to find,
share, and combine information more easily. The key element
is that the application in context will try to determine the
meaning of the text or other data and then create connections
for the user. One of the most important components of the
semantic web are ontologies which can significantly enhance
understanding and description of information.

Ontologies are one of the main approaches used in the scope
of knowledge management and artificial intelligence to solve
questions related to semantics, with current relevance in the
semantic web. They describe an abstract model of a domain by
defining a set of concepts, their taxonomy, interrelation and
the rules that govern these concepts in a way that can be
interpreted by machines. Contemporary ontologies share many
structural similarities, regardless of the language in which they
are expressed. Most ontologies describe individuals
(instances), classes (concepts), attributes, and relations [1].

Web Ontology Language (OWL) is a formal knowledge
representation language for authoring ontologies. OWL makes
the language intuitive for humans and to have sufficient
expressive power to describe machine-readable content needed
to support semantic web applications [12]. OWL satisfies the
semantic web’s requirements of providing minimal investment
of human producers and consumers and supporting software

A Question Answering System on Domain
Specific Knowledge with Semantic Web

Support

Borut Gorenjak, Marko Ferme, Milan Ojsteršek

N

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

141

requirements for a language with explicit semantics.
The resulting OWL language is based on W3C standards

and provides producers with information representation
features to define their own ontologies and to extend others’
ontologies. It supports expressive statements in a manner that
supports scalability. OWL builds on XML and allows users to
provide machine-readable semantic annotations for specific
communities of interest.

OWL is used to make statements, called assertions, about
classes, properties and individuals. Assertions can be stated in
a single ontology or in a combination of multiple joined
ontologies.

While the current web focuses on supporting humans
reading text, its infrastructure provides opportunity for more
sophisticated applications. One objective of OWL’s
developers was to provide layering of language features.
Figure 1 presents one layered conceptual view of the semantic
web. The layers shown are not true layers in sense of
networking models but illustrate rough dependencies. Each
layer depends on the layer beneath and uses their features to
provide its capability. The figure shows that the top layer, the
implementation layer, provides specific applications. In the
layer below, the logical layer, OWL supports formal semantics
and reasoning. Below OWL, the Resource Description
Framework (RDF) Schema (RDFS) language supports
ontological primitive layers. RDF supports the basic relational
language layer through its simple data model and syntax for
making statements. RDF is serialized using RDF/XML. XML
and XML Schema data types support the transport/syntax layer
and Uniform resource Identifiers (URIs) and namespaces
support the symbolic / reference layer.

Applications

RDF and RDF/XML

RDF Schema

Ontology Languages

(OWL Full, OWL DL, OWL Lite)

XML and XMLS data types

URIs and namespaces

Individuals

Implementation

layer

Logical layer

Ontology primitive

layer

Basic relational

language layer

Transport/Syntax

layer

Symbol/Reference

layer

Fig. 1 Semantic web’s layered architecture

As demonstrated, RDF(S) and OWL are useful languages

for representing ontologies and metadata on the semantic web
[13]. However, once this metadata has been published, query
languages are required to make full use of it. SPARQL

Protocol and RDF Query Language (SPARQL) aims to satisfy
this goal and provides, as the name states, both a query
language and protocol for RDF data on the semantic web.
SPARQL can be thought of as the SQL of the semantic web
and offers powerful means to query RDF triples and graphs.
Trying to use semantic web without SPARQL is like trying to
use a relational database without SQL. SPARQL makes it
possible to query information from databases and other diverse
sources across the web.

A RDF data is represented as a graph. SPARQL is therefore
a graph-querying language, which means that the approach is
different than SQL where people usually deal with tables and
rows. Moreover, it provides extensibility within the query
patterns (based on the RDF graph model itself) and therefore
advanced querying capabilities based on this graph
representation.

SPARQL can be used to query independent RDF files as
well as sets of RDF files, either loaded in memory by the
SPARQL query engine or through the use of a SPARQL-
compliant triple store. Therefore, there is currently a need to
know which files must be queried before running a query. This
can be an issue in some cases and can be considered as a
hurdle to overcome.

