

Abstract— Class cohesion is an object-oriented software quality

attribute and refers to the extent to which the members of a class are
related. Software developers use class cohesion measures to assess
the quality of their products and to guide the restructuring of poorly
designed classes. Several class cohesion metrics are proposed in the
literature, and a few of them are mathematically validated against the
necessary properties of class cohesion. Metrics that violate class
cohesion properties are not well defined, and their utility as indictors
of the relatedness of class members is questionable. The purpose of
this paper is to mathematically validate sixteen class cohesion
metrics using class cohesion properties. Results show that metrics
differ considerably in satisfying the cohesion properties; some of
them satisfy all properties, while others satisfy none.

Keywords — object-oriented class, software quality, class
cohesion metric, class cohesion.

I. INTRODUCTION
POPULAR goal of software engineering is to develop
the techniques and tools needed to develop high-quality

applications that are more stable and maintainable. In order to
assess and improve the quality of an application during the
development process, developers and managers use several
metrics. These metrics estimate the quality of different
software attributes, such as cohesion, coupling, and
complexity.

The cohesion of a module refers to the relatedness of the
module’s components. A module that has high cohesion
performs one basic function and cannot be easily split into
separate modules.

Since the last decade, object-oriented programming
languages, such as C++ and Java, have become widely used in
both the software industry and research fields. In an object-
oriented paradigm, classes are the basic modules. The
members of a class are its attributes and methods. Therefore,
class cohesion refers to the relatedness of class members [1].
Assessing class cohesion and improving class quality
accordingly during the object-oriented design phase allows for
lower management costs in later phases. A class that has high
cohesion cannot be easily split into separate classes. Highly
cohesive classes are more understandable, modifiable, and
maintainable [2].

 Manuscript received September 20, 2009: Revised version received
February 20, 2010.

Jehad Al Dallal is with Department of Information Science, Kuwait
University, P.O. Box 5969, Safat 13060, Kuwait (e-mail:
jehad@cfw.kuniv.edu).

Researchers have introduced several metrics to indicate
class cohesion. In order to increase the likelihood that a
cohesion metric is well defined and serves as a good indicator
for the relatedness of class members, researchers must validate
the metric, both theoretically and empirically. Briand et al. [3]
propose four properties that must be satisfied by all class
cohesion metrics. If a metric does not satisfy any of these
properties, the metric is ill defined, and its usefulness as a
cohesion indicator is questionable [3]. These properties
provide a supportive underlying theory for metrics. Empirical
validation is necessary to show the usefulness of metrics.
Despite its importance, few researchers focus on the
theoretical validation of metrics. In this paper, we study the
validity of sixteen class cohesion metrics, using the properties
introduced by Briand et al. [3]. We provide mathematical
proofs for the metrics that satisfy the cohesion properties and
provide counter examples otherwise. Our results show that
most of the metrics satisfy all or the majority of the properties.

This paper is organized as follows. Section 2 provides an
overview of class cohesion metrics and necessary properties.
In Section 3, sixteen class cohesion metrics are examined to
determine whether they have the necessary properties. Finally,
Section 4 presents conclusions and a discussion of future
work.

II. RELATED WORK
This section overviews the considered class cohesion

metrics and other class cohesion metrics. In addition, it
includes a summary of the necessary properties that all class
cohesion metrics must satisfy.

A. Overview of class cohesion metrics
Yourdon et al. [23] propose seven levels of cohesion. These

levels include coincidental, logical, temporal, procedural,
communicational, sequential, and functional. The cohesion
levels are listed in ascending order of their desirability. Since
then, several cohesion metrics have been proposed for
procedural and object-oriented programming languages.
Different models are used to measure the cohesion of
procedural programs, such as the control flow graph [24], the
variable dependence graph [25], and program data slices [11,
26, 26, 28, 29]. Cohesion has also been measured indirectly by
examining the quality of the structured designs [30, 31].

Researchers have proposed several class cohesion metrics in
the literature. These metrics can be applicable based on high-
level design (HLD) or low-level design (LLD) information.
HLD class cohesion metrics rely on information related to
class and method interfaces. The more numerous LLD class

Mathematical Validation of Object-Oriented
Class Cohesion Metrics

Jehad Al Dallal

A

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 4, 2010

45

cohesion metrics require an analysis of the algorithms used in
the class methods (or the code itself if available) or access to
highly precise method postconditions. The LLD cohesion
metrics use finer-grained information than that used by HLD
cohesion metrics. That is, based on the LLD, all method-
method, method-attribute, and attribute-attribute interactions
can be precisely defined. On the other hand, one advantage of
HLD class cohesion metrics is that they identify potential
cohesion issues early, during the HLD phase. Detecting class
cohesion issues, and correcting the corresponding class
artifacts later (during the LLD or implementation phase), is
much more costly than performing the same tasks early
(during the HLD phase). Improving class cohesion during the
HLD phase saves development time, reduces development
costs, and increases overall software quality.

Class cohesion metrics are based on the use or sharing of
class attributes. For example, the LCOM1 metric counts the
number of method pairs that do not share instance variables
[15]. Chidamber and Kemerer [16] propose another version of
the LCOM metric (LCOM2), which calculates the difference
between the number of method pairs that do and do not share
instance variables. Li and Henry [17] use an undirected graph
that represents each method as a node and the sharing of at
least one instance variable as an edge.

