
 

 

  
Abstract— Model-to-Model mapping has several advantages 

over relational mapping. In model-to-model mapping an active 
correspondence is kept between two pairs of models. This is 
facilitated if graphical models are used. UML 2 activities are based 
on Petri net like semantics and substantial literature exists explaining 
their conversion into Petri nets. This paper explains how UML 2 
activities can be formally mapped into Petri nets or Petri net 
semantics from a theoretical, practical and operational point of view 
adding on previous work of Triple Graph Grammars (TGGs). UML 
activity constructs are classified and identified. This is useful for 
creating a basic set of TGG rules. Generic TGG rules are identified 
and created. The rules are mainly intended for forward 
transformation. An example is given illustrating the conversion 
process. The concepts presented can be elaborated further and even 
extended to other visual models or notations. 
 
Keywords—Activity Diagrams, Petri Nets, Triple Graph 

Grammars, Unified Modeling Language 

I. INTRODUCTION 
ML 2 activity diagrams are important structured visual 
modeling notations useful for describing different types 

of behavior found in computer and information systems [2], 
[17]. UML 2 activities can be used formally or informally.  
Practical uses of activity models  are for i) web processing, ii) 
web service composition, iii) business process modeling [21], 
iv) workflow modeling, v) systems integration, vi) task 
management and vii) low level tasks like software operations. 
UML 2 activities are suitable for modeling the diverse 
requirements of many traditional scenarios. Activities provide 
for visual modeling that can be easily understood. UML 2 
activities evolved from UML 1.x diagrams based on state 
machines. UML 2 activities do not only specify system 
behavior but they can also be used for code generation and 
can be combined with high level languages like BPEL. 
Activities place particular emphasis on control flows, event 
sequencing, conditions and coordination. Activities have 
gained widespread acceptance for modeling different 
scenarios. Activities can be derived from use cases or 
constructed directly. The UML 2 superstructure specifies 
basic rules for node execution based on tokens. UML 2 
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activities introduce new concepts like collections, streams, 
exception handling, etc. Activities have gained widespread 
acceptance for modeling different scenarios. Activities can be 
derived from use cases or constructed directly. The UML 2 
superstructure specifies basic rules for node execution based 
on tokens. UML 2 activities even introduce more new 
concepts like collections, streams, exception handling, etc. 

 Activity processes are suitable for abstraction into activity 
models. High level models are suitable for transformation into 
executable processes and different languages. Activity models 
are not a proper formalism and need proper verification and 
validation. Transforming activities into Petri nets or Petri net 
classes seems to be the best solution. This is evidenced from 
previous work [7]-[9],[18]. Petri nets seem to have a dual 
identity. They have a graphical representation and a textual or 
language description.  

Until now, most methods of translation of UML activities 
into Petri nets are based on specific approaches or models. 
UML activities are translated into Petri nets, colored Petri nets 
and other formalisms. Translation into colored Petri nets and 
formalisms normally require more work. Several motivating 
factors exist for transforming UML 2 activities into Petri nets. 
Activities can be supported using formalisms like CCS, logics, 
formal specification languages, etc. However many of these 
are non visual. It has been explained in [18],[7]-[9] that higher 
order nets and colored Petri nets seem to be the best choice. 
However in this work the focus is on presenting a general 
solution and ‘simplifying’ the mapping process. For this 
reason more weight is given on using ordinary place transition 
Petri nets to explain the idea. 

II. RELATED WORKS 
Different research exists evidencing the need to support 

UML notations using Petri net models. Some examples are 
found in [1],[3]-[9],[13]-[16],[23]. One method of 
transforming UML use case constructs to colored Petri nets 
(CPN) is based on multi layers [1].  Use cases are the starting 
point for activity modelling, where no proper formalisms have 
been used. In [2] a UML 2 activity model for an online multi 
role playing game is transformed into a special type of Petri 
net (PEPA net) and analyzed. The transformation process is 
again informal.  

A well structured, semi formal method is presented to 
translate activities into LGSPNs (labeled generalized 
stochastic Petri nets) in [3]. These are very useful for 
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performance analysis. Unfortunately the approach seems to be 
a relational one. Case tools found in the LaQuSo project [5] 
are used to transform basic activity diagrams into simple Petri 
nets. HLTPNs (higher level timed Petri nets) have also been 
indicated for supporting and formalizing the UML. 