SPARQL offers four query forms that can be used to run
different types of queries:

• SELECT, used to retrieve information based on a
particular pattern,

• CONSTRUCT, used to create RDF graph based on
RDF input and that can be used as a translation service
for RDF data between different ontologies,

• ASK, used to identify if a particular query pattern can
be matched on the queried RDF graph,

• DESCRIBE, used to identify all triples related to the
particular object that must be described.

III. ONTOLOGY MAPPING TO THE RELATIONAL DATABASE

As we describe in the previous chapter, we needed a way to
formalize ontologies. At the beginning we chose OWL for our
knowledge representation [11]. We have been using Protégé, a
free, open source ontology editor and knowledge-base
framework [3]. It is a great tool for creating semantic web
content, but we were concerned with its suitability for our end
users. Our users are ordinary people, who do not know
anything about ontologies and semantic web. OWL contains
much more than we needed for our system. We also needed
support for phrases and their synonyms.

All this led us to the conclusion that we have to build our
own ontology representation. We took the idea of OWL, which
has been reduced with irrelevant elements. We added Domain,
Process, Phrases and Synonyms to our solution. We also added
the semantic description of methods and parameters, which
will be described in detail in the fifth chapter. Our ontology
mapping to relational database is shown in fig.1.

All elements in figure 1 are presented as tables in relational

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

142

database. A domain is used to narrow information to a specific
domain. It can be nested in other sub-domains and combines
multiple processes for a specific domain. Domain can be
nested in other sub-domains and combines multiple processes
for a specific domain. We specify a domain with the title and
corresponding description. A process is supported by certain
knowledge, which is represented by classes. A class is the
focus element of ontology. Classes describe concepts in the
domain. Therefore every class needs its own properties. A
property has a name, a description and a data type. We used
only basic data types (integer, double, string, date …). We
optionally extended data types with regular expressions. We
added this feature for faster and easier searching by property
instances. With such regular expressions we can accurately
determine word phrases. Property instances are the most
important part of ontology for us in term of detecting entities
of question templates.

Word phrases and synonyms are usually not part of the
ontology, but we have deliberately used them for our ontology.
Every single word we are using in our ontology (name, title,
description, instance values) is stored as word phrase in a
special database table. Every word phrase is linked to its
original element via synonym and could have one or more
synonyms. This approach also determines ontology instances.

PROCESS

PROPERTY INSTANCES

C
L
A
S
S
 I
N
S
T
A
N
C
E
S

DOMAIN

METHOD

PARAMETER

CLASS

PROPERTY PROPERTY PROPERTY

SYNONYM

PHRASE

Fig. 2 Ontology mapping to relational database

While our question answering system supports external
resources, methods and parameters are also included in our
ontology representation. Methods are part of different
processes. For easier and more accurate parameter
determining, a method is also associated with a class in which
they collect data for the parameters. While we are dealing with
three different types of external resources (web service, DLL
library and database stored procedure), we have to describe
them exactly. We have a special attribute in a database table
where we describe an external resource. Information that
describes external resources is as follows:
• Web service – web service URL address, service name,

method name, parameters.
• DLL library – DLL binary data, class name, method

name, parameters.
• Stored procedure – connection string, command name,

parameters.

Parameters in these descriptions are only pointers to the real
description of the parameter. A parameter is stored in a special
database table and is further linked to the class property. Every
method represents parameters as a special class with
properties. We already mention that properties are extended
with regular expression. In situations when we need to call
external method with parameters of different data type, it is
very convenient to verify data with regular expressions.

It is important that the question answering system is able to

provide answers as fast as possible. This is the main reason,
why we built the whole idea as a relational database solution.
We believe that a relational database is an optimal solution for
us in terms of speed of data searching. A response time of our
question answering system is between 2,5 and 5 seconds. The
results are not very impressive but it is still enough that users
don’t need to wait for answers for a long time.

IV. USING QUESTION TEMPLATES

Natural language processing is a domain of Computer
Linguistics [10]. Programs and algorithms should behave like
they understand natural language [5]. Natural language is
ambiguous and contains many synonyms, which can be
understood differently, depending on the context of the
sentence or even paragraph. The key to understand the
importance of the sentence is identification of entities.
Methods for determining the meanings of phrases are generally
based on the use of a large knowledge corpus. Most of those
methods are slow, since they use a large amount of data and
the results are average. This applies to the Slovenian language
since there is currently no good enough semantic dictionary for
it [6]. Therefore, we used a completely different approach and
introduced the question templates in the context of domain-
specific knowledge.

