

Abstract— In this study, a real time 3D virtual simulation

software for visualizing the military battlefields was developed.

Developed software, named Sandbox, used elevation data stored in

DEM format corresponding to the battlefield. Sandbox uses this data

to create the platform on which the military units will be added.

Different military units can be added in the software. Military units

were viewed by both using a recent military symbology, NATO-APP-

6A, and 3D models of the real military units. Software uses

translation animation for the position updates. Since data

transmission between different platforms was considered, developed

software extensively uses XML based data. A database was used for

long term storage of received reports. Web services were used to

transmit and receive reports to/from remote field observers and

change the state of the software.

Keywords—3D Battlefield Visualization, Sandbox, Military

Decision Making, XNA, Database, MS SQL Server, Web Services

I. INTRODUCTION

N a crisis environment, commanders have to view the

situation in a clear and accurate way, identify a winner

strategy and then act accordingly. This requires a good

perception of the battlefield. Technological advances in

software provide new opportunities for this issue.

In today’s modern warfare, the uncertainty of battlefield is

much greater than it was before. Battlefields have spread to

very wide areas of ground and the importance of military

intelligence has increased tremendously. Consequently

classical map techniques, in which a printed map of the

battlefield was used to view the battle-space, had proven to be

insufficient.

Commanders needed [1] efficient visualization systems to

view the most recent data about the current military situations

in order to make efficient decisions that would lead to victory.

With these needs in mind, a virtual military sandbox software

was developed for modeling and simulation of battlefield and

war games.

Manuscript received December 5, 2009.

B.K. Author is head of the Department of Computer Engineering in

Ankara University. Ankara, 06500, Turkey (e-mail: bkoyuncu@ankara.edu.tr)

E. B. Author is with the Department of Computer Engineering in Ankara

University. Ankara, 06500, Turkey. (corresponding author to provide phone:

+90-536-633-8620; e-mail: erkanbostanci@gmail.com).

II. DEVELOPMENT

The study was based on obtaining 3D digital geographical

data, visualizing military units with their real time information

and transmitting this information for other remote decision

making mechanisms.

An important issue here is using a recent and common

format for entity representation in the system. For this reason,

a common and well documented symbology (NATO-APP-6A)

was used in this study.

The emphasis was made on visualization in this study

therefore it is aimed to include features such as modeling the

terrain data obtained with different textures representing grass,

desert or snow terrain; viewing the battlefield from different

directions, zooming-in/out and using two different camera

angles (vertical, oblique and mobile).

In addition to the features mentioned, for more efficient

visualization some 3D models of the military units were

introduced to the system. This both decreased the time spent

for learning the system and resulted a better view of the

current military situation.

Web service features were implemented in the system to

enhance the communication between commanders. This

feature prevented the decision making process from being one-

dimensional.

A. Graphical System

A Window’s forms application was developed to visualize

the battlefield. In order to draw the battlefield and the military

units XNA was employed [2]. XNA is a graphics framework

and is used with C# programming language.

1) Basic View

In this study, military units were displayed in the battlefield

by using military symbology named NATO-APP-6-A [3]. This

symbology included the necessary information for each

military unit such as unit type, affiliation, position information

and report date and time as given in Fig.1. In a previous

implementation simple geometric shapes were used for

modeling military units and it was concentrated more on the

efficient visualization of the terrain [4].

3D Battlefield Modeling and Simulation of War

Games

Baki Koyuncu, Erkan Bostancı

I

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

1

Fig.1 Objects were displayed as symbols in the battlefield in

the basic software

Battlefields were modeled with the data obtained from

USGS web site in DEM format. A specific file-parser class

named DEMFile was implemented for this type of data. This

parser was inherited from a more general Elevation-Data class

which included the general information about regional

elevation data and elevation limits.

The connection between the military objects and their

representation are shown in Fig. 2. An entity object has symbol

and affiliation objects in it. These objects ease the handling of

each entity, for instance Affiliation class stores both the

affiliation information itself and the colour used to represent

the affiliation type. Similarly, SymbolInformation class stores

the image file used as a texture to view the entity.