        In [7]-[9] it is explained how activity semantics and 
constructs are classified and translated into Petri net 
semantics. The preferred Petri nets class indicated are colored 
Petri nets or higher order nets. 

       The UML can be formalized using Petri net like 
semantics. A CPN based formalization of the UML is 
presented in [6]. Transforming UML 2 activities into a Petri 
net semantics has been formalized in [5] and [8]. In [8] a 
semantic function is described and given. This converts an 
activity diagram <activity node, activity edge> into a CPN. 
Practically all these approaches are more about relational 
issues rather than operational. Petri nets are also found in 
Fundamental modeling concepts and apply to activity 
modeling in this context. According to [11] TGGs are suitable 
for expressing UML activity workflow patterns because of 
graph-to-graph mapping. TGG can maintain a 
transformational correspondence between two different 
models [12]. This correspondence is operational. In the 
Fundamental modeling concepts method or approach 
presented in [10], Petri nets are used for modeling behavior in 
a context similar to activity modeling. In [20] the strengths of 
UML 2 activities, in conjunction with Petri nets, are used for 
structural and performance evaluation. This confirms the 
importance of using Petri nets and UML activities for 
workflow analysis. A mapping scheme for transforming 
activities into Petri nets is recommended. In [19] incremental 
model synchronization is explained. Incremental model 
synchronization makes use of TGGs. Model synchronization 
refers to incremental changes that are carried out.  Using the 
TGG concept, incremental changes in a model should 
correspond to changes in a mapped model.  

According to the UML 2 superstructure specification 
activity diagrams are structured into different classes that have 
different levels of behavior ranging from simple to more 
detailed. 

III. MOTIVATION 
The motivation for transforming activities into Petri nets is 

that UML 2 activities are based on Petri Net like semantics 
according to the UML 2 superstructure specification. 
Activities have a higher level of abstraction. Activities share 
common properties with Petri nets.  This is not properly 
explained in the UML specification. Both Petri net and 
activity diagrams are can be classified as types of directed 
graphs Different approaches to transforming activities into 
Petri net classes have been suggested. Previous work 
evidently shows the importance of this.  Some are informal, 
others are semi formal or completely formal. Some of these 
approaches are quite complex. E.g. a transformation function 
can be used. These approaches still do not explain the actual 

transformation process and normally the transformation is too 
cumbersome to use. Most transformational approaches explain 
or formalize the actual correspondence. They do not actually 
explain how to carry out this transformation from a practical 
perspective. A solution is therefore necessary.  

Possible solutions are using QVT, ATL or TGGs.  These 
solutions suggest Model to model mapping. This would 
definitely be an operational solution.  

Model transformation is important in the field of automated 
software engineering [22]. For this work, model to model 
mapping using a Triple Graph Grammar approach is being 
proposed.  Model transformation and visual model mapping 
have become increasingly popular over the years. This is 
evident from the OMG approach where QVT (query, view, 
transform) is used to support UML and also with work related 
to ATL (Atlas transformation language). 

    Model-to-model mapping offers several advantages over 
other approaches. Transformation with TGGs is not only 
relational but also operational as indicated in [12]. The 
proposed rules best explain one way of transformation which 
is forward transform. The reverse transform requires the 
creation of new rules and more information in the Petri net. 
The Petri net does not capture all the diverse detail in the 
UML activity unless other information is added. 

IV. A TRIPLE GRAPH GRAMMAR SOLUTION 

A. Triple Graph Grammars 
Triple graph grammars (TGGs) have been around for 

several years. They are useful techniques for mapping two 
different types of graphical models sharing some similar 
properties. With TGGs it is possible to i) define and ii) declare 
bi-directional transformations. Relationships between the 
different models need to be established. A model can be 
transformed into another model and correspondence is 
computed incrementally. All changes are recorded and 
changes can be synchronized. These approaches use similar 
concepts to those found in TGGs. TGGs have been well 
researched and documented. There are many different 
examples of TGGs uses in literature. TGGs describe the 
dynamic evolution of different models. 