Question templates are a bridge between sentences and
ontology. They are used for approximative substitution of

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

143

relations between entities in our ontologies. Templates can be
equated with the ontology as formal presentation skills in the
context of a domain. Elements of the question templates are
entities composed of phrases, synonyms, class properties or
even method parameters. We have basic and complex
templates. Basic templates are composed of a question
template that is related to a single answer template.

Example of basic question template:

What is the e-mail address of [Person_FirstName]

[Person_LastName]?

What | is | the | of – words
e-mail address – phrase
[Person_FirstName] – ontology driven data that represents
a class Person and its property Name
[Person_LastName] – ontology driven data that represents
a class Person and its property Surname

Question template above has only one answer template:

[Person_FirstName] [Person_LastName] e-mail address is

[Person_Email].

 e-mail address – phrase
[Person_FirstName] – ontology driven data that represents
a class Person and its property Name
[Person_LastName] – ontology driven data that represents
a class Person and its property Surname
[Person_Email] – ontology driven data that represents a
class Person and its property Email

 In complex cases, when the user didn’t provide enough

information for a unique response, we have to ask a
supplementary question. This way the question templates can
be related to the template of the second question (sub-
questions). This approach leads us to our question answering
dialog representation.

Example of complex question template (question answering
dialog):

What is the price of a [Phone_Manufacturer]

[Phone_ModelName] when using [Phone_PackageName]

package?

In this example we won’t be explaining question template
entities, since we have done that in the previous example.
When the user doesn’t provide all three needed information
(ontology driven data), the question template above cannot
return a simple answer template. Because of this we have to
build supplementary sub-questions carefully. In our case these
sub-questions should be:

a) What is the manufacturer name of your cell phone?

b) What is the model name of your cell phone?

c) What is the package name you are using?

When the user enters all information we needed, then we can
start exploring the returned answer template. In our case an
answer template should look like this:

The price for a [Phone_Manufacturer] [Phone_ModelName]

when using [Phone_PackageName] package is

[Phone_ReturnPhonePrice] EUR.

We can see that this complex template also includes the use of
an external resource. [Phone_ReturnPhonePrice] represents a
call to a web service method named ReturnPhonePrice.
Unfortunately, from this template, it cannot be seen what
parameters are used by the method. We will dig into this in the
next chapter.

V. EXTERNAL KNOWLEDGE RESOURCES

As our system was developed as an applicative project, we
had a special request. All information that our question
answering system can handle, cannot be presented as an
ontology. Certain information must nevertheless be calculated
and that means we have to obtain that certain data from an
external source.

The most logical approach was to use web services. Web
services are typically application programming interfaces or
Web APIs that are accessed via Hypertext Transfer Protocol
(HTTP) and executed on a remote system hosting the
requested services.

Because we couldn’t get all the information as web services,
we had to extend that process to other ways of calling
methods. At the end we added the ability to call local DLL
libraries and stored procedures from the database. As all three
ways require method calls with the parameters, we need to
provide a way to describe the methods and parameters. We
consider it ideally to describe them with semantics. So we
expanded our ontology representation with method and
parameter description.

As we know from previous chapters, we have mapped our
ontology to a relational database. These three external
resources are totally different in a way of calling methods.
Because we described all three methods with one database
table, we had to find a perfect way to describe them. At the
end we decided to describe them with XML technology. All of
those three methods are unique and require different element
description:
• Web service – web service URL address, service name,

method name, parameters.
• DLL library – DLL binary data, class name, method

name, parameters.
• Stored procedure – connection string, command name,

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

144

parameters.

A special attribute in a database table is designed to record this
XML described information. While we designed very flexible
semantic description of methods and parameters, our system is
ready for expansion to new external resources.

Parameters in XML descriptions are only pointers to the real
description of the parameter. A parameter is stored in special
database table and is linked to the class property. We represent
method parameters as a special class with properties. We
already mentioned that a property is extended with regular
expression. When we are using an external method with
parameters of different data type, it is very convenient to
verify data with regular expressions before we even call the
method.

