

Abstract— Model-to-Model mapping has several advantages

over relational mapping. In model-to-model mapping an active
correspondence is kept between two pairs of models. This is
facilitated if graphical models are used. UML 2 activities are based
on Petri net like semantics and substantial literature exists explaining
their conversion into Petri nets. This paper explains how UML 2
activities can be formally mapped into Petri nets or Petri net
semantics from a theoretical, practical and operational point of view
adding on previous work of Triple Graph Grammars (TGGs). UML
activity constructs are classified and identified. This is useful for
creating a basic set of TGG rules. Generic TGG rules are identified
and created. The rules are mainly intended for forward
transformation. An example is given illustrating the conversion
process. The concepts presented can be elaborated further and even
extended to other visual models or notations.

Keywords—Activity Diagrams, Petri Nets, Triple Graph

Grammars, Unified Modeling Language

I. INTRODUCTION
ML 2 activity diagrams are important structured visual
modeling notations useful for describing different types

of behavior found in computer and information systems [2],
[17]. UML 2 activities can be used formally or informally.
Practical uses of activity models are for i) web processing, ii)
web service composition, iii) business process modeling [21],
iv) workflow modeling, v) systems integration, vi) task
management and vii) low level tasks like software operations.
UML 2 activities are suitable for modeling the diverse
requirements of many traditional scenarios. Activities provide
for visual modeling that can be easily understood. UML 2
activities evolved from UML 1.x diagrams based on state
machines. UML 2 activities do not only specify system
behavior but they can also be used for code generation and
can be combined with high level languages like BPEL.
Activities place particular emphasis on control flows, event
sequencing, conditions and coordination. Activities have
gained widespread acceptance for modeling different
scenarios. Activities can be derived from use cases or
constructed directly. The UML 2 superstructure specifies
basic rules for node execution based on tokens. UML 2

Manuscript sent Nov 25, 2009: revised Feb 2009
A. Spiteri Staines is with the Department of Computer Information

Systems, Faculty of ICT, University of Malta, Msida, MSD 2080, Malta,
Europe. phone: 00356-21373402; fax: 21312110; (e-mail:
toni_staines@yahoo.com, tony.spiteri-staines@um.edu.mt)

activities introduce new concepts like collections, streams,
exception handling, etc. Activities have gained widespread
acceptance for modeling different scenarios. Activities can be
derived from use cases or constructed directly. The UML 2
superstructure specifies basic rules for node execution based
on tokens. UML 2 activities even introduce more new
concepts like collections, streams, exception handling, etc.

 Activity processes are suitable for abstraction into activity
models. High level models are suitable for transformation into
executable processes and different languages. Activity models
are not a proper formalism and need proper verification and
validation. Transforming activities into Petri nets or Petri net
classes seems to be the best solution. This is evidenced from
previous work [7]-[9],[18]. Petri nets seem to have a dual
identity. They have a graphical representation and a textual or
language description.

Until now, most methods of translation of UML activities
into Petri nets are based on specific approaches or models.
UML activities are translated into Petri nets, colored Petri nets
and other formalisms. Translation into colored Petri nets and
formalisms normally require more work. Several motivating
factors exist for transforming UML 2 activities into Petri nets.
Activities can be supported using formalisms like CCS, logics,
formal specification languages, etc. However many of these
are non visual. It has been explained in [18],[7]-[9] that higher
order nets and colored Petri nets seem to be the best choice.
However in this work the focus is on presenting a general
solution and ‘simplifying’ the mapping process. For this
reason more weight is given on using ordinary place transition
Petri nets to explain the idea.

II. RELATED WORKS
Different research exists evidencing the need to support

UML notations using Petri net models. Some examples are
found in [1],[3]-[9],[13]-[16],[23]. One method of
transforming UML use case constructs to colored Petri nets
(CPN) is based on multi layers [1]. Use cases are the starting
point for activity modelling, where no proper formalisms have
been used. In [2] a UML 2 activity model for an online multi
role playing game is transformed into a special type of Petri
net (PEPA net) and analyzed. The transformation process is
again informal.