A separate class named SymbolImageManager is

implemented to store all the images used in the symbology so

that the user does not have to wait for the loading of the image

in run time when he/she tries to update the symbol.

In the implementation, unit objects also included a Shape

type object in order to be viewed in the graphical part. This

object stores information about a simple box on which the

symbology will be applied as a texture. This object stores

transformation information. Transformation information

included translation, scaling and rotation information about the

model. In addition, necessary matrices such as view, projection

and world for the rendering of all units are stored in the object.

Similarly, an Entity object stores an object of type Shape3D.

This class is very similar to the Shape object; however it stores

a 3D object of the military unit instead of a simple box. With

these classes provided, both the symbology and the 3D model

of the units can be displayed.

In order to handle the entities created either by user entry or

remote information in a compact manner, a container class

name EntityManager was created. This class provided the

basic operations needed to access a selected entity by using its

identification. In other words it is the EntityManager object in

the system which was called as the “Entity System”.

Fig.2 Entity system

In this container class, a SortedList type of data structure

was used to increase the retrieval speed for an entity. An entity

is looked-up in the list, given its identification, and returned as

the active entity when the user selected the entity from the user

interface by using mouse clicks.

2) Inclusion of Military Models

In addition to the military symbology, 3D models of the

military units were added to the software in order to improve

reality. Hence, the visual quality was improved and learning of

the symbology was simplified.

 All the models were edited in the 3D Studio Max software

and their polygon numbers were optimized. Here the methods

used previously were used. Using the MultiRes modifier,

polygon numbers were reduced.

 Later the models were converted in FBX format which can

be used in XNA. This conversion process required the

following steps:

1. Original model was copied to the Content folder of the

project.

2. Then the model is imported by the 3D Max software.

3. The model is exported in FBX format by using the Panda

plug-in.

4. Models texture sizes are adjusted to be 2n x 2n.

5. Finally, processed textures are copied to the model’s

folder.

This process allowed the models to be used in XNA easily.

 Before the 3D models are viewed by the software, the

differences between the models arising from modeling process

were minimized. An important size difference was identified

as the scale inconsistency. For example, a jeep model can be

few times greater than a tank model if no scaling is applied to

one of them or both. This difference exists since different

modelers do not use a common scale while generating their 3D

models. Appropriate scale levels were introduced by bringing

several models together and identifying their relative sizes.

These processes had to be performed manually for both single

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

2

and groups of models which constituted one of the most time

consuming parts in the study.

 In addition to scaling, a default heading vector for all

models was considered as the positive z axis (0, 0, 1). This

heading vector was used in the rotation of the models

according to their new positions entered by the user. After this

operation the default rotation angles were specified for the

models. These angles will be the initial rotation for the

calculations those will be performed when a new position for

the unit is entered.

 After the operations mentioned above are performed, the

optimal transformations were obtained.

 With the default scale and rotations specified, the models

can be viewed on the battlefield according to its symbol. User

can select between the symbol or the 3D models to view the

military unit by using a pop-up menu.

 A class named Shape3D was designed to manipulate the 3D

models. This class worked as an element of the Entity class. It

stored the necessary transformation information in order to

view the model in the exact position entered by the user. Major

classes used in Sandbox are summarized as shown in Fig.3.

 Fig.3 Summary of classes used in the software

3) Determination of an Object’s New Directional Vector

An object has an initial position and a vectoral motional

direction as shown in Fig.3. When a new positional data for

this object is given by the user, the object has to rotate to head

to this new position. This rotation will result a realistic

animation of the models when the models are translated to

their new positions.

The angle required for rotation is calculated by using dot

product between two vectors. These motional vectors are

shown in Fig.4.

