
 

 

 
Abstract— Class cohesion is an object-oriented software quality 

attribute and refers to the extent to which the members of a class are 
related. Software developers use class cohesion measures to assess 
the quality of their products and to guide the restructuring of poorly 
designed classes. Several class cohesion metrics are proposed in the 
literature, and a few of them are mathematically validated against the 
necessary properties of class cohesion. Metrics that violate class 
cohesion properties are not well defined, and their utility as indictors 
of the relatedness of class members is questionable. The purpose of 
this paper is to mathematically validate sixteen class cohesion 
metrics using class cohesion properties. Results show that metrics 
differ considerably in satisfying the cohesion properties; some of 
them satisfy all properties, while others satisfy none.  
 

Keywords — object-oriented class, software quality, class 
cohesion metric, class cohesion.  

I. INTRODUCTION 
POPULAR goal of software engineering is to develop 
the techniques and tools needed to develop high-quality 

applications that are more stable and maintainable. In order to 
assess and improve the quality of an application during the 
development process, developers and managers use several 
metrics. These metrics estimate the quality of different 
software attributes, such as cohesion, coupling, and 
complexity.  

The cohesion of a module refers to the relatedness of the 
module’s components. A module that has high cohesion 
performs one basic function and cannot be easily split into 
separate modules.  

Since the last decade, object-oriented programming 
languages, such as C++ and Java, have become widely used in 
both the software industry and research fields. In an object-
oriented paradigm, classes are the basic modules. The 
members of a class are its attributes and methods. Therefore, 
class cohesion refers to the relatedness of class members [1]. 
Assessing class cohesion and improving class quality 
accordingly during the object-oriented design phase allows for 
lower management costs in later phases. A class that has high 
cohesion cannot be easily split into separate classes. Highly 
cohesive classes are more understandable, modifiable, and 
maintainable [2].  
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Researchers have introduced several metrics to indicate 
class cohesion. In order to increase the likelihood that a 
cohesion metric is well defined and serves as a good indicator 
for the relatedness of class members, researchers must validate 
the metric, both theoretically and empirically. Briand et al. [3] 
propose four properties that must be satisfied by all class 
cohesion metrics. If a metric does not satisfy any of these 
properties, the metric is ill defined, and its usefulness as a 
cohesion indicator is questionable [3]. These properties 
provide a supportive underlying theory for metrics. Empirical 
validation is necessary to show the usefulness of metrics. 
Despite its importance, few researchers focus on the 
theoretical validation of metrics. In this paper, we study the 
validity of sixteen class cohesion metrics, using the properties 
introduced by Briand et al. [3]. We provide mathematical 
proofs for the metrics that satisfy the cohesion properties and 
provide counter examples otherwise. Our results show that 
most of the metrics satisfy all or the majority of the properties. 

This paper is organized as follows. Section 2 provides an 
overview of class cohesion metrics and necessary properties. 
In Section 3, sixteen class cohesion metrics are examined to 
determine whether they have the necessary properties. Finally, 
Section 4 presents conclusions and a discussion of future 
work. 

II. RELATED WORK 
This section overviews the considered class cohesion 

metrics and other class cohesion metrics. In addition, it 
includes a summary of the necessary properties that all class 
cohesion metrics must satisfy.  

A. Overview of class cohesion metrics 
Yourdon et al. [23] propose seven levels of cohesion. These 

levels include coincidental, logical, temporal, procedural, 
communicational, sequential, and functional. The cohesion 
levels are listed in ascending order of their desirability. Since 
then, several cohesion metrics have been proposed for 
procedural and object-oriented programming languages. 
Different models are used to measure the cohesion of 
procedural programs, such as the control flow graph [24], the 
variable dependence graph [25], and program data slices [11, 
26, 26, 28, 29]. Cohesion has also been measured indirectly by 
examining the quality of the structured designs [30, 31]. 

Researchers have proposed several class cohesion metrics in 
the literature. These metrics can be applicable based on high-
level design (HLD) or low-level design (LLD) information. 
HLD class cohesion metrics rely on information related to 
class and method interfaces. The more numerous LLD class 
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cohesion metrics require an analysis of the algorithms used in 
the class methods (or the code itself if available) or access to 
highly precise method postconditions. The LLD cohesion 
metrics use finer-grained information than that used by HLD 
cohesion metrics. That is, based on the LLD, all method-
method, method-attribute, and attribute-attribute interactions 
can be precisely defined. On the other hand, one advantage of 
HLD class cohesion metrics is that they identify potential 
cohesion issues early, during the HLD phase. Detecting class 
cohesion issues, and correcting the corresponding class 
artifacts later (during the LLD or implementation phase), is 
much more costly than performing the same tasks early 
(during the HLD phase). Improving class cohesion during the 
HLD phase saves development time, reduces development 
costs, and increases overall software quality.  