A well structured, semi formal method is presented to
translate activities into LGSPNs (labeled generalized
stochastic Petri nets) in [3]. These are very useful for

A Triple Graph Grammar Mapping of UML 2
Activities into Petri Nets

 A. Spiteri Staines

U

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

27

performance analysis. Unfortunately the approach seems to be
a relational one. Case tools found in the LaQuSo project [5]
are used to transform basic activity diagrams into simple Petri
nets. HLTPNs (higher level timed Petri nets) have also been
indicated for supporting and formalizing the UML.

 In [7]-[9] it is explained how activity semantics and
constructs are classified and translated into Petri net
semantics. The preferred Petri nets class indicated are colored
Petri nets or higher order nets.

 The UML can be formalized using Petri net like
semantics. A CPN based formalization of the UML is
presented in [6]. Transforming UML 2 activities into a Petri
net semantics has been formalized in [5] and [8]. In [8] a
semantic function is described and given. This converts an
activity diagram <activity node, activity edge> into a CPN.
Practically all these approaches are more about relational
issues rather than operational. Petri nets are also found in
Fundamental modeling concepts and apply to activity
modeling in this context. According to [11] TGGs are suitable
for expressing UML activity workflow patterns because of
graph-to-graph mapping. TGG can maintain a
transformational correspondence between two different
models [12]. This correspondence is operational. In the
Fundamental modeling concepts method or approach
presented in [10], Petri nets are used for modeling behavior in
a context similar to activity modeling. In [20] the strengths of
UML 2 activities, in conjunction with Petri nets, are used for
structural and performance evaluation. This confirms the
importance of using Petri nets and UML activities for
workflow analysis. A mapping scheme for transforming
activities into Petri nets is recommended. In [19] incremental
model synchronization is explained. Incremental model
synchronization makes use of TGGs. Model synchronization
refers to incremental changes that are carried out. Using the
TGG concept, incremental changes in a model should
correspond to changes in a mapped model.

According to the UML 2 superstructure specification
activity diagrams are structured into different classes that have
different levels of behavior ranging from simple to more
detailed.

III. MOTIVATION
The motivation for transforming activities into Petri nets is

that UML 2 activities are based on Petri Net like semantics
according to the UML 2 superstructure specification.
Activities have a higher level of abstraction. Activities share
common properties with Petri nets. This is not properly
explained in the UML specification. Both Petri net and
activity diagrams are can be classified as types of directed
graphs Different approaches to transforming activities into
Petri net classes have been suggested. Previous work
evidently shows the importance of this. Some are informal,
others are semi formal or completely formal. Some of these
approaches are quite complex. E.g. a transformation function
can be used. These approaches still do not explain the actual

transformation process and normally the transformation is too
cumbersome to use. Most transformational approaches explain
or formalize the actual correspondence. They do not actually
explain how to carry out this transformation from a practical
perspective. A solution is therefore necessary.

Possible solutions are using QVT, ATL or TGGs. These
solutions suggest Model to model mapping. This would
definitely be an operational solution.

Model transformation is important in the field of automated
software engineering [22]. For this work, model to model
mapping using a Triple Graph Grammar approach is being
proposed. Model transformation and visual model mapping
have become increasingly popular over the years. This is
evident from the OMG approach where QVT (query, view,
transform) is used to support UML and also with work related
to ATL (Atlas transformation language).

 Model-to-model mapping offers several advantages over
other approaches. Transformation with TGGs is not only
relational but also operational as indicated in [12]. The
proposed rules best explain one way of transformation which
is forward transform. The reverse transform requires the
creation of new rules and more information in the Petri net.
The Petri net does not capture all the diverse detail in the
UML activity unless other information is added.