 

i) Forward Transform after Consistency Check

UML Activity Correspondence Petri Net Class

ii) Reverse Transform after Consistency Check  
 

Fig. 1 UML Activity to Petri net TGG Mapping 
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TGGs are based on graph grammars. In simple terms, graph 
grammars are visual rules explaining how a graph or part of it, 
is to be modified according to certain conditions. E.g. nodes 
and edges are added or removed accordingly. Normally a 
graph grammar rule has a right hand side and a left hand side 
that describes the rule.  

     TGG rules are similar to graph grammar rules with the 
exception that in TGGs there are three lanes or domains 
represented [11],[12]. The left side represents the model, the 
middle represents the correspondence and the right lane 
represents the transformed model or result. Ideally 
Correspondency mapping is should link both models from 
different domains. This is shown in fig. 1. If one model 
changes, the corresponding model is updated via the 
application of rules. Rules can be applied:  i) never, ii) once or 
iiii) several times.  

B. Understanding UML 2 Activities 
Comprehending UML 2 activities is the starting point for 

this work. UML 2 activities are specified in the OMG UML 
super structure specification [17]. To create TGG rules the 
understanding and comprehension of the underlying model 
relationships is important. The notations can be abstracted into 
TGG rules for particular relationships. The conversion rules 
are defined in terms of TGGs. The rules cover all the basic 
constructs of UML 2 activities. UML 2 activities are classified 
into seven main types: i) fundamental, ii) basic, iii) 
intermediate, iv) complete, v) structured, vi) complete 

structured and vii) extra structured. UML 2 activity nodes 
have flow of control constructs that can be used for i) 
synchronization, ii) decision, iii) concurrency, iv) sequence 
and v) iteration. Each type of activity sub-class addresses the 
problems and issues within a particular area. E.g. structured 
activities are suited for traditional programming problems. 
Structured activities focus on traditional programming, whilst 
fundamental and basic activities have a level of abstraction 
making them ideal for high level business process modeling. 
Fundamental and basic activities are ideal for high level 
modeling as is the case when describing business processes or 
workflow. Classes suited to Petri net conversion are i) 
fundamental, ii) basic and iii) intermediate activities. But this 
does not preclude other classes. The most important constructs 
belonging to all the activity sub classes are considered here. It 
is not specified to which class they belong. From experience 
and real scenarios these constructs are important regardless 
from where they are taken.  A practical solution is being 
explained. All subclasses need to be considered in a general 
manner. 

Given several classes of activities according to the UML 
superstructure specification it is possible to identify different 
constructs being used, but the most important constructs are 
used repeatedly in the different classes. The constructs 
considered are mainly derived from intermediate activities. 
Intermediate activities inherit from basic activities. Normally 
intermediate activities can be used for describing different 
information system scenarios.  
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actn:Action_Nodecfe:Control_Flow_Edge cn:Control_Node on:Object_Node en:Executable_Node
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Fig. 2 UML 2 Activity node and edge classification for translation into a Petri net 
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C. Classifying UML 2 Activity Notations 
Activity nodes normally classify into control node and 

executable nodes, however action nodes and object nodes are 
considered. Normally control nodes, object nodes and 
executable nodes have several subclasses. The subclasses help 
comprehend the standard behavior specified in the OMG 
UML superstructure specification. 

Technically speaking activities are composed of i) nodes 

and ii) edges. A special edge is used for connecting parts of 
object nodes. These are ignored here. There are other 
constructs like signal nodes and edges which can be similarly 
treated to object nodes.  

Fig. 2 explains a generalized the classification of UML 2 
activities into nodes and edges as required for transforming 
them into Petri nets. This is based on previous work presented 
in [7]-[9], [18]. The actual corresponding Petri net constructs 
are shown in fig. 3 and 4.  

Activity edges can be decomposed into control flow edges. 
Control flow edges are composed of i) normal control flows 
and ii) exception control flows. For exception control flows or 
edges there are i) control node to control node special edges, 
ii) edge to control node and iii) control node to edge special 
edges. Control node-to-control node special edges are 
composed of: i) merge-to-merge nodes, ii) start-to-merge 
nodes, iii) merge-to-activity final nodes and iv) merge-to-flow 
final nodes. Edge to control node special edges are composed 
of:  i) edge-to-activity final, ii) edge-to-flow final and control 

node to edge special edges have start-to-edge. These 
exceptions require special treatment unlike normal edges. A 
normal activity edge or normal control flow maps into a Petri 

net i) input arc, ii) connected to a place and a iii) output arc 
from the place. A normal action node or executable node 
translates or maps into a transition. Exception activity edges 
are explained in fig. 3. 