Class cohesion metrics are based on the use or sharing of 
class attributes. For example, the LCOM1 metric counts the 
number of method pairs that do not share instance variables 
[15]. Chidamber and Kemerer [16] propose another version of 
the LCOM metric (LCOM2), which calculates the difference 
between the number of method pairs that do and do not share 
instance variables. Li and Henry [17] use an undirected graph 
that represents each method as a node and the sharing of at 
least one instance variable as an edge.  

The lack-of-cohesion in methods, LCOM3, is defined as the 
number of connected components in the graph. The model 
used in the LCOM3 metric is extended in [18] by adding an 
edge between a pair of methods if one of them invokes the 
other. Here, we refer to the metric that uses the extended 
model as LCOM4. Hitz and Montazeri [18] introduce a 
connectivity metric to apply when the graph has one 
component. In addition, Henderson-Sellers [19] proposes a 
lack-of-cohesion in methods metric, LCOM5, that considers 
the number of methods referencing each attribute.  

     Bieman and Kang [4] describe two class cohesion 
metrics, Tight Class Cohesion (TCC) and Loose Class 
Cohesion (LCC), to measure the relative number of directly 
connected pairs of methods and the relative number of directly 
or indirectly connected pairs of methods, respectively. TCC 
considers two methods to be connected if they share the use of 
at least one attribute. A method uses an attribute if the 
attribute appears in the method’s body or the method invokes 
another method, directly or indirectly, that has the attribute in 
its body. LCC considers two methods to be connected if they 
share the use of at least one attribute directly or transitively. 
Badri [5] introduces two class cohesion metrics, Degree of 
Cohesion-Direct (DCD) and Degree of Cohesion-Indirect 
(DCI), that are similar to TCC and LCC, respectively, but 
differ by considering two methods connected also when both 
of them directly or transitively invoke the same method. 
Briand et al. [3] propose a cohesion metric (called Coh) that 
computes cohesion as the ratio of the number of distinct 
attributes accessed in methods of a class. Fernandez and Pena 
[6] propose a class cohesion metric, called Sensitive Class 
Cohesion Metric (SCOM), that considers the cardinality of the 
intersection between each pair of methods. In the metric 
presented by Bonja and Kidanmariam [7], the degree of 
similarity between methods is used as a basis to measure class 
cohesion. The similarity between a pair of methods is defined 

as the ratio of the number of shared attributes to the number of 
distinct attributes referenced by both methods. Cohesion is 
defined as the ratio of the summation of the similarities 
between all pairs of methods to the total number of possible 
pairs of methods. The metric is called Class Cohesion (CC).  

Bansiya et al. [8] propose a design-based class cohesion 
metric called Cohesion among Methods in a Class (CAMC). 
In this metric, only the method-method interactions are 
considered. The CAMC metric uses a parameter occurrence 
matrix that has a row for each method and a column for each 
data type that appears at least once as the type of a parameter 
in at least one method in the class. The value in row i and 
column j in the matrix equals 1 when the ith method has a 
parameter of jth data type. Otherwise, the value equals 0. The 
CAMC metric is defined as the ratio of the total number of 1s 
in the matrix to the total size of the matrix.  

Counsell et al. [9] propose a design-based class cohesion 
metric called Normalized Hamming Distance (NHD). In this 
metric, only the method-method interactions are considered. 
The metric  uses the same parameter occurrence matrix used 
by the CAMC metric. NHD calculates the average of the 
parameter agreements between each pair of methods. The 
parameter agreement between a pair of methods is defined as 
the number of places in which the parameter occurrence 
vectors of the two methods are equal. Chae et al. [32] propose 
a metric called Cohesion Based on Member Connectivity 
(CBMC) that considers not only the number of interactions 
but also the patterns of the interactions between the methods 
in a class. The metric considers the ratio of the number of glue 
methods to the number of methods of interest. The number of 
glue methods equals the minimum number of methods 
required such that their removal causes the method-attribute 
interaction graph to become disjoint. Zhou et al. [33] 
introduce ICBMC, an improved version of CBMC, that 
considers the cut sets instead of glue methods. The cut set is 
the minimum set of edges such that their removal causes the 
method-attribute interaction graph to become disjoint. Related 
work in the area of software cohesion can be found in [10], 
[11], [13], and [14], and related work in the area of measuring 
software quality can be found in [20], [21], and [22]. 