The lack-of-cohesion in methods, LCOM3, is defined as the
number of connected components in the graph. The model
used in the LCOM3 metric is extended in [18] by adding an
edge between a pair of methods if one of them invokes the
other. Here, we refer to the metric that uses the extended
model as LCOM4. Hitz and Montazeri [18] introduce a
connectivity metric to apply when the graph has one
component. In addition, Henderson-Sellers [19] proposes a
lack-of-cohesion in methods metric, LCOM5, that considers
the number of methods referencing each attribute.

 Bieman and Kang [4] describe two class cohesion
metrics, Tight Class Cohesion (TCC) and Loose Class
Cohesion (LCC), to measure the relative number of directly
connected pairs of methods and the relative number of directly
or indirectly connected pairs of methods, respectively. TCC
considers two methods to be connected if they share the use of
at least one attribute. A method uses an attribute if the
attribute appears in the method’s body or the method invokes
another method, directly or indirectly, that has the attribute in
its body. LCC considers two methods to be connected if they
share the use of at least one attribute directly or transitively.
Badri [5] introduces two class cohesion metrics, Degree of
Cohesion-Direct (DCD) and Degree of Cohesion-Indirect
(DCI), that are similar to TCC and LCC, respectively, but
differ by considering two methods connected also when both
of them directly or transitively invoke the same method.
Briand et al. [3] propose a cohesion metric (called Coh) that
computes cohesion as the ratio of the number of distinct
attributes accessed in methods of a class. Fernandez and Pena
[6] propose a class cohesion metric, called Sensitive Class
Cohesion Metric (SCOM), that considers the cardinality of the
intersection between each pair of methods. In the metric
presented by Bonja and Kidanmariam [7], the degree of
similarity between methods is used as a basis to measure class
cohesion. The similarity between a pair of methods is defined

as the ratio of the number of shared attributes to the number of
distinct attributes referenced by both methods. Cohesion is
defined as the ratio of the summation of the similarities
between all pairs of methods to the total number of possible
pairs of methods. The metric is called Class Cohesion (CC).

Bansiya et al. [8] propose a design-based class cohesion
metric called Cohesion among Methods in a Class (CAMC).
In this metric, only the method-method interactions are
considered. The CAMC metric uses a parameter occurrence
matrix that has a row for each method and a column for each
data type that appears at least once as the type of a parameter
in at least one method in the class. The value in row i and
column j in the matrix equals 1 when the ith method has a
parameter of jth data type. Otherwise, the value equals 0. The
CAMC metric is defined as the ratio of the total number of 1s
in the matrix to the total size of the matrix.

Counsell et al. [9] propose a design-based class cohesion
metric called Normalized Hamming Distance (NHD). In this
metric, only the method-method interactions are considered.
The metric uses the same parameter occurrence matrix used
by the CAMC metric. NHD calculates the average of the
parameter agreements between each pair of methods. The
parameter agreement between a pair of methods is defined as
the number of places in which the parameter occurrence
vectors of the two methods are equal. Chae et al. [32] propose
a metric called Cohesion Based on Member Connectivity
(CBMC) that considers not only the number of interactions
but also the patterns of the interactions between the methods
in a class. The metric considers the ratio of the number of glue
methods to the number of methods of interest. The number of
glue methods equals the minimum number of methods
required such that their removal causes the method-attribute
interaction graph to become disjoint. Zhou et al. [33]
introduce ICBMC, an improved version of CBMC, that
considers the cut sets instead of glue methods. The cut set is
the minimum set of edges such that their removal causes the
method-attribute interaction graph to become disjoint. Related
work in the area of software cohesion can be found in [10],
[11], [13], and [14], and related work in the area of measuring
software quality can be found in [20], [21], and [22].

B. Class cohesion metric properties
Briand et al. [3] define four properties for cohesion metrics.

The first property, Property 1, called non-negativity and
normalization, is that the cohesion measure belongs to a
specific interval [0, Max]. Normalization allows for easy
comparison between the cohesion of different classes. The
second property, Property 2, called null value and maximum
value, holds that the cohesion of a class equals 0 if the class
has no cohesive interactions; the cohesion is equal to Max if
all possible interactions within the class are present. The third
property, Property 3, called monotonicity, holds that adding
cohesive interactions to the module cannot decrease its
cohesion. The fourth property, Property 4, called cohesive
modules, holds that merging two unrelated modules into one
module does not increase the modules’ cohesion. Therefore,
given two classes, c1 and c2, the cohesion of the merged class

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 4, 2010

46

c' must satisfy the following condition: cohesion(c')≤max
{cohesion(c1), cohesion(c2)}.

III. THEORETICAL VALIDATION
This section studies the theoretical validation of sixteen

class cohesion metrics. The definition of each metric is
overviewed, and the satisfaction of the four class cohesion
necessary properties is proved mathematically or disproved,
using a counter example.