Fig.4 Positions, heading vectors and rotation angle

Given the initial heading vector and the new heading vector,

the dot product between the two vectors is given by:

cosa b a b α⋅ =

a and b denote the lengths of the vectors a and b . α is

the angle of rotation. Then α becomes:

arccos
a b

a b
α

 ⋅
=   

 

The following code segment shows how this formula is

implemented in the software:
position2D = new Vector2(position.X,

position.Z);

newPosition2D = new

Vector2(newPosition.X,

newPosition.Z);

newDirection2D =

Vector2.Subtract(newPosition2D,

position2D);

cosAlpha = Vector2.Dot(newDirection2D,

heading2D) / (newDirection2D.Length()

* heading2D.Length());

alpha =

MathHelper.ToDegrees((float)Math.Acos

(cosAlpha));

Once the rotation angle is obtained, the software needs to

know in which direction the rotation will be applied. This is

simply decided by checking the X coordinate of the new

position. If this value is positive, the rotation will be in

clockwise direction and the rotation will be in opposite

direction otherwise.

After these calculations, the model will be aimed to the new

position as shown in Fig. 5.

Fig.5 Aiming the model to the new position

4) Position Update Animation

In [5], selected units appeared directly in the new position

when an update is performed. This can be acceptable for

viewing the last position but not sufficient to estimate the

direction of its movement.

In this study, update operation is performed by the Upda-

teEntities() method of EntityManager class . This method

checks all the objects stored in the software one by one and

updates the positions if necessary.

For the movement (translation animation) of the displayed

objects, the graphics component is refreshed repetitively. In

XNA applications, an Update() method is readily provided for

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

3

this purpose [7]. This method is used to perform the changes

for the scene to be redrawn.

The following assignment was used to allow the graphics

component to refresh itself repetitively:
Application.Idle += delegate

{Invalidate();}

The graphics component will draw the scene continuously

as long as there is no event to be processed. UpdateEntities()

will calculate the positions of the objects in every refreshment

according to their initial and new positional data. Linear

interpolation is used to find the points between these two limits

of movement.

Linear interpolation is implemented by using the Lerp (…)

method of the MathHelper class provided by XNA. In order to

calculate the final position of an object; initial position, new

position and the amount of increment that will be used as a

step size are considered.

The formula used to calculate the final position by linear

interpolation is as follows:

()*initialPosition newPosition initialPosition increment+ −

The increment value is between 0 and 1. When the

increment is 0, formula gives initial position and when

increment is 1, formula gives the new position. The code

segment implementation of the calculated position is given as:
calculatedPosition.X =

MathHelper.Lerp(position.X,

newPosition.X, 0.01f);

calculatedPosition.Z =

MathHelper.Lerp(position.Z,

newPosition.Z, 0.01f);

calculatedPosition stores the position obtained after each

call to the Lerp(…) method. Since the update is performed

continuously, calculatedPosition approaches to the

newPosition by small increments and stops when it reaches.

This approach yields a gradual animated motion of military

units in the scenario.

B. Military Unit Data Storage

The developed Sandbox simulation software has facilitated

the storing of the military unit data. This will allow the users to

save some specific situations in the database and later query

the objects according to some criteria such as object

identification. Hence the data stored, in a way, will act as

military intelligence for future considerations. Microsoft SQL

Server 2005 was used to design and develop the relational

database [8].

1) Database Design

The design of the database was planned according to a

scenario concept that is embedded in the software. Each

military situation is viewed as a new scenario and stored in the

data base. This can be briefly explained as follows:

A military situation consists of a battlefield and the military

units in it. These military units have to store enough

information about a real world event using real world data in

order to perform the visualization. Therefore the database

design followed the same notation with the military symbology

mentioned earlier.

Entity
ID

Affiliation

Type

Quantity

Reinforcement

StaffComments

AdditionalInformation

EvaluationRating

CombatEffectiveness

Position

ID

EntityID

X

Y

Z

ReportDateTime

ID

EntityID

DateTime

Scenario

Number

Terrain

DateTime

ScenarioEntity

ID

ScenarioDateTime

EntityID

Fig.6 Diagram of relations between the tables in the

database

A specific military situation is stored in the Scenario table

with a) its unique identification given with the DateTime table

column and b) the battle field terrain table column as shown in

Fig.6. Entity is the table which stores the information of a

military unit in data base.

The table adopted the military symbology with their fields

such as Affiliation, Type, and Quantity etc Report times and

positions of military units were stored in the ReportDate-Time

and Position tables respectively. The mapping between a

scenario and the entities given in that scenario was stored in

the ScenarioEntity table.