B. Class cohesion metric properties 
Briand et al. [3] define four properties for cohesion metrics. 

The first property, Property 1, called non-negativity and 
normalization, is that the cohesion measure belongs to a 
specific interval [0, Max]. Normalization allows for easy 
comparison between the cohesion of different classes. The 
second property, Property 2, called null value and maximum 
value, holds that the cohesion of a class equals 0 if the class 
has no cohesive interactions; the cohesion is equal to Max if 
all possible interactions within the class are present. The third 
property, Property 3, called monotonicity, holds that adding 
cohesive interactions to the module cannot decrease its 
cohesion. The fourth property, Property 4, called cohesive 
modules, holds that merging two unrelated modules into one 
module does not increase the modules’ cohesion. Therefore, 
given two classes, c1 and c2, the cohesion of the merged class 
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c' must satisfy the following condition: cohesion(c')≤max 
{cohesion(c1), cohesion(c2)}. 

III. THEORETICAL VALIDATION 
This section studies the theoretical validation of sixteen 

class cohesion metrics. The definition of each metric is 
overviewed, and the satisfaction of the four class cohesion 
necessary properties is proved mathematically or disproved, 
using a counter example. 

A. LCOM1 [15] 
Definition: LCOM1=P, where P is the number of pairs of 

methods that do not share common attributes. 
Property 1 and Property 2: The minimum value for 

LCOM1 is 0 when each pair of methods shares at least one 
common attribute (i.e., the model has the maximal number of 
cohesion interactions). The maximum value for LCOM1 
depends on the number of methods in a class. That is, k(k-1)/2, 
where k is the number of methods, when none of the methods 
share common attributes (i.e., the model does not have 
cohesion interactions). Therefore, LCOM1 satisfies Property 
2, but it does not satisfy Property 1. 

Property 3: Adding a cohesive interaction to the model 
implies decreasing the number of unrelated pairs of methods, 
hence decreasing LCOM1 and increasing the cohesion. 
Therefore, LCOM1 satisfies Property 3. 

Property 4: Unrelated classes are classes that have no 
common attributes and methods. Given that PC and QC are the 
number of pairs of methods with and without shared attributes 
in a class C, for classes A, B, and M, where A and B are 
unrelated classes, and M is their merged class version, 
QM=QA+QB. The LCOM1 of the merged class is calculated as 
follows: 
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where k and m are the number of methods in classes A and B, 
respectively. The cohesion of the merged class is less than the 
cohesion of each of the split classes; therefore, the LCOM1 
metric satisfies Property 4. 

B. LCOM2 [16] 

Definition:
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Property 1 and Property 2: The minimum value for 
LCOM2 is 0 when Pc≤Qc. Therefore, when the model has the 
maximum number of interactions, LCOM2 becomes 0 
because, in this case, the number of pairs that do not share 
common attributes is less than those that share common 
attributes (i.e., 0<k(k-1)/2). However, the maximum value for 
LCOM2 depends on the number of methods in a class. That is, 
k(k-1)/2, where k is the number of methods, when none of the 
methods share common attributes (i.e., the model does not 

have cohesion interactions). Therefore, LCOM2 satisfies 
Property 2, but does not satisfy Property 1. 

Property 3: Adding a cohesive interaction to the model 
implies increasing Q and decreasing P. If, in the original 
model, Pc≤Qc, the cohesion of the original and the modified 
models equal 0. Otherwise, LCOM2 of the model decreases. 
Therefore, LCOM2 satisfies Property 3. 

Property 4: When two unrelated classes are merged, 
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The cohesion of the merged class is less than the cohesion 
of each of the split classes; therefore, the LCOM2 metric 
satisfies Property 4. 

C. LCOM3 [17] 
Definition: LCOM3 is defined as the number of connected 

components in the graph. 
Property 1 and Property 2: The minimum value for 

LCOM3 is 1 when there is a direct or indirect cohesive 
interaction between each method and another. The maximum 
value for LCOM3 depends on the number of methods in a 
class (i.e., k, where k is the number of methods, when the 
model has no interactions). The value of LCOM3 ranges in 
the interval [1,k], and, therefore, the metric does not satisfy 
Property 1. In addition, the metric does not satisfy Property 2 
because the value of LCOM3 is not equal to 0 when the model 
has the maximum possible interactions. 

Property 3: When adding a cohesive interaction to the 
model, the number of connected components either decreases 
by 1, when the interaction connects two disjoint components, 
or remains the same, when the interaction does not connect 
two disjoint components. Therefore, LCOM3 satisfies 
Property 3. 

Property 4: Two unrelated classes are graphically 
represented by two disjoint graphs. Therefore, when two 
unrelated classes A and B are merged into class M, the total 
number of disjoint components increases by 1 (i.e., 
LCOM3(M)=LCOM3(A)+ LCOM3(B)+1). Hence, the 
LCOM3 metric satisfies Property 4. 

D. LCOM4 [18] 
The only difference between LCOM4 and LCOM3 is in the 

definition of the cohesive interactions. The above discussion 
about the validity of LCOM3 is independent from the 
definition of the cohesive interactions, and, therefore, both 
metrics have the same properties. However, when the graph is 
connected, the following connectivity metric is used. 