IV. A TRIPLE GRAPH GRAMMAR SOLUTION

A. Triple Graph Grammars
Triple graph grammars (TGGs) have been around for

several years. They are useful techniques for mapping two
different types of graphical models sharing some similar
properties. With TGGs it is possible to i) define and ii) declare
bi-directional transformations. Relationships between the
different models need to be established. A model can be
transformed into another model and correspondence is
computed incrementally. All changes are recorded and
changes can be synchronized. These approaches use similar
concepts to those found in TGGs. TGGs have been well
researched and documented. There are many different
examples of TGGs uses in literature. TGGs describe the
dynamic evolution of different models.

i) Forward Transform after Consistency Check

UML Activity Correspondence Petri Net Class

ii) Reverse Transform after Consistency Check

Fig. 1 UML Activity to Petri net TGG Mapping

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

28

TGGs are based on graph grammars. In simple terms, graph
grammars are visual rules explaining how a graph or part of it,
is to be modified according to certain conditions. E.g. nodes
and edges are added or removed accordingly. Normally a
graph grammar rule has a right hand side and a left hand side
that describes the rule.

 TGG rules are similar to graph grammar rules with the
exception that in TGGs there are three lanes or domains
represented [11],[12]. The left side represents the model, the
middle represents the correspondence and the right lane
represents the transformed model or result. Ideally
Correspondency mapping is should link both models from
different domains. This is shown in fig. 1. If one model
changes, the corresponding model is updated via the
application of rules. Rules can be applied: i) never, ii) once or
iiii) several times.

B. Understanding UML 2 Activities
Comprehending UML 2 activities is the starting point for

this work. UML 2 activities are specified in the OMG UML
super structure specification [17]. To create TGG rules the
understanding and comprehension of the underlying model
relationships is important. The notations can be abstracted into
TGG rules for particular relationships. The conversion rules
are defined in terms of TGGs. The rules cover all the basic
constructs of UML 2 activities. UML 2 activities are classified
into seven main types: i) fundamental, ii) basic, iii)
intermediate, iv) complete, v) structured, vi) complete

structured and vii) extra structured. UML 2 activity nodes
have flow of control constructs that can be used for i)
synchronization, ii) decision, iii) concurrency, iv) sequence
and v) iteration. Each type of activity sub-class addresses the
problems and issues within a particular area. E.g. structured
activities are suited for traditional programming problems.
Structured activities focus on traditional programming, whilst
fundamental and basic activities have a level of abstraction
making them ideal for high level business process modeling.
Fundamental and basic activities are ideal for high level
modeling as is the case when describing business processes or
workflow. Classes suited to Petri net conversion are i)
fundamental, ii) basic and iii) intermediate activities. But this
does not preclude other classes. The most important constructs
belonging to all the activity sub classes are considered here. It
is not specified to which class they belong. From experience
and real scenarios these constructs are important regardless
from where they are taken. A practical solution is being
explained. All subclasses need to be considered in a general
manner.

Given several classes of activities according to the UML
superstructure specification it is possible to identify different
constructs being used, but the most important constructs are
used repeatedly in the different classes. The constructs
considered are mainly derived from intermediate activities.
Intermediate activities inherit from basic activities. Normally
intermediate activities can be used for describing different
information system scenarios.

a:Activity

ae:Activity_Edge an:Activity_Node

actn:Action_Nodecfe:Control_Flow_Edge cn:Control_Node on:Object_Node en:Executable_Node

fn:fork/
join_Node mn:Merge_Node in:Initial_Node fn:Final_Node dn:Decision_Node

as:Special_Edge

ncf:Normal_Control_Flow ecf:Exception_Control_Flow

mm:Merge
_to_Merge

sm:Start_t
o_Merge

mf:Merge_t
o_AFinal

eaf:edge
_to_activity

final

sne:start_
to_Edge

eff:edge_to
_flow final

ne:cnode to cnode
Special_Edge

ecn:edge to cnode
Special_Edge

mf:Merge_t
o_fFinal

cne:cnode to edge
Special_Edge

ff:Flow
Final_Node

af:Activity
Final_Node

Fig. 2 UML 2 Activity node and edge classification for translation into a Petri net

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

29

C. Classifying UML 2 Activity Notations
Activity nodes normally classify into control node and

executable nodes, however action nodes and object nodes are
considered. Normally control nodes, object nodes and
executable nodes have several subclasses. The subclasses help
comprehend the standard behavior specified in the OMG
UML superstructure specification.