Because we now had three dissimilar ways of calling the
methods, we also had to develop a special software wrapper.
The software wrapper must figure out, from the semantic
description, how to call methods with certain values for
parameters and how to return and transform the returned
calculated values.

VI. USER TRACKING

In applications that run as web applications we don’t have
any control about user inputs, so it is wise to track all user
activities during the use of application.

Our system offers active and passive user tracking. Active
tracking allows users to tell their opinions about a certain
answer with a simple button click. The system even allows
users to comment replied answers. Meanwhile, the passive
tracking has a whole different approach which is very
unobtrusive and users don’t even know about it. Passive
tracking uses client-side cookies for anonymous user tracking.
We are trying to detect a context switch, which tells us about
users’ satisfaction.

With such actions we can constantly update our knowledge
database. We can even track user questions and answers
returned by our system. If we encounter a certain amount of
errors in the responses, we can take appropriate action such as
template rebuilding or restructuring of semantic data
representation.

On the other hand we can generate all kinds of statistics that
help us understand our users’ behavior.

VII. QUESTION ANSWERING PROCESS

The question answering process always starts with the user’s
input. The whole question answering process is shown in Fig.
3. When the user enters a sentence, the process for detecting
entity candidates is executed. We already know that templates
are composed of entities and that’s why we have to find the
appropriate candidates for the template matching process. An
entity candidate detection process uses our domain specific
knowledge database for detecting entities. Entities are
recorded as instances of our ontology. At that stage our
process uses a dialog states table, where the actual state of user

dialog is stored. That is very important for understanding what
data has already been entered by the user. We can detect
individual entities (words, word phrases, ontology-driven data)
using lemmatization [9]. This process is time-consuming and
extends the entire question answering process. Instead of
lemmatization process we introduced a whole new and
different approach. The new algorithm is based on sequence
matching with subsequence analysis [8]. We all are aware that
user inputs can sometimes be incomprehensible because of
typing mistakes or using a dialect in sentences. In these
situations the lemmatization process often fails, while the
sequence matching with subsequence analysis process gives
more accurate results.

POGOVORNI SISTEM

DIALOG

STATES

TABLE

ENTITY

CANDIDATE

DETECTION

TEMPLATE

MATCHING

ANSWER

GENERATION

BASED ON

TEMPLATE

EXTERNAL

INFORMATION

SOURCES

DOMAIN SPECIFIC

KNOWLEDGE

(ONTOLOGY)

WRAPPER

ONTOLOGY

INSTANCES

TEMPLATES

USER ACTIVITIES

TRACKING

Fig. 3 Question answering process

The sequence matching with subsequence analysis algorithm
operates in comparing subsequences with entities which are
stored as ontology instances in the ontology database. The

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

145

algorithm is very complying and allows all sorts of typing
errors as long as the percentage of success is greater than or
equal to 70% of matching entities. This limit was defined by
running algorithm through a large corpus of misspelled words.

Because we are still in a development phase, we can raise
this percentage anytime we like. The entity candidate detection
process only finds understandable words that are similar to the
ontology instances. The sequence matching with subsequence
analysis algorithm is not designed to work only with the
Slovenian language, but it also works with other languages
(i.e. English language).

The most important task in the whole process is the template
matching process. This process must decide which question
template is the most similar to the sentence entered by the user.
Entity candidates and a dialog state list help that process to
find the best calculated question template. A simplified Lesk
algorithm is used to determine the correct meaning of each
word in a given context by locating the sense that overlaps the
most between its ontology definition and the given context
[14]. Rather than simultaneously determining the meanings of
all words in a given context, this approach tackles each word
individually, regardless of the meaning of the other words
occurring in the same context. The algorithm compares all
entity candidates with entities from each question templates.
We have to consider that some entities can be driven directly
from ontology instances and others from set of entities
returned from external resources. The matching entities are
summarized. The highest percentage of summarized matching
provides a resultant question template.

Question templates are also ranked, which helps us restrict
our choice. In case the algorithm matching result is less than
80% system treated this as no match found. This situation does
not lead to a one-way street, but gives the user advice on
which question template to use.