E. Connectivity [18] 
Definition: When LCOM4=1, 

nodes. ofnumber   theis  and edges ofnumber   theis  where
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Property 1 and Property 2: The connectivity metric is 
defined only for the cases where LCOM4 is equal to 1. When 
LCOM4 equals 1, the graph that represents the class is 
connected, and the number of edges in the graph is not less 
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than k-1. The minimum value for the connectivity metric is 
equal to 0 when the model to which the metric can be applied 
has the minimum possible number of interactions. The 
maximum value for connectivity is equal to 1 when the model 
has the maximum possible number of interactions (i.e., e=k(k-
1)/2). Therefore, the connectivity metric satisfies Property 1 
when it is applied to the models for which it is defined. 
However, a combination of LCOM4 and connectivity does not 
satisfy Property 1. Property 2 is not applicable for the 
connectivity metric because the metric is undefined when the 
model of the class has no interactions. The combination of 
LCOM4 and connectivity satisfies Property 2 because 
connectivity solves the problem of the maximum value.  

Property 3: Adding a cohesive interaction to the class 
implies adding an edge to the models that represent the class. 
The connectivity value increases, and, therefore, the metric 
satisfies Property 3. Hence, the combination of LCOM4 and 
connectivity satisfies Property 3. 

Property 4: When two unrelated classes are merged, the 
model of the resulting class will have the number of edges 
equal to the summation of the number of edges in the models 
of both classes (i.e., eM=eA+eB). To prove the connectivity 
metric’s satisfaction of Property 4, we introduce the following 
numerator-denominator cohesion proving model:  
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Given the following conditions: 
Condition 1: N(M)≤N(A)+N(B) 
Condition 2: D(M)≥D(A)+D(B) 
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This means that max{cohesion(A),cohesion(B)}≥ 
cohesion(M). Therefore, if a cohesion metric satisfies 
Conditions 1 and 2, it satisfies Property 4. 

The connectivity metric is proved to satisfy the cohesive 
modules property as follows: 
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The metric satisfies Conditions 1 and 2, and, therefore, it 
satisfies Property 4. Hence, the combination of LCOM4 and 
connectivity satisfies Property 4. 

F. LCOM5 [19] 

Definition: 
1
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, where k is the 

number of methods, l is the number of attributes, and cji is the 
binary value at row j and column i in the binary matrix that 
represents which attribute is used in which method.  

Property 1 and Property 2: The minimum value for 
LCOM5 is equal to 0 when each pair of methods shares at 
least one common attribute (i.e., the model has the maximum 
number of cohesion interactions). The maximum value for 
LCOM5 depends on the number of methods in a class. This 
value is defined as k/(k-1), where k is the number of methods, 
when none of the methods share common attributes (i.e., the 
model does not have cohesion interactions). Therefore, 
LCOM5 satisfies Property 2, but does not satisfy Property 1. 

Property 3: The following proof shows that LCOM5 
satisfies Property 3. 
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Property 4: In some cases, LCOM5 does not satisfy 
Property 4. For example, given two classes A and B such that 
each class has two methods and two attributes, and none of the 
methods use any attribute, LCOM5(A)=LCOM5(B)=2. When 
both classes are merged into class M, LCOM5(M)=(4-0)/(4-
1)=1.33. Therefore, in this case, LCOM5(M)< 
min{LCOM5(A),LCOM5(B)}, which violates Property 4. 

G. TCC and LCC [4], DCD and DCI [5], and Coh [3] 
Definition: TCC, LCC, DCD, DCI, and Coh are defined as 

the relative number of cohesive interactions. They differ only 
in their definitions for the cohesive interactions, as discussed 
in Section 2.   

Property 1 and Property 2: For the following discussion, 
the five metrics are referenced as R. The minimum value for R 
is 0 when the class has no cohesive interactions. The 
maximum value for R is 1 when the class has the maximum 
possible number of interactions. Therefore, the five metrics 
satisfy both Property 1 and Property 2. 

Property 3: Since R is defined as the relative number of 
cohesive interactions, it increases when a cohesive interaction 
is added to the class model. Therefore, the five metrics satisfy 
Property 3. 

Property 4: R is a relative metric, and, therefore, to prove 
its satisfaction of Property 4, we prove its satisfaction of 
Conditions 1 and 2 of the numerator-denominator cohesion 
proving model as follows: 

When unrelated classes A and B are merged into class M, 
the number of interactions in M is equal to the summation of 
the number of interactions in classes A and B. Thus, 
N(M)=N(A)+N(B), which satisfies Condition 1. In addition, 
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R also satisfies Condition 2, and, therefore, the five metrics 
satisfy Property 4.  

H. SCOM [6] 
Definition: Given a class that has l attributes, the similarity 

between a pair of methods i and j, which reference the set of 
attributes Ii and Ij, respectively, is formally defined as follows: 
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Cohesion is defined as the ratio of the summation of the 
similarities between all pairs of methods to the total number of 
possible pairs of methods. 