Technically speaking activities are composed of i) nodes

and ii) edges. A special edge is used for connecting parts of
object nodes. These are ignored here. There are other
constructs like signal nodes and edges which can be similarly
treated to object nodes.

Fig. 2 explains a generalized the classification of UML 2
activities into nodes and edges as required for transforming
them into Petri nets. This is based on previous work presented
in [7]-[9], [18]. The actual corresponding Petri net constructs
are shown in fig. 3 and 4.

Activity edges can be decomposed into control flow edges.
Control flow edges are composed of i) normal control flows
and ii) exception control flows. For exception control flows or
edges there are i) control node to control node special edges,
ii) edge to control node and iii) control node to edge special
edges. Control node-to-control node special edges are
composed of: i) merge-to-merge nodes, ii) start-to-merge
nodes, iii) merge-to-activity final nodes and iv) merge-to-flow
final nodes. Edge to control node special edges are composed
of: i) edge-to-activity final, ii) edge-to-flow final and control

node to edge special edges have start-to-edge. These
exceptions require special treatment unlike normal edges. A
normal activity edge or normal control flow maps into a Petri

net i) input arc, ii) connected to a place and a iii) output arc
from the place. A normal action node or executable node
translates or maps into a transition. Exception activity edges
are explained in fig. 3.

Activity nodes are classified into i) action nodes, ii) control
nodes, iii) object nodes and iv) executable nodes. Action
nodes and executable nodes convert to Petri net transition
types. Control nodes and object nodes convert to Petri net

place types. Control nodes can be sub classified into i) fork
nodes, ii) merge node, iii) initial node, iv) final node and v)
decision node. Final node can be of two types i) activity final
or ii) flow final.

 Control nodes can be treated similarly and do not
constitute an exception. Fork and join nodes are an exception
to this. A fork or join node is treated as an executable node
and converts into a Petri net transition. Activity nodes are
explained in fig. 4.

 For conversion the adopted procedure is to start
translating the activity model from the starting node visiting
every edge and node in the activity diagram applying each
TGG rule in sequence. All nodes and edges have to be
covered. TGG rules need to be constructed for normal and
exception behavior that has been defined above.

D. Triple Graph Grammar Mapping Rules
A basic set of TGG rules is proposed for the forward

transformation mapping process.

Name, text or expression

{weight = n}

n S2nS1

Name, text or expression

n

S1 S2

Activity Edges Corresponding Petri Net Notation

 Activity Edges Exceptions 1

Object Flows

 Activity Edges Exceptions 2

Fig. 3 Activity Edges and corresponding Petri net constructs

Action1

Type

Action1

Action Nodes

Type

Action1

Type

name

{constraint}

name
{constraint}

Object Nodes

Type

Activity Nodes Corresponding Petri Net Notation

Control Nodes

Fork or Join Nodes

Fig. 4 Activity nodes and corresponding Petri net constructs

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

30

 For simplification purposes addition or insertion rules

shown by ++ are used to illustrate the mapping concept [12].
There are three domains shown in each rule.

This is the i) activity model, ii) correspondence and iii)
Petri net. To simplify the diagram rules, the Petri net domain
node is not always shown. A total of six TGG rules are
created from the classification of the UML activity notations.

The rules created are: Rule 1 Add a New Control Node.
This rule excludes fork or join nodes. Rule 2 Add a New

Executable Node, Action Node or Fork/Join Node. Rule 3
Insert a Normal Activity Edge between existing Action
Nodes. Rule 4 Insert an Exception Activity Edge between
Two Control Nodes. Rule 5 Insert an Exception Activity Edge
for Executable to Control Node. Rule 6 Insert an Exception
Activity Edge for Control Node to Executable Node. These
are shown in fig. 5-10.