Now, when the appropriate question template is found, we
can generate an answer related either to an answer or a sub-
question template.

If the entity in the template is represented as an external
information resource, we have to a find semantic description of
that source in our ontology. An external information resources
can be a web service, a DLL library or a stored procedure in a
database. A specifically written software wrapper then calls the
appropriate method, which returns the result that represents the
required entity values.

Before the answer is shown to the user, a special process
records the user activity and alters the dialog state table. If the
dialog with the user is not finished yet, an answer is formulated
as a question. At that stage we have entered the question
answer dialog.

VIII. USER INTERFACE

In the design field of human-computer interaction, the user
interface is a place where interaction between humans and
machines occurs. The goal of interaction between a human and
a machine at the user interface is an effective operation and

control of the machine, and feedback from the machine which
aids the operator in making operational decisions.

Our question answering system is built as an application that
needed two different parts of user interface for two totally
different types of users. The most important part is designed
for the general public users. These users can only input
sentences and wait for an answer responded by the server. We
are aware that users are not accustomed to such systems, but
rarely using the search engines. Somehow we need to make
sure they start communicating with the system as they would
be talking to another person.

For this purpose we designed a flash animated female
character so that users would imagine talking to a virtual
person (fig. 4). The animated character can simulate facial
expressions responsive to the user’s input. The graphical user
interface is also equipped with an input text box and a large
panel for displaying returned answers. At the end of each
answer response users can tell their opinions about the answer
with a simple button click.

User interface clearly shows that question answering system
indicates desire for using voice user interface.

Fig. 4 Main user interface

 The second part of user interface is adjusted for ontology
generation (fig. 5). Many would think this is not an important
part of application, but they are wrong. Despite this part of
user interface is named the administration, it is much more
than that. The ontology generation process is very demanding.
This process needs a lot of expertise and for domain specific
knowledge there is a very small amount of experts. Therefore
the user interface should be accommodated to them.
 The user interface in figure 5 looks very busy. The fact is
that we were not able to provide the optimal user interface for
generation of ontologies. Whereas we initially used Protégé,
there are visible similar guidelines in the user interface. At the
beginning we tried to design a totally different and easier user
interface, but it is hard to beat the many times used and tested
Protégé user interface.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

146

 While everything in the user interface is attached to
ontology, we designed a special control for that purpose.
Because ontologies are hierarchically organized, we developed
a special TreeView control. This control is capable of showing
the whole hierarchical structure of our ontology including:
domains, processes, classes, properties and methods. The
TreeView control is quickly filled with hierarchical data and
the whole control become useless in term of navigating
through ontology classes. Therefore we upgraded the
TreeView control with a smart filtering engine.
 The right side of user interface is designed for input forms.
But everything is not as simple as it looks. We had to design a
Tab control which can handle multiple forms on various tabs.
When the user selects an element in the TreeView control,
certain tabs become available or unavailable depending on the
selected element.
 Inserting ontology instances is a slow and time-consuming
process, and nobody likes it. It’s fairly easy to create classes
and properties, but the insertion of thousands of instances is
really hard work. Because of this we added the ability for
importing instances from comma separated text files and MS
Office Excel files.

Fig. 5 Ontology generation user interface

At the time of writing this article, the user interface is

available only in Slovenian language.

IX. CONCLUSION

This article describes our ontology-driven question
answering system with semantic web services support. While
we didn’t want to build large knowledge corpuses of Slovenian
language, we decided to semantically describe our domain-
specific knowledge. The key component to our system is a
well defined and semantically described ontology based
knowledge database. Although there are some methods for
storing ontologies, we built our own ontology mapping to
relational database.

Because the question answering system should somehow

understand natural language we managed to provide question
templates. Question templates are a bridge between sentences
and ontology. The template matching process is the most
important part in our system. This process is responsible for
the entire conversation dialog. The answer generation process
is also built on top of the question templates. Some entities in
those templates should be filled from ontology instances or
even from external knowledge resources like web services.
Our question answering system also tracks user’s behavior.

A challenge for our future work is to improve algorithms for
entity candidate detection and to speed up the algorithm for
finding the minimum distance in question templates.