Activity nodes are classified into i) action nodes, ii) control 
nodes, iii) object nodes and iv) executable nodes.  Action 
nodes and executable nodes convert to Petri net transition 
types. Control nodes and object nodes convert to Petri net 

place types. Control nodes can be sub classified into i) fork 
nodes, ii) merge node, iii) initial node, iv) final node and v) 
decision node. Final node can be of two types i) activity final 
or ii) flow final. 

      Control nodes can be treated similarly and do not 
constitute an exception. Fork and join nodes are an exception 
to this. A fork or join node is treated as an executable node 
and converts into a Petri net transition. Activity nodes are 
explained in fig. 4. 

    For conversion the adopted procedure is to start 
translating the activity model from the starting node visiting 
every edge and node in the activity diagram applying each 
TGG rule in sequence. All nodes and edges have to be 
covered.  TGG rules need to be constructed for normal and 
exception behavior that has been defined above. 

D. Triple Graph Grammar Mapping Rules 
A basic set of TGG rules is proposed for the forward 

transformation mapping process. 

 

Name, text or expression

{weight = n}

n S2nS1

Name, text or expression

n

S1 S2

Activity Edges Corresponding Petri Net Notation

 Activity Edges Exceptions 1

Object Flows

 Activity Edges Exceptions 2

 
 
Fig. 3 Activity Edges and corresponding Petri net constructs 
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Fig. 4 Activity nodes and corresponding Petri net constructs 
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 For simplification purposes addition or insertion rules 

shown by ++ are used to illustrate the mapping concept [12]. 
There are three domains shown in each rule.  

This is the i) activity model, ii) correspondence and iii) 
Petri net. To simplify the diagram rules, the Petri net domain 
node is not always shown. A total of six TGG rules are 
created from the classification of the UML activity notations. 

The rules created are: Rule 1 Add a New Control Node. 
This rule excludes fork or join nodes. Rule 2 Add a New 

Executable Node, Action Node or Fork/Join Node. Rule 3 
Insert a Normal Activity Edge between existing Action 
Nodes. Rule 4 Insert an Exception Activity Edge between 
Two Control Nodes. Rule 5 Insert an Exception Activity Edge 
for Executable to Control Node. Rule 6 Insert an Exception 
Activity Edge for Control Node to Executable Node.  These 
are shown in fig. 5-10. 

These rules capture all the main types of activity behavior 
and exceptions. The rules can be used as the foundation for 
mapping activities into Petri nets and creating additional rules 
for the reverse mapping. The rules are explained in detail 
below. 

Rule 1 and Rule 2 are generic rules for i) control node 
insertion and ii) executable node insertion. At this point, the 
implication is that these rules just add the counterpart of a 
control or executable node to the Petri net. Control nodes map 
into a Petri net place and executable nodes map into a 
transition. Action, fork and join nodes which are special cases 

 
Fig. 5 TGG Rule 1: Add a New Control Node excluding fork or 

join nodes 

 
Fig. 6 TGG Rule 2: Add a New Executable Node Action Node or 

Fork/Join Nodes 

 
 

Fig. 7 TGG Rule 3: Insert a Normal Activity Edge  

 

 
 

Fig. 8 TGG Rule 4: Insert an Exception Activity Edge between Two 
Control Nodes 

 

 
Fig. 9 TGG Rule 5: Insert an Exception Activity Edge for Executable to 

Control Node 

 

 
Fig. 10 TGG Rule 6: Insert an Exception Activity Edge for Control 

Node to Executable Node 
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are treated as executable nodes and map into Petri net 
transitions. 

Rule 3: Insert a normal activity edge. Fig. 7 describes the 
generalized process of inserting a normal activity edge 
between action nodes and executable nodes. A fork or join 
construct in the activity model is treated as one of these. This 
rule has to be applied in the case of fork and join nodes. These 
correspond to Petri net transitions. Rule 3 is more complex 
than the other rules. It involves more insertions on the Petri 
net side. A normal activity edge is inserted between two action 
nodes or activity nodes. It means that on the Petri net side we 
have two transitions obtained previously from rule 2. The two 
transitions are connected by placing an output arc from the 
first transition, the output arc connects to a place which is 
connected using an arc to the last transition. This is shown in 
the activity edge and corresponding Petri net notation in fig. 3. 