A. LCOM1 [15]
Definition: LCOM1=P, where P is the number of pairs of

methods that do not share common attributes.
Property 1 and Property 2: The minimum value for

LCOM1 is 0 when each pair of methods shares at least one
common attribute (i.e., the model has the maximal number of
cohesion interactions). The maximum value for LCOM1
depends on the number of methods in a class. That is, k(k-1)/2,
where k is the number of methods, when none of the methods
share common attributes (i.e., the model does not have
cohesion interactions). Therefore, LCOM1 satisfies Property
2, but it does not satisfy Property 1.

Property 3: Adding a cohesive interaction to the model
implies decreasing the number of unrelated pairs of methods,
hence decreasing LCOM1 and increasing the cohesion.
Therefore, LCOM1 satisfies Property 3.

Property 4: Unrelated classes are classes that have no
common attributes and methods. Given that PC and QC are the
number of pairs of methods with and without shared attributes
in a class C, for classes A, B, and M, where A and B are
unrelated classes, and M is their merged class version,
QM=QA+QB. The LCOM1 of the merged class is calculated as
follows:

)(1)(1

)]
2

)1(()
2

)1([(
2

)1)((

][
2

)1)((
2

)1)(()(1

BLCOMALCOMkmPPkm

mmPkkPmkmk

QQmkmk

QmkmkPMLCOM

BA

BA

BA

MM

++=++=

−
−+

−
−−

−++
=

+−
−++

=

−
−++

==

where k and m are the number of methods in classes A and B,
respectively. The cohesion of the merged class is less than the
cohesion of each of the split classes; therefore, the LCOM1
metric satisfies Property 4.

B. LCOM2 [16]

Definition:
)]1(14[5.012

2)(2
−−=−=

−=−−=−=
kkLCOMNPLCOM

NPPPNPPQPLCOM

Property 1 and Property 2: The minimum value for
LCOM2 is 0 when Pc≤Qc. Therefore, when the model has the
maximum number of interactions, LCOM2 becomes 0
because, in this case, the number of pairs that do not share
common attributes is less than those that share common
attributes (i.e., 0<k(k-1)/2). However, the maximum value for
LCOM2 depends on the number of methods in a class. That is,
k(k-1)/2, where k is the number of methods, when none of the
methods share common attributes (i.e., the model does not

have cohesion interactions). Therefore, LCOM2 satisfies
Property 2, but does not satisfy Property 1.

Property 3: Adding a cohesive interaction to the model
implies increasing Q and decreasing P. If, in the original
model, Pc≤Qc, the cohesion of the original and the modified
models equal 0. Otherwise, LCOM2 of the model decreases.
Therefore, LCOM2 satisfies Property 3.

Property 4: When two unrelated classes are merged,

)(2)(2
)()(

)()()(2

BLCOMALCOMkm
QPQPkm

QQPPkmQPMLCOM

BBAA

BABAMM

++=
−+−+=

+−++=−=

The cohesion of the merged class is less than the cohesion
of each of the split classes; therefore, the LCOM2 metric
satisfies Property 4.

C. LCOM3 [17]
Definition: LCOM3 is defined as the number of connected

components in the graph.
Property 1 and Property 2: The minimum value for

LCOM3 is 1 when there is a direct or indirect cohesive
interaction between each method and another. The maximum
value for LCOM3 depends on the number of methods in a
class (i.e., k, where k is the number of methods, when the
model has no interactions). The value of LCOM3 ranges in
the interval [1,k], and, therefore, the metric does not satisfy
Property 1. In addition, the metric does not satisfy Property 2
because the value of LCOM3 is not equal to 0 when the model
has the maximum possible interactions.

Property 3: When adding a cohesive interaction to the
model, the number of connected components either decreases
by 1, when the interaction connects two disjoint components,
or remains the same, when the interaction does not connect
two disjoint components. Therefore, LCOM3 satisfies
Property 3.

Property 4: Two unrelated classes are graphically
represented by two disjoint graphs. Therefore, when two
unrelated classes A and B are merged into class M, the total
number of disjoint components increases by 1 (i.e.,
LCOM3(M)=LCOM3(A)+ LCOM3(B)+1). Hence, the
LCOM3 metric satisfies Property 4.

D. LCOM4 [18]
The only difference between LCOM4 and LCOM3 is in the

definition of the cohesive interactions. The above discussion
about the validity of LCOM3 is independent from the
definition of the cohesive interactions, and, therefore, both
metrics have the same properties. However, when the graph is
connected, the following connectivity metric is used.

E. Connectivity [18]
Definition: When LCOM4=1,

nodes. ofnumber theis and edges ofnumber theis where

 ,
)2)(1(

)1(*2

ke
kk

ketyconnectivi
−−

−−
=

Property 1 and Property 2: The connectivity metric is
defined only for the cases where LCOM4 is equal to 1. When
LCOM4 equals 1, the graph that represents the class is
connected, and the number of edges in the graph is not less

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 4, 2010

47

than k-1. The minimum value for the connectivity metric is
equal to 0 when the model to which the metric can be applied
has the minimum possible number of interactions. The
maximum value for connectivity is equal to 1 when the model
has the maximum possible number of interactions (i.e., e=k(k-
1)/2). Therefore, the connectivity metric satisfies Property 1
when it is applied to the models for which it is defined.
However, a combination of LCOM4 and connectivity does not
satisfy Property 1. Property 2 is not applicable for the
connectivity metric because the metric is undefined when the
model of the class has no interactions. The combination of
LCOM4 and connectivity satisfies Property 2 because
connectivity solves the problem of the maximum value.