Property 1 and Property 2: The minimum value for 
SCOM is equal to 0 when none of the methods share common 
attributes, which includes the case in which none of the 
methods use any attribute (i.e., the model does not have any 
cohesive interaction). The maximum value for SCOM is 1 
when all methods share all attributes (i.e., the model has all 
possible cohesive interactions). Therefore, the SCOM metric 
satisfies both non-negativity and normalization, as well as null 
and maximum value cohesion properties. 

Property 3: In some cases, when a cohesive interaction is 
added to the model, the SCOM value of the class decreases to 
some extent. Fig. 1 shows an example (classes A and B) for 
which the metric violates Property 3. This decrease is due to 
the fact that, in SCOM, the similarity is inversely proportional 
to the minimum number of attributes used in both methods. In 
some cases, adding a cohesive interaction increases this 
number and, consequently, decreases the similarity between 
some pairs of methods. When this decrease is greater than the 
increase of the similarity between some other pairs of methods 
in the class, the SCOM value decreases. 

Property 4: To use our numerator-denominator cohesion 
proving model, we adjust the definition of similarity as 
follows: 
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When two unrelated classes A and B are merged into class 
M, mij between each pair of methods in class A and class B, 
does not change, because none of the parameters on which the 
mij value depends change. Since classes A and B are 
unrelated, mij between any method in class A and any method 
in class B equals 0 because none of the attributes are shared 
between the methods. Therefore, N(M)=N(A)+N(B) (i.e., 
satisfies Condition 1). The following proof shows that SCOM 
satisfies Condition 2. 
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As a result, SCOM satisfies the cohesive modules property. 

I. CC [7] 
Definition: The similarity between a pair of methods i and j 

is defined as follows: 

ji

ji
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∩
=),( , where Ii and Ij are the sets of 

attributes referenced by methods i and j, respectively. 
Cohesion is defined as the ratio of the summation of the 
similarities between all pairs of methods to the total number of 
possible pairs of methods. 

Property 1 and Property 2: The minimum value for CC 
equals 0 when none of the methods share common attributes, 
which includes the case in which none of the methods use any 
attribute (i.e., the model does not have any cohesive 
interaction). The maximum value for CC is 1 when all 
methods share the same set of attributes, which includes the 
case in which all methods share all attributes (i.e., the model 
has all possible cohesive interactions). Therefore, the CC 
metric satisfies both non-negativity and normalization, as well 
as null and maximum value cohesion properties. 

Property 3: CC does not satisfy Property 3 in some cases. 
That is, when a cohesive interaction is added to a class, the 
counterintuitive result may be a class with a lower CC value, 
as depicted in classes C and D, shown in Fig. 1. This occurs 
because the addition of a cohesive interaction may increase 
the similarities between pairs of methods and decrease the 
similarities between other pairs of methods. In this case, the 
cohesion increases if the summation of the similarities 
between pairs of methods increases, and vice versa. 

  

 
 

Fig. 1: Violation of CC and SCOM in terms of 
monotonicity [1]. 

 
Property 4: When two unrelated classes A and B are 

merged into class M, the similarity between each pair of 
methods in class A and class B does not change. This is 
because the similarity of a pair of methods is defined as the 
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ratio of the number of shared attributes between both methods 
to the number of attributes used by both methods. These two 
numbers remain the same in class M. Since classes A and B 
are unrelated, no similarities exist between methods in class A 
and methods in class B. Therefore, N(M)=N(A)+N(B) (i.e., 
CC satisfies Condition 1). CC also satisfies Condition 2 (the 
proof is identical to the corresponding one given above for the 
R metric). As a result, CC satisfies the cohesive modules 
property. 

J. CAMC [8] 
Definition: The ratio of the total number of 1s in the 

parameter occurrence matrix to the total size of the matrix. 
Property 1 and Property 2: The minimum value for 

CAMC is CAMCmin = (k+l-1)/kl when each parameter type is 
used by only one method, and the class type is used by all 
methods. The maximum value for CAMC is 1 when all 
methods have the same parameter types. Since the minimum 
value for CAMC is greater than 0, the metric does not satisfy 
Property 1. Since the model of the class used by CAMC 
cannot be free of cohesive interactions, the null and maximum 
value property is not applicable.  

Property 3 and Property 4: CAMC is defined as the 
relative number of cohesive interactions in the model 
representing the class. Therefore, similar to R metrics, CAMC 
satisfies the monotonicity and cohesive modules properties. 