2) Entity Query

Access to the database was implemented using the

ADO.NET API technology which allows accessing database

programmatically. A separate form was designed to view the

stored entities. This form enables users to access the military

data directly and update it.

The approach followed in the software is also known as data

binding [11] where the data in the database is accessed through

the user interface components. A DataGridView was used to

view the data retrieved from the database in a table. This

control requires a DataSource object from which the data will

be obtained in order to be displayed. Several queries were

generated with these data sources in the implementation. The

mapping between the data table and the data sources was

performed by using TableAdapter class in order to execute the

queries on the data source and return the results to the data

table.

Three TableAdapters were used to provide access to Entity,

Position, ReportDateTime tables. Each adapter has one or

more queries to execute. A sample query used in the soft-ware

was shown below:
SELECT ReportDateTime.EntityID,

ReportDateTime.DateTime, Entity.Type,

Entity.StaffComments

FROM ReportDateTime, Entity

WHERE(ReportDateTime.EntityID =

@entityID AND Entity.ID =@entityID)

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

4

In the given SQL statement, data from ReportDateTime and

Entity tables are retrieved as the query result. ID is the primary

key in the Entity table and is a foreign key in ReportDateTime

table. Therefore it was checked against the given entityID

variable. The ‘@’ symbol denotes that entityID is a variable

will receive its value in the runtime from the corresponding

method of the table adapter.

C. System Update Using Web Services

Developed software allows exchanging reports from field

observers to affect the system in addition to the input made by

a single computer. Web services were used to communicate

the two tiers named client and server. This architecture is

depicted in Fig.7.

Fig. 7. Communicating two applications via web services

The web service resides in the server part. This server does

the necessary communication between the main application

and the clients. All the communication is made using

Communicate web service. This service does the two-way

communication from client to server and from server to client.

In the first direction, new information for the military units

from observers in the field is sent. The opposite direction

server sends the current state (which entities are available in

the system) by both the identities of the units and a snapshot of

the visualized battlefield.

In order to send unit data with this service, two user-defined

classes named EntityData and Report are created. The former

class stores data about a military unit such as unit identity,

position information, affiliation and reporter comments on the

unit. The latter class stores a dynamic list of EntityData’s and

additionally stores time information about the report. Time is

added to the report just before the report is sent from the

client.

The service has several methods to send/receive the reports

from/to client to/from the server. Fig. 8 shows how the reports

are transferred both ways in XML format. ReportList tag

shown in the figure constitutes a parent node for several

military units. Each units position, affiliation and comments on

this unit are transferred. Following the list time data exists to

denote the time when the report is sent.

Fig. 8 Report in XML format

Sandbox sends its current state to the observers in a

frequency of ten seconds. This information is sent in form of

an image which is obtained by changing the default rendering

target to an image target instead of the user screen for a while.

This will allow the instant view to be copied on an image. The

image will be sent to the clients using the web service.

With the web service introduced, Sandbox software will be

able to view the most recent information about the battlefield

obtained from remote observers.

III. RESULTS

Developed software allows users to open a USGS DEM

terrain file and displays the terrain from different view-points

such as vertical and orthographical views. The battlefield can

be displayed using one of grass, sand or snow textures in order

to model the terrain conditions in the battlefield.

Military units can be added to the battlefield by using the

“Entity System” menu. This menu provides several features for

addition, update or deletion of these units from the software.

The objects can be shown using both the symbology

mentioned and the 3d models of military units. Users are able

to select any unit from the graphical part and display its data

on the left panel. This panel is also used to update the selected

unit’s data. Changes are reflected on the graphical part in real

time. Especially when the user updates the position

information for an object, the object moves to the new position

in an acceptably realistic manner.

A sample output of the software is given in Fig.9 where the

units are positioned in the battlefield. A tank battalion is

located on the north-east and an enemy aircraft is approaching

towards them. Artilleries are positioned on the east and a

reconnaissance jeep is gathering field information on the west.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

5

Fig.9 Military units in the battlefield

Fig.10 Displaying the battlefield in different scenario

A different war scenario is given in Fig.10. An air-defense

unit is targeting a combat supply plane and a helicopter is

delivering direct supporting fire to this unit. Infantries in the

battlefield are simply shown by the symbology (boxes with

cross on them).