These rules capture all the main types of activity behavior
and exceptions. The rules can be used as the foundation for
mapping activities into Petri nets and creating additional rules
for the reverse mapping. The rules are explained in detail
below.

Rule 1 and Rule 2 are generic rules for i) control node
insertion and ii) executable node insertion. At this point, the
implication is that these rules just add the counterpart of a
control or executable node to the Petri net. Control nodes map
into a Petri net place and executable nodes map into a
transition. Action, fork and join nodes which are special cases

Fig. 5 TGG Rule 1: Add a New Control Node excluding fork or

join nodes

Fig. 6 TGG Rule 2: Add a New Executable Node Action Node or

Fork/Join Nodes

Fig. 7 TGG Rule 3: Insert a Normal Activity Edge

Fig. 8 TGG Rule 4: Insert an Exception Activity Edge between Two
Control Nodes

Fig. 9 TGG Rule 5: Insert an Exception Activity Edge for Executable to

Control Node

Fig. 10 TGG Rule 6: Insert an Exception Activity Edge for Control

Node to Executable Node

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

31

are treated as executable nodes and map into Petri net
transitions.

Rule 3: Insert a normal activity edge. Fig. 7 describes the
generalized process of inserting a normal activity edge
between action nodes and executable nodes. A fork or join
construct in the activity model is treated as one of these. This
rule has to be applied in the case of fork and join nodes. These
correspond to Petri net transitions. Rule 3 is more complex
than the other rules. It involves more insertions on the Petri
net side. A normal activity edge is inserted between two action
nodes or activity nodes. It means that on the Petri net side we
have two transitions obtained previously from rule 2. The two
transitions are connected by placing an output arc from the
first transition, the output arc connects to a place which is
connected using an arc to the last transition. This is shown in
the activity edge and corresponding Petri net notation in fig. 3.

Rule 4 explains how to insert an exception activity edge
between two control nodes. The two control nodes could be
any type e.g. merge, start, end, flow final, activity final. Flow
final and activity final are treated similarly. These are shown
in fig. 2 at the bottom left hand side. Inserting the edge
between these nodes corresponds to an output Petri net arc
from the first control place. This connects to a transition
which has an outgoing arc which inputs to last control place.
The existing places are the result of rule1 initially.

Rule 5: Inserts an exception activity edge from an
executable node to a control node. This is relatively simple
and an arc is inserted between an existing transition and a
place.

Rule 6: inserts an exception activity edge between a control
node and an executable node. This is similar to Rule 5.
Normally the initial node is a control node. But there can be

other control nodes like merge, initial etc. Fork and join are
excluded because they are treated like executable nodes. This
has already been explained above. On the Petri net side an arc
is used to connect a place to a transition. The place and
transition would have been created using previous rules.

Table 1 summarizes the six rules for the forward
transformation process that have been described.

V. CASE STUDY
An example similar to that found in the UML 2

superstructure specification [17] is presented to illustrate the
mapping process. Fig. 11 shows an activity diagram for
processing a customer order. Basically a customer order is
received. The order is accepted or rejected. If it is accepted it
is filled out and then there are some parallel activities like ship
order, send invoice, make payment and accept payment. If the
order is rejected these steps are skipped and processing goes
directly to terminate the order. If the order is accepted then all
the steps need to be concluded before termination.