Property 3: Adding a cohesive interaction to the class
implies adding an edge to the models that represent the class.
The connectivity value increases, and, therefore, the metric
satisfies Property 3. Hence, the combination of LCOM4 and
connectivity satisfies Property 3.

Property 4: When two unrelated classes are merged, the
model of the resulting class will have the number of edges
equal to the summation of the number of edges in the models
of both classes (i.e., eM=eA+eB). To prove the connectivity
metric’s satisfaction of Property 4, we introduce the following
numerator-denominator cohesion proving model:

)()(
)()(

)(
)(

)]()()[()()]()([

)()()()(
)(
)(

)(
)(

BDAD
BNAN

AD
AN

BNANADANADBD

BNADANBD
BD
BN

AD
AN

+
+

≥⇒

+≥+⇒

≥⇒≥

Given the following conditions:
Condition 1: N(M)≤N(A)+N(B)
Condition 2: D(M)≥D(A)+D(B)

)(
)(

)()(
)()(

)(
)(

MD
MN

BDAD
BNAN

AD
AN

≥
+
+

≥

This means that max{cohesion(A),cohesion(B)}≥
cohesion(M). Therefore, if a cohesion metric satisfies
Conditions 1 and 2, it satisfies Property 4.

The connectivity metric is proved to satisfy the cohesive
modules property as follows:

)()(2)()(
2))1((2))1((2

)1(2)(2
)1(22))1((2)(

BNANBNAN
meke

mkee
mkemkeMN

BA

BA

MM

+<−+=
−−−+−−=

−+−+=
−+−=−+−=

)()()2)(1()2)(1(
)2()1(

)1()2)(1()2)(1(
)2)(1()(

BDADmmkk
mkmk

kmmmkk
mkmkMD

+=−−+−−>
−++−

+−+−−+−−=
−+−+=

The metric satisfies Conditions 1 and 2, and, therefore, it
satisfies Property 4. Hence, the combination of LCOM4 and
connectivity satisfies Property 4.

F. LCOM5 [19]

Definition:
1

1

5 1 1

−

−
=

∑∑
= =

k

clk
LCOM

l

i

k

j
ji

, where k is the

number of methods, l is the number of attributes, and cji is the
binary value at row j and column i in the binary matrix that
represents which attribute is used in which method.

Property 1 and Property 2: The minimum value for
LCOM5 is equal to 0 when each pair of methods shares at
least one common attribute (i.e., the model has the maximum
number of cohesion interactions). The maximum value for
LCOM5 depends on the number of methods in a class. This
value is defined as k/(k-1), where k is the number of methods,
when none of the methods share common attributes (i.e., the
model does not have cohesion interactions). Therefore,
LCOM5 satisfies Property 2, but does not satisfy Property 1.

Property 3: The following proof shows that LCOM5
satisfies Property 3.

)(5
)1(

1
1

1

1

)1(1

)'(5

1 1

1 1

cLCOM
klk

clk

k

clk
cLCOM

l

i

k

j
ji

l

i

k

j
ji

<
−

−
−

−
=

−

+−
=

∑∑

∑∑

= =

= =

Property 4: In some cases, LCOM5 does not satisfy
Property 4. For example, given two classes A and B such that
each class has two methods and two attributes, and none of the
methods use any attribute, LCOM5(A)=LCOM5(B)=2. When
both classes are merged into class M, LCOM5(M)=(4-0)/(4-
1)=1.33. Therefore, in this case, LCOM5(M)<
min{LCOM5(A),LCOM5(B)}, which violates Property 4.

G. TCC and LCC [4], DCD and DCI [5], and Coh [3]
Definition: TCC, LCC, DCD, DCI, and Coh are defined as

the relative number of cohesive interactions. They differ only
in their definitions for the cohesive interactions, as discussed
in Section 2.

Property 1 and Property 2: For the following discussion,
the five metrics are referenced as R. The minimum value for R
is 0 when the class has no cohesive interactions. The
maximum value for R is 1 when the class has the maximum
possible number of interactions. Therefore, the five metrics
satisfy both Property 1 and Property 2.

Property 3: Since R is defined as the relative number of
cohesive interactions, it increases when a cohesive interaction
is added to the class model. Therefore, the five metrics satisfy
Property 3.

Property 4: R is a relative metric, and, therefore, to prove
its satisfaction of Property 4, we prove its satisfaction of
Conditions 1 and 2 of the numerator-denominator cohesion
proving model as follows:

When unrelated classes A and B are merged into class M,
the number of interactions in M is equal to the summation of
the number of interactions in classes A and B. Thus,
N(M)=N(A)+N(B), which satisfies Condition 1. In addition,

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 4, 2010

48

)()()()()(
2

)1(
2

)1(
2

)1)(()(

BDADMDkmBDAD

kmmmkkmkmkMD

+>⇒++=

+
−

+
−

=
−++

=

R also satisfies Condition 2, and, therefore, the five metrics
satisfy Property 4.