Rule 4 explains how to insert an exception activity edge 
between two control nodes. The two control nodes could be 
any type e.g. merge, start, end, flow final, activity final. Flow 
final and activity final are treated similarly. These are shown 
in fig. 2 at the bottom left hand side. Inserting the edge 
between these nodes corresponds to an output Petri net arc 
from the first control place. This connects to a transition 
which has an outgoing arc which inputs to last control place. 
The existing places are the result of rule1 initially.  

Rule 5: Inserts an exception activity edge from an 
executable node to a control node. This is relatively simple 
and an arc is inserted between an existing transition and a 
place. 

Rule 6: inserts an exception activity edge between a control 
node and an executable node. This is similar to Rule 5. 
Normally the initial node is a control node. But there can be 

other control nodes like merge, initial etc. Fork and join are 
excluded because they are treated like executable nodes. This 
has already been explained above. On the Petri net side an arc 
is used to connect a place to a transition. The place and 
transition would have been created using previous rules. 

Table 1 summarizes the six rules for the forward 
transformation process that have been described. 

V. CASE STUDY 
An example similar to that found in the UML 2 

superstructure specification [17] is presented to illustrate the 
mapping process. Fig. 11 shows an activity diagram for 
processing a customer order.  Basically a customer order is 
received. The order is accepted or rejected. If it is accepted it 
is filled out and then there are some parallel activities like ship 
order, send invoice, make payment and accept payment.  If the 
order is rejected these steps are skipped and processing goes 
directly to terminate the order.  If the order is accepted then all 
the steps need to be concluded before termination. 

The activity diagram requires the use of all the six TGG 
rules presented for conversion into a Petri net model. The 
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Fig. 11 UML activity for order processing 

 
TGG 

RULE ACTION

RULE 1 ADD A NEW CONTROL NODE            
(EXCLUDES  FORK/JOIN)

RULE 2 ADD NEW EXECUTABLE ACTION or 
FORK/JOIN NODES

RULE 3
INSERT NORMAL ACTIVITY EDGE    

(between  EXECUTABLE,ACTION, FORK/JOIN 
NODES )

RULE 4 INSERT EXCEPTION ACTIVITY EDGE 
(between TWO CONTROL NODES)

RULE 5 INSERT EXCEPTION ACTIVITY EDGE 
(EXECUTALBE TO CONTROL NODE)

RULE 6 INSERT EXCEPTION ACTIVITY EDGE 
(CONTROL TO EXECUTABLE NODE)

 
Table 1 Main TGG Rules for Activity to Petri net Forward 

Transformation 
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resultant Petri net shown in fig. 12 depicts the rules that have 
been applied. They are shown using the value e.g. R1 refers to 
the application of rule 1. Some rules are applied a number of 
times whilst other rules like rule 4 is applied only once. There 
is only one merge-to-merge activity edge. The application if 

Rule 4 is shown in the resultant Petri net as R4. 
The TGG rules can be applied to obtain the Petri net shown 

in fig. 12. 

VI. ANALYSIS  
The approach used is this work is forward transformation 

only. The sequence of applying each rule is not shown here. 
Model correspondence uses graphical syntax. 

The left hand side model is called the source and the right 
hand side model is called the target. The transformation rules 
presented are mainly intended for forward transform. The 
basic algorithm to apply these rules is to visit all the activity 
diagram (graph) nodes and edges from start to finish and 
sequentially apply each rule. Once all the activity nodes and 
edges have been matched the Petri net can be generated. 
Ideally the transformation rules should work the other way 
round. E.g. from the Petri net we should generate the activity 
model. There are problems with the reverse transformation. 
The Petri net needs to match the proper activity notations. 
Result could be a simplified activity diagram.  

There are various possible solutions. E.g. the creation of 
two matched models initially and adding or deleting nodes on 
particular sides as needed. This is explained as model 
integration in [12].  