K. NCAMC 
Definition: The CAMC metric can be normalized by 

linearly scaling the interval [(k+l-1)/kl,1] to [0,1] as follows: 
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If there is only one method in the class, the method uses all 

the parameter types, so CAMC=1. Therefore, NCAMC=1 if 
k=1, and NCAMC is calculated using the above formula 
otherwise. Counsell et al. [8] suggest omitting the type of 
class from the parameter occurrence matrix and calculating 
CAMC using the modified matrix. Given the parameter 
occurrence matrix without the type of class, CAMC can be 
calculated as follows [8]: 
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In this case, the minimum number of 1s in the matrix equals 
l, and the normalized metric can be calculated as follows: 
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Note that the above normalized metrics are undefined when 
k=1. In this case, the class has one method that uses all the 
parameter types, and, by definition of the CAMC metric, the 
cohesion is equal to 1. We consider the normalized cohesion 
in this case to also be equal to 1. One of the major criticisms 
of the CAMC metric is that it does not distinguish between the 
cohesion of different matrices with the same number of 1s. 

Property 1 and Property 2: The minimum value for 
NCAMC is when the matrix has the minimum number of 1s, 
which is l. By substituting a in Formula 1 by l, we get 
NCAMC=0. The maximum value for NCAMC is when the 
matrix has the maximum number of 1s, which is kl.  By 
substituting a in Formula 1 by kl, we get NCAMC=1. As 
discussed above, NCAMC=1 when k=1. NCAMC ranges in 
the interval [0, 1], and, therefore, it is normalized. Since the 
model of the class used by NCAMC cannot be free of 
cohesive interactions, the null and maximum value property is 
not applicable.    

Property 3: Given specific methods and parameter types, 
adding a cohesive method-method interaction to the class 
means making a parameter type shared between two methods. 
This is represented in the matrix by changing two entries in a 
column in the matrix from 0 to 1 if both methods were not 
using the parameter type or changing one entry from 0 to 1 if 
one of the methods was using the parameter type. As a result, 
adding a cohesive method-method interaction implies 
incrementing a in Formula 1 by n, where n is either 1 or 2. 
When k=1, all entries of the matrix are equal to 1, and no 
more cohesive interactions can be added. When k>1,  
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Therefore, NCAMC satisfies the monotonicity property.  
Property 4: Merging two unrelated classes c1 and c2 means 

that none of the methods in each of the two classes share 
common parameter types. If class c1 has k methods and l 
distinct parameter types, and class c2 has m methods and n 
distinct parameter types, the parameter occurrence matrix of 
the merged class c3 will have k+m rows and l+n columns. In 
this case, 
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The cohesion of a system consisting of more than one 
module is the weighted sum of the cohesion of each module in 
the system [3]. As a result, the cohesion of the two classes c1 
and c2 is as follows: 
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Since the cohesion of the merged class is less than the 
cohesion of the system consisting of the two classes, the 
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NCAMC metric satisfies the cohesive modules property. The 
above case is applicable when each of the classes has more 
than one method. If each of the two classes has one method, 
the cohesion of each class is equal to 1, and, therefore, the 
cohesion of the system consisting of the two classes is equal 
to 1. The cohesion of the merged class is equal to 0 (i.e., by 
substituting ac1 by l and ac2 by n in Formula 2), which is less 
than the cohesion of the split classes. Finally, if one of the 
classes has one method, by substituting ac1 by l or ac2 by n in 
Formula 2, Proposition 3 is still satisfied. As a result, in all 
cases, NCAMC satisfies the cohesive modules property. 

L. NHD [9] 

Definition: ∑
=

−
−

−=
l

j
jj xkx

klk
NHD

1
)(

)1(
21 , 

where k is the number of methods, l is the number of distinct 
parameter types, and  xj is the number of 1s in the jth column 
of the parameter occurrence matrix (i.e., number of methods 
that use parameter j). 

Property 1 and Property 2: The NHD metric has the 
minimum value when each column in the matrix that models 
the class has the maximum possible disagreements, by setting 
xj=k/2 in the NHD formula [9]. In this case, NHDmin = (k-
2)/[2(k-1)]. The maximum value for NHD is equal to 1 when 
the matrix contains only 1s (i.e., the class has all possible 
interactions). Since the minimum value for NHD is greater 
than 0, the metric does not satisfy Property 1. Since the model 
of the class used by NHD cannot be free of cohesive 
interactions, the null and maximum value property is not 
applicable.  

Property 3: Adding a cohesive interaction to the class is 
represented in the matrix by changing two entries in a column 
in the matrix from 0 to 1 if neither method used the parameter 
type, or changing one entry from 0 to 1 if one of the methods 
was using the parameter type. If a column n in the matrix has 
xn>k/2, where xn is the number of 1s in the column, according 
to the NHD formula, the value of NHD after adding the 
cohesive interaction is less than it was before adding the 
cohesive interaction, which violates Property 3.     