The activity diagram requires the use of all the six TGG
rules presented for conversion into a Petri net model. The

RECEIVE
ORDER

FILL
ORDER

SHIP
ORDER

SEND
INVOICE

MAKE
PAYMENT

ACCEPT
PAYMENT

END
PROCESSING

[ACCEPT ORDER]

[REJECT ORDER]

Fig. 11 UML activity for order processing

TGG

RULE ACTION

RULE 1 ADD A NEW CONTROL NODE
(EXCLUDES FORK/JOIN)

RULE 2 ADD NEW EXECUTABLE ACTION or
FORK/JOIN NODES

RULE 3
INSERT NORMAL ACTIVITY EDGE

(between EXECUTABLE,ACTION, FORK/JOIN
NODES)

RULE 4 INSERT EXCEPTION ACTIVITY EDGE
(between TWO CONTROL NODES)

RULE 5 INSERT EXCEPTION ACTIVITY EDGE
(EXECUTALBE TO CONTROL NODE)

RULE 6 INSERT EXCEPTION ACTIVITY EDGE
(CONTROL TO EXECUTABLE NODE)

Table 1 Main TGG Rules for Activity to Petri net Forward

Transformation

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

32

resultant Petri net shown in fig. 12 depicts the rules that have
been applied. They are shown using the value e.g. R1 refers to
the application of rule 1. Some rules are applied a number of
times whilst other rules like rule 4 is applied only once. There
is only one merge-to-merge activity edge. The application if

Rule 4 is shown in the resultant Petri net as R4.
The TGG rules can be applied to obtain the Petri net shown

in fig. 12.

VI. ANALYSIS
The approach used is this work is forward transformation

only. The sequence of applying each rule is not shown here.
Model correspondence uses graphical syntax.

The left hand side model is called the source and the right
hand side model is called the target. The transformation rules
presented are mainly intended for forward transform. The
basic algorithm to apply these rules is to visit all the activity
diagram (graph) nodes and edges from start to finish and
sequentially apply each rule. Once all the activity nodes and
edges have been matched the Petri net can be generated.
Ideally the transformation rules should work the other way
round. E.g. from the Petri net we should generate the activity
model. There are problems with the reverse transformation.
The Petri net needs to match the proper activity notations.
Result could be a simplified activity diagram.

There are various possible solutions. E.g. the creation of
two matched models initially and adding or deleting nodes on
particular sides as needed. This is explained as model
integration in [12].

E.g. initial, activity final, flow final, merge, join, fork,
decision etc. all require their own rules. The same goes for
exception control flows e.g. merge to merge, start to merge,
merge to activity final, merge to flow final, edge to activity
final.

Rules 1-3 are the most applied rules. Obviously their
application frequency depends on the activity diagram.

VII. DISCUSSION
The example presented is quite simple. The formal

transformation explained here should work practically for
most activity diagrams. This means that this approach is valid
when common notations are used. However these rules are
manually designed rules. TGG Deletion rules have not been
considered. The transformation approach explained is
forward transformation. The six rules given cover properly
forward transformation. I.e. this implies transforming the
activity which is the source into the Petri net which is the
result. To get full benefit from TGGs there should also be the
possibility of reverse transform. This means that we would
have bi-directional transformation.

Reverse transformation implies that from a Petri net model
it should be possible to derive the corresponding activity
diagram. Although this can be done using the rules given, this
is not sufficient. To convert a Petri net backwards into an
activity model implies that the Petri net has sufficient detail.
E.g. places and transitions in the Petri net must be given
specific identities. E.g. a transition has to be labeled as a fork
or join transition. Places and arcs require special labeling.
This means that from the TGG rules explained more specific
or explicit rules have to be created for each different type of

RECEIVE
ORDER

FILL
ORDER

FORK

SHIP
ORDER

SEND
INVOICE

MAKE
PAYMENT

ACCEPT
PAYMENT

JOIN

END
PROCESSING

[ACCEPT ORDER]

[REJECT ORDER]

R1

R6

R2

R5

R1

R6

R2

R3

R2

R3

R2 R2

R3

R3

R2

R3

R2

R3R3

R2

R4

R1

R1

R5

R6

R5

Fig. 12 Corresponding Petri net with rules

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

33

activity notation complicating things. However the six TGG
rules already defined will be the main starting point for
creating the new rules.

Another issue is that an ordinary place transition net does
not capture enough detail to support all the different activity
notations. A simple solution to this is the labeling of Petri net
places, transitions and arcs. A more extensive solution is to
use higher order nets and colored Petri nets as described in
[18]. However in the latter case the transformation mapping
might be more complex.