H. SCOM [6]
Definition: Given a class that has l attributes, the similarity

between a pair of methods i and j, which reference the set of
attributes Ii and Ij, respectively, is formally defined as follows:

l

II

II

II
jiSimilarity ji

ji

ji ∪
⋅

∩
=

),min(
),(

Cohesion is defined as the ratio of the summation of the
similarities between all pairs of methods to the total number of
possible pairs of methods.

Property 1 and Property 2: The minimum value for
SCOM is equal to 0 when none of the methods share common
attributes, which includes the case in which none of the
methods use any attribute (i.e., the model does not have any
cohesive interaction). The maximum value for SCOM is 1
when all methods share all attributes (i.e., the model has all
possible cohesive interactions). Therefore, the SCOM metric
satisfies both non-negativity and normalization, as well as null
and maximum value cohesion properties.

Property 3: In some cases, when a cohesive interaction is
added to the model, the SCOM value of the class decreases to
some extent. Fig. 1 shows an example (classes A and B) for
which the metric violates Property 3. This decrease is due to
the fact that, in SCOM, the similarity is inversely proportional
to the minimum number of attributes used in both methods. In
some cases, adding a cohesive interaction increases this
number and, consequently, decreases the similarity between
some pairs of methods. When this decrease is greater than the
increase of the similarity between some other pairs of methods
in the class, the SCOM value decreases.

Property 4: To use our numerator-denominator cohesion
proving model, we adjust the definition of similarity as
follows:

l
m

l

II

II

II
jiSimilarity ijji

ji

ji
=

∪
⋅

∩
=

),min(
),(

Therefore,

)(
)(

2
)1(

2
)1(

),(
)(

1

1 1

1

1 1

CD
CN

klk

m

kk

jiSimilarity
CSCOM

k

i

k

ij
ij

k

i

k

ij =
−

=
−

=
∑ ∑∑ ∑

−

= +=

−

= +=

When two unrelated classes A and B are merged into class
M, mij between each pair of methods in class A and class B,
does not change, because none of the parameters on which the
mij value depends change. Since classes A and B are
unrelated, mij between any method in class A and any method
in class B equals 0 because none of the attributes are shared
between the methods. Therefore, N(M)=N(A)+N(B) (i.e.,
satisfies Condition 1). The following proof shows that SCOM
satisfies Condition 2.

)()(
)]()1)([(5.0)()(
)]()1)([(5.0)1(5.0

)1(5.0)]1)()([(5.0)(

BDAD
nklkmmknklmBDAD
nklkmmknklmmnm

klkmkmknlMD

+>
++−++++=
++−+++−+
−=−+++=

As a result, SCOM satisfies the cohesive modules property.

I. CC [7]
Definition: The similarity between a pair of methods i and j

is defined as follows:

ji

ji

II

II
jiSimilarity

∪

∩
=),(, where Ii and Ij are the sets of

attributes referenced by methods i and j, respectively.
Cohesion is defined as the ratio of the summation of the
similarities between all pairs of methods to the total number of
possible pairs of methods.

Property 1 and Property 2: The minimum value for CC
equals 0 when none of the methods share common attributes,
which includes the case in which none of the methods use any
attribute (i.e., the model does not have any cohesive
interaction). The maximum value for CC is 1 when all
methods share the same set of attributes, which includes the
case in which all methods share all attributes (i.e., the model
has all possible cohesive interactions). Therefore, the CC
metric satisfies both non-negativity and normalization, as well
as null and maximum value cohesion properties.

Property 3: CC does not satisfy Property 3 in some cases.
That is, when a cohesive interaction is added to a class, the
counterintuitive result may be a class with a lower CC value,
as depicted in classes C and D, shown in Fig. 1. This occurs
because the addition of a cohesive interaction may increase
the similarities between pairs of methods and decrease the
similarities between other pairs of methods. In this case, the
cohesion increases if the summation of the similarities
between pairs of methods increases, and vice versa.

Fig. 1: Violation of CC and SCOM in terms of
monotonicity [1].

Property 4: When two unrelated classes A and B are

merged into class M, the similarity between each pair of
methods in class A and class B does not change. This is
because the similarity of a pair of methods is defined as the

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 4, 2010

49

ratio of the number of shared attributes between both methods
to the number of attributes used by both methods. These two
numbers remain the same in class M. Since classes A and B
are unrelated, no similarities exist between methods in class A
and methods in class B. Therefore, N(M)=N(A)+N(B) (i.e.,
CC satisfies Condition 1). CC also satisfies Condition 2 (the
proof is identical to the corresponding one given above for the
R metric). As a result, CC satisfies the cohesive modules
property.

J. CAMC [8]
Definition: The ratio of the total number of 1s in the

parameter occurrence matrix to the total size of the matrix.
Property 1 and Property 2: The minimum value for

CAMC is CAMCmin = (k+l-1)/kl when each parameter type is
used by only one method, and the class type is used by all
methods. The maximum value for CAMC is 1 when all
methods have the same parameter types. Since the minimum
value for CAMC is greater than 0, the metric does not satisfy
Property 1. Since the model of the class used by CAMC
cannot be free of cohesive interactions, the null and maximum
value property is not applicable.