Property 4: In some cases, NHD violates the cohesive 
modules property. For example, consider two classes, A and 
B, where each has two methods: One of the methods has two 
parameter types, and the other method does not have any 
parameter types. In this case, the cohesion of each class is 
equal to 0. When the two classes are merged, the new matrix 
is 4×4, and the NHD value of the merged class is 0.5, which is 
greater than the NHD value of each of classes A and B. 

IV. CONCLUSIONS AND FUTURE WORK 
This paper shows how to prove or disprove the satisfaction 

of class cohesion metrics to the necessary properties for class 
cohesion. Table I summarizes the results found in this paper 
and another related paper [34]. The results show that among 
the considered class cohesion metrics: 

• Eight (42%) metrics satisfy all properties. 
• Six (37%) metrics satisfy only three properties. 
• Four (21%) metrics satisfy only two properties. 

• One (5%) metric does not satisfy any property. 
• Ten (53%) metrics satisfy Property 1. 
• Fourteen (74%) metrics satisfy Property 2. 
• Fifteen (79%) metrics satisfy Property 3. 
• Seventeen (89%) metrics satisfy Property 4. 

In general, this means that 42% of the considered metrics are 
valid from the theoretical perspective. All other metrics have 
to be revised to comply with the class cohesion properties. 
Otherwise, use of these metrics as cohesion indicators is 
questionable. 

 
Table I: Summary of the theoretical validation results 

 
In the future, we plan to theoretically validate other existing 

class cohesion metrics and empirically explore the 
relationships between the theoretical and empirical validation 
results. 

 

ACKNOWLEDGMENT 
The author would like to acknowledge the support of this 

work by Kuwait University Research Grant WI03/07.      

REFERENCES 
[1] J. Al Dallal and L. Briand, A precise method-method interaction-based 

cohesion metric for object-oriented classes, TR, Simula Research 
Laboratory, 2009, ACM Transactions on Software Engineering and 
Methodology (TOSEM), in press. 

[2] Z. Chen, Y. Zhou, and B. Xu, A novel approach to measuring class 
cohesion based on dependence analysis, Proceedings of the 
International Conference on Software Maintenance, 2002, pp. 377-
384. 

[3] L. C. Briand, J. Daly, and J. Wuest, A unified framework for cohesion 
measurement in object-oriented systems, Empirical Software 
Engineering - An International Journal, Vol. 3, No. 1, 1998, pp. 65-
117.  

[4] J. M. Bieman and B. Kang, Cohesion and reuse in an object-oriented 
system, Proceedings of the 1995 Symposium on Software reusability, 
Seattle, Washington, United States, pp. 259-262, 1995.  

Metric P1 P2 P3 P4 
LCOM1 No Yes Yes Yes 
LCOM2 No Yes Yes Yes 
LCOM3 No No Yes Yes 
LCOM4 No No Yes Yes 
Connectivity N.A. Yes Yes Yes 
LCOM4+ 
connectivity 

No Yes Yes Yes 

LCOM5 No Yes Yes No 
TCC  Yes Yes Yes Yes 
LCC Yes Yes Yes Yes 
DCD Yes Yes Yes Yes 
DCI Yes Yes Yes Yes 
Coh Yes Yes Yes Yes 
SCOM Yes Yes No Yes 
CC Yes Yes No Yes 
CAMC No N.A. Yes Yes 
NCAMC Yes N.A. Yes Yes 
NHD No N.A. No No 
CBMC [34] Yes Yes No Yes 
ICBMC [34] Yes Yes Yes Yes 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 2, Volume 4, 2010

51



 

 

[5] L. Badri and M. Badri, A Proposal of a new class cohesion criterion: an 
empirical study, Journal of Object Technology, Vol. 3, No. 4, 2004.. 

[6] L. Fernández, and R. Peña, A sensitive metric of class cohesion, 
International Journal of Information Theories and Applications, Vol. 
13, No. 1, 2006, pp. 82-91.  

[7] C. Bonja and E. Kidanmariam, Metrics for class cohesion and similarity 
between methods, Proceedings of the 44th Annual ACM Southeast 
Regional Conference, Melbourne, Florida, 2006, pp. 91-95. 

[8] J. Bansiya, L. Etzkorn, C. Davis, and W. Li, A class cohesion metric for 
object-oriented designs, Journal of Object-Oriented Program, Vol. 11, 
No. 8, pp. 47-52. 1999. 

[9] S. Counsell , S. Swift , and J. Crampton, The interpretation and utility of 
three cohesion metrics for object-oriented design, ACM Transactions 
on Software Engineering and Methodology (TOSEM), Vol. 15, No. 2, 
2006, pp.123-149. 

[10] J. Al Dallal, A design-based cohesion metric for object-oriented classes, 
International Journal of Computer Science and Engineering, 2007, 
Vol. 1, No. 3, pp. 195-200. 