Simple Petri nets are used because the main idea of this
work serves to introduce the TGG approach without
complicating things. More work is required to create
something fully functional and useable.

VIII. CONCLUSION AND FUTURE WORK
The work presented here has dealt with the formal mapping

of basic UML 2 activity diagrams into Petri nets. It confirms
the usefulness and importance of TGGs. Activity diagrams
were selected because they are important visual notations and
they are based on Petri net semantics. It has explained how the
mapping can be successfully achieved using TGGs. The TGG
rules just specify the correspondence mapping of activities
and Petri nets graphically using an abstract notation. These
rules can be made operational in different ways and
applications.

 TGGs are useful for formal mapping of two similar
visual notations. Many steps and rules are required and have
to be repeated several times for transformation. Complex
models require the application of several rules a greater
number of times. I.e. just adding a start node, requires two
rules. Buffer nodes, queues and other complex constructs etc.
require special attention that has not been considered as part
of this work.

The TGG rules presented are a simplification and
generalization of what needs to be done. Only addition rules
denoted by ++ have been used. These rules are useful for
intuitional transformation. They could be used in other formal
transformational approaches.

 Actually deletion rules that have not been presented might
need consideration. For mapping the control nodes edges and
edge insertion see fig. 5-7 these are generalized or generic
rules for different activity constructs. From these rules it is
possible to create specific rules for every different control
node type. E.g. for just adding merge node, final node, initial
node, three separate rules need to be created. This means that
more than ten rules will be required. The complete conversion
will become complex to manage. The use of a CASE tool is
recommended.

The TGG rule drawings presented in this paper just give a
brief outline of what needs to be done. They definitely can be
improved to introduce more detail. They have been
constructed indicating the most salient points. The rules can
be appropriately colored or shaded to better indicate what is
being inserted.

Other transformational concepts like model transformation
model integration, model synchronization, node reusability,
constraints need to be considered. These are discussed in [12].
Attributes and other advanced concepts require more work.

The work presented identifies the possibility for more
research. Other diagrams like state machines and state
transition diagrams can be mapped into Petri nets using a
similar approach which might be simpler. This necessitates
further investigation.

 The approach given can be used to understand the
complexity of activity models. It is possible to use other
classes of Petri nets like higher order nets or colored Petri nets
for the transformation process. This would obviously
introduce much more complexity in the mapping process.

REFERENCES
[1] M.E. Shin, A.H. Levis, L.W. Wangenhals, “Transformation of UML-

Based System Model to Design/CPN model for Validating System
Behavior” , Proc. of the 6th Int. Conf. on the UML/Workshop on
Compositional Verification of the UML Models, San Francisco CA., Oct
2003.

[2] C. Canevet, S. Gilmore, J. Hilliston, L. Kloul, P. Stevens, “Analysing
UML 2.0 Activity Diagrams in the Software Engineering Performance
Process” , WOSP’04, ACM, Redwood CA., pp. 77-78, Jan 2004.

[3] J.P. Lopez-Grao, J. Campos, “From UML Activity Diagrams to
Stochastic Petri Nets: Application to Software Performance
Engineering”, WOSP’04, Redwood CA., pp. 25-26, Jan 2004.

[4] J. Merseguer, J. Camposm E. Mena, “On the Integration of UML and
Petri Nets in Software Development”, ICATPN’06, Turku Finland,
LNCS 4024, pp.19-36, Jun 2006.

[5] LaQuSo (2007). LaQuSo Work Group / Project, LaQuSo Repository,
Eindhoven, www.Laquso.com

[6] J. L. Garrido, M. Gea, “A Colored Petri Net Formalization for a UML-
based Notation Applied to Cooperative System Modeling, Interactive
Systems: Design, Specification and Verification”, LNCS 2545, Springer,
pp.16-28, 2002.