In the same question template ontology-driven data can
represent only properties of the same class. We found this is
not convenient in every situation. For that purpose we will
have to append our ontology representation with relations
between classes and properties. This will allow us using mixed
class properties in the question templates. We are also
considering introducing a specially defined language for the
question templates. This language can drastically change the
algorithm for finding the minimum distance in question
templates.

A special treatment will be given to expand the set of
external resources. We have built a scalable system that allows
expansion of external resources. The priority on that will be
given to Java class methods.

The introduction of relations between objects will most
likely change the user interface. Therefore user interface will
share some redesign. We also consider translating user
interface into the English language.

Our ontology based knowledge database should always
grow. You can get good results only if you have a large
enough and quality knowledge corpus.

REFERENCES

[1] G. Antoniou, F. Harmelen, Web Ontology Language: OWL
[2] I. Čeh, M. Ojsteršek, Developing Question Answering System for the

Slovene Language, WSEAS transactions on information science and
applications, Issue 9, Volume 6, September 2009.

[3] The Protégé Ontology Editor and Knowledge Acquisition System,
http://protege.stanford.edu, visited on October 2010.

[4] N. Shadbolt, W. Hall and T. Berners-Lee, The Semantic Web Revisited,
IEEE Intelligent Systems, Volume 21, No. 3, 2006.

[5] E. Sneiders, Automated Question Answering Using Question Templates

That Cover the Conceptual Model of the Database, Proceedings of the
6th International Conference on Applications of Natural Language to
Information Systems-Revised Papers, 2002.

[6] I. Čeh, M. Ojsteršek, Slovene Language Question Answering System,
Proceedings of the 13th WSEAS International Conference on
COMPUTERS.

[7] T. M. T. Sembok, H. B. Zaman, R. A. Kadir, IRQAS: Information

Retrieval and Question Answering System Based on A Unified Logical-

Linguistic Model, 7th WSEAS Int. Conf. on ARTIFICIAL
INTELLIGENCE, KNOWLEDGE ENGINEERING and DATA BASES
(AIKED'08).

[8] M. Ferme, M. Ojsteršek, Sequence matching with subsequence analysis,
Proceedings of the European Conference on Advances in
Communications, Computers, Systems, Circuits and Devices
(ECCS’10).

[9] J. Brezovnik, M. Ojsteršek, TextProc – A Natural Language Processing
Framework, Proceedings of the European Conference on Advances in

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

147

Communications, Computers, Systems, Circuits and Devices
(ECCS’10).

[10] Y. Ledeneva, G. Sidorov, Recent Advances in Computatonal

Linguistics, Informatica, Issue 34, 2010.
[11] D. Lavbič, M. Krisper, Facilitating Ontology Development with

Continuous Evaluation, INFORMATICA, Volume 21, No. 4, 533-552,
2010.

[12] L. W. Lacy, OWL: Representing Information Using the Web Ontology

Language, Trafford Publishing, 2005.
[13] J. G. Breslin, A. Passant, S. Decker, The Social Semantic Web, Springer,

2009.
[14] F. Vasilescu, P. Langlais, G. Lapalme, Evaluating Variants of the Lesk

Approach for Disambiguating Words, LREC, 2004.

B. Gorenjak is a teaching assistant at University of Maribor, Faculty of

Electrical Engineering and Computer Science. He graduated in 2000 and
received his Master’s degree in 2004 at Faculty of Electrical Engineering and
Computer Science at University of Maribor. His research interests are natural
language processing, Computer Human Interaction, Question-answering
systems, ontologies and semantic web. He has been involved in several
research and commercial projects on question-answering systems.

M. Ferme is a teaching assistant at University of Maribor, Faculty of

Electrical Engineering and Computer Science. He graduated in 2008 at
Faculty of Electrical Engineering and Computer Science at University of
Maribor. His research interests are natural language processing, Question-
answering systems, ontologies and semantic web. He has been involved in
several research and commercial projects on question-answering systems.

M. Ojsteršek is an associate professor at University of Maribor, Faculty of

Electrical Engineering and Computer Science. His research is focused on
heterogeneous computing systems, semantic web, service-oriented
architecture, natural language processing and dialog systems.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

148