[11] J. Al Dallal, Software similarity-based functional cohesion metric, IET 
Software, 2009, Vol. 3, No. 1, pp. 46-57. 

[12] J. Al Dallal, Theoretical validation of object-oriented lack-of-cohesion 
metrics, proceedings of the 8th WSEAS International Conference on 
Software Engineering, Parallel and Distributed Systems (SEPADS 
2009), Cambridge, UK, February 2009.  

[13] J. Al Dallal and L. Briand, An object-oriented high-level design-based 
class cohesion metric, TR, Simula Research Laboratory, 2009. 

[14] J. Al Dallal, Measuring the discriminative power of object-oriented 
class cohesion metrics, IEEE Transactions on Software Engineering, In 
press.  

[15] S.R. Chidamber and C.F. Kemerer, Towards a Metrics Suite for Object-
Oriented Design, Object-Oriented Programming Systems, Languages 
and Applications (OOPSLA), Special Issue of SIGPLAN Notices, Vol. 
26, No. 10, 1991, pp. 197-211. 

[16] S.R. Chidamber and C.F. Kemerer, A Metrics suite for object Oriented 
Design, IEEE Transactions on Software Engineering, Vol. 20, No. 6, 
1994, pp. 476-493.  

[17] W. Li and S.M. Henry, Maintenance metrics for the object oriented 
paradigm. In Proceedings of 1st International Software Metrics 
Symposium, Baltimore, MD, 1993, pp. 52-60. 

[18] M. Hitz and B. Montazeri, Measuring coupling and cohesion in object 
oriented systems, Proceedings of the International Symposium on 
Applied Corporate Computing, 1995, pp. 25-27. 

[19] B. Henderson-Sellers, Software Metrics, Prentice Hall, Hemel 
Hempstaed, U.K., 1996. 

[20] D. Kushwaha and A. Misra, A complexity measure based on 
information contained in the software, 5th WSEAS International 
Conference on Software Engineering, Parallel and Distributed Systems 
(SEPADS 2006), Madrid, Spain, Feb. 2006. 

[21] J. Alghamdi, Measuring software coupling, Proceedings of the 6th 
WSEAS International Conference on Software Engineering, Parallel 
and Distributed Systems, p.6-12, February 16-19, 2007, Corfu Island, 
Greece. 

[22] M. Kiewkanya and P. Muenchaisri, Measuring maintainability in early 
phase using aesthetic metrics, Proceedings of the 4th WSEAS 
International Conference on Software Engineering, Parallel & 
Distributed Systems, p.1-6, February 13-15, 2005, Salzburg, Austria. 

[23] E. Yourdon and L. Constantine, Structured Design, Prentice-Hall, 
Englewood Cliffs, 1979. 

[24] T. Emerson, A discriminant metrics for module cohesion, In 
Proceedings of the 7th International Conference on Software 
Engineering, 1984, pp. 294-303. 

[25] A. Lakhotia, Rule-based approach to computing module cohesion, 
Proceedings of the 15th international conference on Software 
Engineering, Baltimore, US, 1993, pp. 35-44. 

[26] L. Ott and J. Thuss, Slice based metrics for estimating cohesion, 
Proceedings of the First International Software Metrics Symposium, 
Baltimore, 1993, pp. 71-81. 

[27] J. Bieman and L. Ott, Measuring functional cohesion, IEEE 
Transactions on Software Engineering, Vol. 20, No. 8, 1994, pp. 644-
657. 

[28] T. Meyers and D. Binkley, An empirical study of slice-based cohesion 
and coupling metrics, ACM Transactions on Software Engineering 
Methodology, 17(1), 2007, pp. 2-27. 

[29] J. Al Dallal, Efficient program slicing algorithms for measuring 
functional cohesion and parallelism, International Journal of 
Information Technology, Vol. 4, No. 2, 2007, pp. 93-100. 

[30] D. Troy and S. Zweben, Measuring the quality of structured designs, 
Journal of Systems and Software, 2, 1981, pp. 113-120. 

[31] J. Bieman and B. Kang, Measuring design-level cohesion, IEEE 
Transactions on Software Engineering, Vol. 24, No. 2, 1998, pp. 111-
124. 

[32] H. S. Chae, Y. R. Kwon, and D. Bae, A cohesion measure for object-
oriented classes, Software—Practice & Experience, 30(12), 2000, 
pp.1405-1431. 

[33] Y. Zhou, B. Xu, J. Zhao, and H. Yang, ICBMC: an improved cohesion 
measure for classes, Proc. of International Conference on Software 
Maintenance, 2002, pp. 44-53. 

[34] Y. Zhou, J. Lu, H. Lu, and B. Xu, A comparative study of graph theory-
based class cohesion measures, ACM SIGSOFT Software Engineering 
Notes, 29(2), 2004, pp. 13-13. 

 
 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 2, Volume 4, 2010

52