Property 3 and Property 4: CAMC is defined as the
relative number of cohesive interactions in the model
representing the class. Therefore, similar to R metrics, CAMC
satisfies the monotonicity and cohesive modules properties.

K. NCAMC
Definition: The CAMC metric can be normalized by

linearly scaling the interval [(k+l-1)/kl,1] to [0,1] as follows:

1
1

11

1

11

1

1 min

min

+−−
+−−

=
−+

−

−+
−

=

−+
−

−+
−

=
−

−
=

lkkl
lka

kl
lk
kl
lk

kl
a

kl
lk

kl
lkCAMC

CAMC
CAMCCAMC

NCAMC

If there is only one method in the class, the method uses all

the parameter types, so CAMC=1. Therefore, NCAMC=1 if
k=1, and NCAMC is calculated using the above formula
otherwise. Counsell et al. [8] suggest omitting the type of
class from the parameter occurrence matrix and calculating
CAMC using the modified matrix. Given the parameter
occurrence matrix without the type of class, CAMC can be
calculated as follows [8]:

)1(+
+

=
lk

kaCAMC

In this case, the minimum number of 1s in the matrix equals
l, and the normalized metric can be calculated as follows:

)1(
)1(

1

)1()1(

)1(
1

)1(
−
−

=

+
+

−

+
+

−
+

+

=

+
+

−

+
+

−
=

kl
la

lk
kl
lk

kl
lk

ka

lk
kl
lk

klCAMC
NCAMC (1)

Note that the above normalized metrics are undefined when
k=1. In this case, the class has one method that uses all the
parameter types, and, by definition of the CAMC metric, the
cohesion is equal to 1. We consider the normalized cohesion
in this case to also be equal to 1. One of the major criticisms
of the CAMC metric is that it does not distinguish between the
cohesion of different matrices with the same number of 1s.

Property 1 and Property 2: The minimum value for
NCAMC is when the matrix has the minimum number of 1s,
which is l. By substituting a in Formula 1 by l, we get
NCAMC=0. The maximum value for NCAMC is when the
matrix has the maximum number of 1s, which is kl. By
substituting a in Formula 1 by kl, we get NCAMC=1. As
discussed above, NCAMC=1 when k=1. NCAMC ranges in
the interval [0, 1], and, therefore, it is normalized. Since the
model of the class used by NCAMC cannot be free of
cohesive interactions, the null and maximum value property is
not applicable.

Property 3: Given specific methods and parameter types,
adding a cohesive method-method interaction to the class
means making a parameter type shared between two methods.
This is represented in the matrix by changing two entries in a
column in the matrix from 0 to 1 if both methods were not
using the parameter type or changing one entry from 0 to 1 if
one of the methods was using the parameter type. As a result,
adding a cohesive method-method interaction implies
incrementing a in Formula 1 by n, where n is either 1 or 2.
When k=1, all entries of the matrix are equal to 1, and no
more cohesive interactions can be added. When k>1,

old

new

NCAMC
kl

la
kl

la
kl
n

kl
lnaNCAMC

=
−
−

≥
−
−

+
−

=
−

−+
=

)1(

)1()1()1(
)(

Therefore, NCAMC satisfies the monotonicity property.
Property 4: Merging two unrelated classes c1 and c2 means

that none of the methods in each of the two classes share
common parameter types. If class c1 has k methods and l
distinct parameter types, and class c2 has m methods and n
distinct parameter types, the parameter occurrence matrix of
the merged class c3 will have k+m rows and l+n columns. In
this case,

nklmmnkl
nala

mknl
nlaa

NCAMC

cc

cc
c

++−+−
−+−

=

−++
+−+

=

)1()1(
)()(

)1)((
)(

21

21
3

 (2)

The cohesion of a system consisting of more than one
module is the weighted sum of the cohesion of each module in
the system [3]. As a result, the cohesion of the two classes c1
and c2 is as follows:

3

21
21)1()1(

)()(

c

cc
cc

NCAMC
mnkl

nala
NCAMCNCAMC

>
−+−
−+−

=+ (3)

Since the cohesion of the merged class is less than the
cohesion of the system consisting of the two classes, the

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 4, 2010

50

NCAMC metric satisfies the cohesive modules property. The
above case is applicable when each of the classes has more
than one method. If each of the two classes has one method,
the cohesion of each class is equal to 1, and, therefore, the
cohesion of the system consisting of the two classes is equal
to 1. The cohesion of the merged class is equal to 0 (i.e., by
substituting ac1 by l and ac2 by n in Formula 2), which is less
than the cohesion of the split classes. Finally, if one of the
classes has one method, by substituting ac1 by l or ac2 by n in
Formula 2, Proposition 3 is still satisfied. As a result, in all
cases, NCAMC satisfies the cohesive modules property.

L. NHD [9]

Definition: ∑
=

−
−

−=
l

j
jj xkx

klk
NHD

1
)(

)1(
21 ,

where k is the number of methods, l is the number of distinct
parameter types, and xj is the number of 1s in the jth column
of the parameter occurrence matrix (i.e., number of methods
that use parameter j).