A database was introduced in the developed software in

order to store the data about military units. Additionally,

scenarios are also saved in XML data format as proposed in

[12].

Fig.11 Data view provided to access the database

Fig.11 shows the data view part of the software which allows

direct access to the database within the application. Users are

able to make several queries about a specific unit. Results of

the queries are displayed in a data table.

One of the most important parts of the software is certainly

updating the system by reports received from remote

observers. A sample scenario is given as Fig.12 in order to

explain this usage. Three reconnaissance jeeps are collecting

field information; however they get close to the enemy lines.

The report tool is given in Fig.13 and Fig.14. This tool is

updated by the web service frequently. The tool has two views.

First is the part where reports are entered, and the second part

is where the view from the Sandbox software is presented.

Field observer who learned that the enemy tanks are aware of

the jeeps reports this situation using the report tool as in

Fig.15. Reports can be sent for any number of units. Save

button is clicked for each unit report.

Fig. 12 A sample beginning scenario for the report tool

usage

Fig. 13. Displaying the unit IDs (existing in Sandbox) in the

report tool

“Send Report” option of the Report menu is clicked in order

to send the report for all units. Hence, the report is send via the

web service to the Sandbox software.

When Sandbox software receives the reports, it updates the

units indicated in the report and starts animating these units in

the graphical part. This update is reflected to the battlefield as

in Fig.16.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

6

Fig.14. Tranfer of the latest status of Sandbox software to

report tool

Fig.15 Reporting new positions and comments for the

selected unit

Fig.16 Updating Sandbox according to received reports

This panel shown in Fig.17 is the navigation panel that is

visible on the upper right corner of the software. This tool

allows users to see the battlefield from any direction and zoom

levels. Angle of the camera and the camera positions can be

changed here. The battlefield can be rotated to right and left.

Also the zoom in and out can be performed by the users.

Fig.17 Navigation panel

IV. CONCLUSION

Developed software will facilitate the decision making

processes with received intelligence. A realistic visualization

of the battlefield will allow the commanders to perceive the

current situation in a more efficient manner.

In previous work, the military units were represented with

simple geometrics shapes [4]. This notation is not sufficient to

represent all types of military units although how many

geometric shapes are used. In the thesis study, a subset of the

NATO-APP-6A symbology developed by [3], was used in

order to view a wide range of military unit types.

The software extensively uses XML format in data

transmission as proposed by [12]. This usage will facilitate the

data transmission between different platforms and will allow

changing the data format in an easy manner. Received reports

from remote field observers are added to the system with the

usage of web services. In addition, the current state of the

simulation software is transmitted to these observers and

checked by them. Therefore Sandbox simulation software is

compliant with the requirements of a modelling and simulation

environment specified in [19].

The software developed is not very complex in structure it

has a comprehensive coverage of the military information. In

addition, the flexibility of the software will allow responding

to future requirements. Although this study tried to cover many

technologies for battlefield management, this area is a

continuously improving and open-ended in integrating the

most recent technologies. These suggestions presented here

may guide the future work:

• More 3D models can be added to the system in order to

provide a more realistic virtual environment. Architectural

models, some earth features will help in displaying the battle

field in a greater detail. In addition, for some operations such

as hostage rescue, whole model of a city can be introduced.

• Clash effects and explosions may be introduced. The level

of adding these effects depends on the purpose of

development. It is both possible to develop a strategy game

working with real world data and a tool for decision making

with some limited animation features.

• Web services can be used to transmit reports from several

types of mobile devices such as smart phone or PDA. With the

applications that will be developed, in addition to the remote

observers even the war-fighters will be able to report the most

recent situation to the system. Similarly technologies presented

in [18] can be used as well.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

7

• BBN (Bayesian Belief Networks) is an efficient modeling

tool to construct cause and effect relations in many different

areas in addition to other decision making tools as described in

[15], [16] and [17]. If some new information is present and the

reliability of this information is not certain, then it will be

possible to make decisions on this information. For instance, if

it is known that a military unit exists in the field. Then if an

activity report is received for this unit, it is possible to

construct a decision mechanism according to the reliability of

this report. Sample BBN for this situation is given in Fig. 18.