E.g. initial, activity final, flow final, merge, join, fork, 
decision etc. all require their own rules. The same goes for 
exception control flows e.g. merge to merge, start to merge, 
merge to activity final, merge to flow final, edge to activity 
final. 

Rules 1-3 are the most applied rules. Obviously their 
application frequency depends on the activity diagram. 

VII. DISCUSSION 
The example presented is quite simple. The formal 

transformation explained here should work practically for 
most activity diagrams. This means that this approach is valid 
when common notations are used. However these rules are 
manually designed rules. TGG Deletion rules have not been 
considered. The transformation approach explained is 
forward transformation. The six rules given cover properly 
forward transformation. I.e. this implies transforming the 
activity which is the source into the Petri net which is the 
result. To get full benefit from TGGs there should also be the 
possibility of reverse transform. This means that we would 
have bi-directional transformation.  

Reverse transformation implies that from a Petri net model 
it should be possible to derive the corresponding activity 
diagram. Although this can be done using the rules given, this 
is not sufficient. To convert a Petri net backwards into an 
activity model implies that the Petri net has sufficient detail. 
E.g. places and transitions in the Petri net must be given 
specific identities. E.g. a transition has to be labeled as a fork 
or join transition. Places and arcs require special labeling. 
This means that from the TGG rules explained more specific 
or explicit rules have to be created for each different type of 
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Fig. 12 Corresponding Petri net with rules 
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activity notation complicating things. However the six TGG 
rules already defined will be the main starting point for 
creating the new rules.  

Another issue is that an ordinary place transition net does 
not capture enough detail to support all the different activity 
notations. A simple solution to this is the labeling of Petri net 
places, transitions and arcs. A more extensive solution is to 
use higher order nets and colored Petri nets as described in 
[18]. However in the latter case the transformation mapping 
might be more complex. 

Simple Petri nets are used because the main idea of this 
work serves to introduce the TGG approach without 
complicating things. More work is required to create 
something fully functional and useable.  

VIII. CONCLUSION AND FUTURE WORK 
The work presented here has dealt with the formal mapping 

of basic UML 2 activity diagrams into Petri nets. It confirms 
the usefulness and importance of TGGs. Activity diagrams 
were selected because they are important visual notations and 
they are based on Petri net semantics. It has explained how the 
mapping can be successfully achieved using TGGs. The TGG 
rules just specify the correspondence mapping of activities 
and Petri nets graphically using an abstract notation. These 
rules can be made operational in different ways and 
applications.  

     TGGs are useful for formal mapping of two similar 
visual notations. Many steps and rules are required and have 
to be repeated several times for transformation. Complex 
models require the application of several rules a greater 
number of times. I.e. just adding a start node, requires two 
rules. Buffer nodes, queues and other complex constructs etc. 
require special attention that has not been considered as part 
of this work.  

The TGG rules presented are a simplification and 
generalization of what needs to be done. Only addition rules 
denoted by ++ have been used. These rules are useful for 
intuitional transformation. They could be used in other formal 
transformational approaches. 

 Actually deletion rules that have not been presented might 
need consideration. For mapping the control nodes edges and 
edge insertion see fig. 5-7 these are generalized or generic 
rules for different activity constructs. From these rules it is 
possible to create specific rules for every different control 
node type. E.g. for just adding merge node, final node, initial 
node, three separate rules need to be created. This means that 
more than ten rules will be required. The complete conversion 
will become complex to manage. The use of a CASE tool is 
recommended. 

The TGG rule drawings presented in this paper just give a 
brief outline of what needs to be done. They definitely can be 
improved to introduce more detail. They have been 
constructed indicating the most salient points. The rules can 
be appropriately colored or shaded to better indicate what is 
being inserted.  

Other transformational concepts like model transformation 
model integration, model synchronization, node reusability, 
constraints need to be considered. These are discussed in [12]. 
Attributes and other advanced concepts require more work.  

The work presented identifies the possibility for more 
research. Other diagrams like state machines and state 
transition diagrams can be mapped into Petri nets using a 
similar approach which might be simpler. This necessitates 
further investigation. 

 The approach given can be used to understand the 
complexity of activity models. It is possible to use other 
classes of Petri nets like higher order nets or colored Petri nets 
for the transformation process. This would obviously 
introduce much more complexity in the mapping process. 
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