Property 1 and Property 2: The NHD metric has the
minimum value when each column in the matrix that models
the class has the maximum possible disagreements, by setting
xj=k/2 in the NHD formula [9]. In this case, NHDmin = (k-
2)/[2(k-1)]. The maximum value for NHD is equal to 1 when
the matrix contains only 1s (i.e., the class has all possible
interactions). Since the minimum value for NHD is greater
than 0, the metric does not satisfy Property 1. Since the model
of the class used by NHD cannot be free of cohesive
interactions, the null and maximum value property is not
applicable.

Property 3: Adding a cohesive interaction to the class is
represented in the matrix by changing two entries in a column
in the matrix from 0 to 1 if neither method used the parameter
type, or changing one entry from 0 to 1 if one of the methods
was using the parameter type. If a column n in the matrix has
xn>k/2, where xn is the number of 1s in the column, according
to the NHD formula, the value of NHD after adding the
cohesive interaction is less than it was before adding the
cohesive interaction, which violates Property 3.

Property 4: In some cases, NHD violates the cohesive
modules property. For example, consider two classes, A and
B, where each has two methods: One of the methods has two
parameter types, and the other method does not have any
parameter types. In this case, the cohesion of each class is
equal to 0. When the two classes are merged, the new matrix
is 4×4, and the NHD value of the merged class is 0.5, which is
greater than the NHD value of each of classes A and B.

IV. CONCLUSIONS AND FUTURE WORK
This paper shows how to prove or disprove the satisfaction

of class cohesion metrics to the necessary properties for class
cohesion. Table I summarizes the results found in this paper
and another related paper [34]. The results show that among
the considered class cohesion metrics:

• Eight (42%) metrics satisfy all properties.
• Six (37%) metrics satisfy only three properties.
• Four (21%) metrics satisfy only two properties.

• One (5%) metric does not satisfy any property.
• Ten (53%) metrics satisfy Property 1.
• Fourteen (74%) metrics satisfy Property 2.
• Fifteen (79%) metrics satisfy Property 3.
• Seventeen (89%) metrics satisfy Property 4.

In general, this means that 42% of the considered metrics are
valid from the theoretical perspective. All other metrics have
to be revised to comply with the class cohesion properties.
Otherwise, use of these metrics as cohesion indicators is
questionable.

Table I: Summary of the theoretical validation results

In the future, we plan to theoretically validate other existing

class cohesion metrics and empirically explore the
relationships between the theoretical and empirical validation
results.

ACKNOWLEDGMENT
The author would like to acknowledge the support of this

work by Kuwait University Research Grant WI03/07.

REFERENCES
[1] J. Al Dallal and L. Briand, A precise method-method interaction-based

cohesion metric for object-oriented classes, TR, Simula Research
Laboratory, 2009, ACM Transactions on Software Engineering and
Methodology (TOSEM), in press.

[2] Z. Chen, Y. Zhou, and B. Xu, A novel approach to measuring class
cohesion based on dependence analysis, Proceedings of the
International Conference on Software Maintenance, 2002, pp. 377-
384.

[3] L. C. Briand, J. Daly, and J. Wuest, A unified framework for cohesion
measurement in object-oriented systems, Empirical Software
Engineering - An International Journal, Vol. 3, No. 1, 1998, pp. 65-
117.

[4] J. M. Bieman and B. Kang, Cohesion and reuse in an object-oriented
system, Proceedings of the 1995 Symposium on Software reusability,
Seattle, Washington, United States, pp. 259-262, 1995.

Metric P1 P2 P3 P4
LCOM1 No Yes Yes Yes
LCOM2 No Yes Yes Yes
LCOM3 No No Yes Yes
LCOM4 No No Yes Yes
Connectivity N.A. Yes Yes Yes
LCOM4+
connectivity

No Yes Yes Yes

LCOM5 No Yes Yes No
TCC Yes Yes Yes Yes
LCC Yes Yes Yes Yes
DCD Yes Yes Yes Yes
DCI Yes Yes Yes Yes
Coh Yes Yes Yes Yes
SCOM Yes Yes No Yes
CC Yes Yes No Yes
CAMC No N.A. Yes Yes
NCAMC Yes N.A. Yes Yes
NHD No N.A. No No
CBMC [34] Yes Yes No Yes
ICBMC [34] Yes Yes Yes Yes

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 4, 2010

51

[5] L. Badri and M. Badri, A Proposal of a new class cohesion criterion: an
empirical study, Journal of Object Technology, Vol. 3, No. 4, 2004..

[6] L. Fernández, and R. Peña, A sensitive metric of class cohesion,
International Journal of Information Theories and Applications, Vol.
13, No. 1, 2006, pp. 82-91.

[7] C. Bonja and E. Kidanmariam, Metrics for class cohesion and similarity
between methods, Proceedings of the 44th Annual ACM Southeast
Regional Conference, Melbourne, Florida, 2006, pp. 91-95.

[8] J. Bansiya, L. Etzkorn, C. Davis, and W. Li, A class cohesion metric for
object-oriented designs, Journal of Object-Oriented Program, Vol. 11,
No. 8, pp. 47-52. 1999.