Fig. 18 Suggested BBN model

Finally, Sandbox will bring new initiatives for battlefield

management and for simulation of the war games by using

both the visual features and the advanced data handling

capabilities of the developed software. The software and its

source code can be accessed freely from

http://comp.eng.ankara.edu.tr

REFERENCES

[1] Taylor G, Wood S and Knudsen K, “Enabling Battlefield Visualization:

An Agent Based Information Management Approach”, 10th International

Command and Control Research and Technology Symposium: The

Future of C2, USA, 2005

[2] Lobao, Evangelista and Faris, “Beginning XNA 2.0 Game

Programming”, Apress, USA, 2008

[3] Thibault D.U, “Commented APP-6A-Military symbols for land based

systems”, Canada, 2005

[4] Cadet Daniel Arnett. et al. “Tactical Terrain Visualization System”

Simmons, Systems and Software Technology Conference, USA, 2004

[5] Koyuncu B, Bostancı E, “A Scenario Based Virtual Military Sandbox

Implementation Using Web Services”, Proceedings of International

Conference on Advanced Computer Control, Singapore, 2009

[6] Kanbur, “3D Studio Max Visualization and Modelling”, Pusula

Publishing, Turkey, 2005

[7] MSDN XNA Documentation, http://msdn.microsoft.com/en-

us/library/microsoft.xna.framework.game.update.aspx (Last access:

November 17th, 2009)

[8] Elmasri, Navathe, “Fundamentals of Database Systems”, Addison-

Wesley, 2004

[9] Durbin, J.; Swan, J.E. et al, “Battlefield visualization on the responsive

workbench”, Visualization apos;98. Proceedings, pp. 463-466, 1998

[10] Simon Julier et al. “The Software Architecture of a Real-Time

Battlefield Visualization Virtual Environment”, Proceedings of the

IEEE Virtual Reality, ISBN:0-7695-0093-5, USA, 1999

[11] Deitel and Deitel, “C# for Programmers”, Prentice Hall, USA, 2006

[12] Reginald L. Hobbs. “Using XML to Support Military Decision

Making”, XML Conference and Exposition Proceedings, USA, 2003

[13] Shiau Y, Liang S, “Real-time Network Virtual Military Simulation

System”, 11th International Conference Information Visualization, IEEE,

Switzerland, 2007

[14] Robert A. Wisher et al. “The Virtual Sand Table: Intelligent Tutoring for

Field Artillery Training”, Research Report 1768, US Army Research

Institute for Behavioral and Social Sciences, USA, 2001

[15] Gia Sirbiladze, Bezhan Ghavaberidze, Pridon Dvalishvili, Proceedings

of the 11th WSEAS International Conference on Automatic Control,

Modelling and Simulation, ISBN: 978-960-474-082-6, pp.297-302

[16] Jerzy Balicki, Multi-criterion Decision Making by Artificial Intelligence

Techniques, Proceedings of the 8th WSEAS Int. Conf. on Artificial

Intelligence , Knowledge Engineering and Databases (AIKED '09),

ISBN: 978-960-474-051-2, pp.319-324

[17] Bara Adela,Diaconita Vlad, Lungu Ion, Velicanu Manole, Decision

Support Systems – Improving Performance with Object Oriented

Implementation, Proceedings of the 8th WSEAS Int. Conf. on Artificial

Intelligence , Knowledge Engineering and Databases (AIKED '09),

ISBN: 978-960-474-051-2, pp.331-336

[18] Meiqun Liu, Kun Gao, Knowledge Extracting Platform Based on Web

Service, Proceedings of the 3rd WSEAS International Conference on

Computer Engineering and Applications (CEA'09), ISBN: 978-960-

474-41-3, pp.81-86

[19] Tolk A., “A Common Framework for Military M&S and C4I Systems”,

Spring Simulation Interoperability Workshop, 2003, Florida, USA

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

8