[7] H. Störrle, “Structured Nodes in UML 2.0 Activities”, Nordic Journal of
Computing, Vol. 11, No. 3, pp. 279-302, Sep 2004.

[8] H. Störrle, “Semantics of Control Flow in UML 2.0 Activities”, Proc.
of 2004 IEEE Symposium on Visual Languages and Human Centric
Computing, USA, pp. 235-242, 2004.

[9] H. Störrle, J.H. Hausmann, “Reasoning about UML Activity Diagrams”,
Publ. Assoc. Nordic Journal of Computing, Vol. 14 No. 1, pp.43-64,
2005.

[10] A. Knöpfel, B. Gröne, P. Tabeling, Fundamental Modeling Concepts,
Wiley, West Sussex UK, 2005.

[11] C. Lohmann, J. Greenyer, J. Jiang and T. Systä, “Applying Triple Graph
Grammars For Pattern-Based Workflow Model Transformations”,
Journal of Object Technology, Special Issue: Tools Europe 2007, pp.
253-273, Oct 2007. http://www.jot.fm/issues/issue_2007_10/paper13/

[12] E. Kindler, R. Wagner, “Triple Graph Grammers: Concepts, Extensions,
Implementations and Application Scenarios”, Technical Report Tr-ri-
284, University of Paderborn, Paderborn, Germany, 2007.

[13] L. Baresi, M. Pezze, “Improving UML with Petri Nets”, Electronic
notes in Theoretical Computer Science, Elsevier, Vol 44., No. 2, pp.
107-119,Jul 2007.

[14] E. Borger, A. Cavara, E. Riccobene, “An ASM Semantics for UML
Activity Diagrams”, Proc. of 8th International Conference on Algebraic
Methodology and Software Technology, Iowa City, pp. 293 – 308, May
2000.

[15] Z. Hu, S.M. Shatz, “Mapping UML Diagrams into a Petri Net Notation
for System Simulation”, Proceedings of the 16th International
Conference on Software Engineering & Knowledge Engineering
(SEKE'2004), pp. 213-219, Jun 2004.

[16] P. King, R. Pooley, “Derivation of Petri Net Models from UML
Specifications of Communication Software”, Proc. of 11th Int. Conf. On
Tools and Techniques for Computer Performance Eval., pp. 262-276,
Mar 2002.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

34

[17] OMG UML 2 Superstructure Specification. V2.2,
OMG,http://www.omg.org/technology/documents/formal/uml.htm

[18] T. Spiteri Staines, “Intuitive Mapping of UML 2 Activity Diagrams into
Fundamental Modeling Concept Petri Net Diagrams and Colored Petri
Nets”, Proc. of the 15th ECBS conference, pp. 191-200, Apr 2008.

[19] I. Madari, L. Angyal, L. Lengyel, “Incremental model synchronization
based on a trace model”, Proceedings of the 9th WSEAS international
conference on Simulation, modelling and optimization, Budapest,
Hungary, pp. 470-475, 2009.

[20] K. Hee Han, S. Kyu Yoo, B. Kim , “Qualitative and quantitative
analysis of workflows based on the UML activity diagram and Petri net”
, WSEAS Transactions on Information Science and Applications, vol. 6
, no. 7, pp. 1249-1258, Jul 2009.

[21] W. Rungworawut, T. Senivongse, “A Guideline to Mapping Business
Processes to UML Class Diagrams” , WSEAS Trans. on Computers, vol.
4, no. 11,pp. 1526–1533, 2005.

[22] T. Levendovszky, L. Lengyel, H. Charaf, “Extending the DPO approach
for topological validation of metamodel-level graph rewriting rules”,
WSEAS Transactions on Information Science and Applications, Issue 2,
Vol. 2, pp. 226- 231, Feb 2005.

[23] A. Spiteri Staines, “Modeling UML Software Design Patterns Using
Fundamental Modeling Concepts (FMC)”, Proceedings of the 2nd
WSEAS European Computing Conference, Malta, pp. 192-197, Sep
2008.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 4, 2010

35