[9] S. Counsell , S. Swift , and J. Crampton, The interpretation and utility of
three cohesion metrics for object-oriented design, ACM Transactions
on Software Engineering and Methodology (TOSEM), Vol. 15, No. 2,
2006, pp.123-149.

[10] J. Al Dallal, A design-based cohesion metric for object-oriented classes,
International Journal of Computer Science and Engineering, 2007,
Vol. 1, No. 3, pp. 195-200.

[11] J. Al Dallal, Software similarity-based functional cohesion metric, IET
Software, 2009, Vol. 3, No. 1, pp. 46-57.

[12] J. Al Dallal, Theoretical validation of object-oriented lack-of-cohesion
metrics, proceedings of the 8th WSEAS International Conference on
Software Engineering, Parallel and Distributed Systems (SEPADS
2009), Cambridge, UK, February 2009.

[13] J. Al Dallal and L. Briand, An object-oriented high-level design-based
class cohesion metric, TR, Simula Research Laboratory, 2009.

[14] J. Al Dallal, Measuring the discriminative power of object-oriented
class cohesion metrics, IEEE Transactions on Software Engineering, In
press.

[15] S.R. Chidamber and C.F. Kemerer, Towards a Metrics Suite for Object-
Oriented Design, Object-Oriented Programming Systems, Languages
and Applications (OOPSLA), Special Issue of SIGPLAN Notices, Vol.
26, No. 10, 1991, pp. 197-211.

[16] S.R. Chidamber and C.F. Kemerer, A Metrics suite for object Oriented
Design, IEEE Transactions on Software Engineering, Vol. 20, No. 6,
1994, pp. 476-493.

[17] W. Li and S.M. Henry, Maintenance metrics for the object oriented
paradigm. In Proceedings of 1st International Software Metrics
Symposium, Baltimore, MD, 1993, pp. 52-60.

[18] M. Hitz and B. Montazeri, Measuring coupling and cohesion in object
oriented systems, Proceedings of the International Symposium on
Applied Corporate Computing, 1995, pp. 25-27.

[19] B. Henderson-Sellers, Software Metrics, Prentice Hall, Hemel
Hempstaed, U.K., 1996.

[20] D. Kushwaha and A. Misra, A complexity measure based on
information contained in the software, 5th WSEAS International
Conference on Software Engineering, Parallel and Distributed Systems
(SEPADS 2006), Madrid, Spain, Feb. 2006.

[21] J. Alghamdi, Measuring software coupling, Proceedings of the 6th
WSEAS International Conference on Software Engineering, Parallel
and Distributed Systems, p.6-12, February 16-19, 2007, Corfu Island,
Greece.

[22] M. Kiewkanya and P. Muenchaisri, Measuring maintainability in early
phase using aesthetic metrics, Proceedings of the 4th WSEAS
International Conference on Software Engineering, Parallel &
Distributed Systems, p.1-6, February 13-15, 2005, Salzburg, Austria.

[23] E. Yourdon and L. Constantine, Structured Design, Prentice-Hall,
Englewood Cliffs, 1979.

[24] T. Emerson, A discriminant metrics for module cohesion, In
Proceedings of the 7th International Conference on Software
Engineering, 1984, pp. 294-303.

[25] A. Lakhotia, Rule-based approach to computing module cohesion,
Proceedings of the 15th international conference on Software
Engineering, Baltimore, US, 1993, pp. 35-44.

[26] L. Ott and J. Thuss, Slice based metrics for estimating cohesion,
Proceedings of the First International Software Metrics Symposium,
Baltimore, 1993, pp. 71-81.

[27] J. Bieman and L. Ott, Measuring functional cohesion, IEEE
Transactions on Software Engineering, Vol. 20, No. 8, 1994, pp. 644-
657.

[28] T. Meyers and D. Binkley, An empirical study of slice-based cohesion
and coupling metrics, ACM Transactions on Software Engineering
Methodology, 17(1), 2007, pp. 2-27.

[29] J. Al Dallal, Efficient program slicing algorithms for measuring
functional cohesion and parallelism, International Journal of
Information Technology, Vol. 4, No. 2, 2007, pp. 93-100.

[30] D. Troy and S. Zweben, Measuring the quality of structured designs,
Journal of Systems and Software, 2, 1981, pp. 113-120.

[31] J. Bieman and B. Kang, Measuring design-level cohesion, IEEE
Transactions on Software Engineering, Vol. 24, No. 2, 1998, pp. 111-
124.

[32] H. S. Chae, Y. R. Kwon, and D. Bae, A cohesion measure for object-
oriented classes, Software—Practice & Experience, 30(12), 2000,
pp.1405-1431.

[33] Y. Zhou, B. Xu, J. Zhao, and H. Yang, ICBMC: an improved cohesion
measure for classes, Proc. of International Conference on Software
Maintenance, 2002, pp. 44-53.

[34] Y. Zhou, J. Lu, H. Lu, and B. Xu, A comparative study of graph theory-
based class cohesion measures, ACM SIGSOFT Software Engineering
Notes, 29(2), 2004, pp. 13-13.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 4, 2010

52

