
 

 

 

Abstract—Multi-core processors, which have more than one 

Central Processing Unit (CPU), have been introduced widely into 

personal computers. Therefore, in order to utilize the additional cores, 

or CPUs, to execute various costly application programs, concurrent 

implementations of them have been paid to attention. MapReduce is a 

concurrent programming model and an associated implementation for 

processing and generating large data sets. This paper has been 

participated in plenary presentation at the conference of WSEAS and 

is presenting a further progress of a concurrent implementation of 

Differential Evolution (DE) based on MapReduce. Especially, through 

the numerical experiment conducted on a wide range of benchmark 

problems, the speedup of DE due to the use of multiple cores is 

demonstrated. Furthermore, the goodness of the proposed concurrent 

implementation of DE is examined and proved with respect to four 

categories, namely efficiency, simplicity, portability and scalability. 

 

Keywords—Algorithm, concurrent program, differential evolution, 

evolutionary algorithm, MapReduce, parallel program. 

I. INTRODUCTION 

IFFERENTIAL Evolution (DE) is one of the most recent 

Evolutionary Algorithms (EAs) for solving real-parameter 

optimization problems [1]. Comparing with typical EAs such as 

Genetic Algorithm (GA), Evolutionary Strategy (ES), and 

Particle Swarm Optimization (PSO), it has been reported that 

DE exhibits an overall excellent performance for a wide range 

of benchmark problems [2], [3]. Furthermore, because of its 

simple but powerful searching capability, DE has been applied 

to numerous real-world applications successfully [4]–[6]. 

The procedure of EA for updating the individuals included in 

the population is called a “generation model” or a “generation 

alternation model”. EAs usually employ either of two types of 

generation models [7]. The first one is called a “generational 

model” or a “discrete generation model”, while the second one 

is called a “steady-state model” or a “continuous generation 

model” [8]. The classic DE proposed originally by R. Storn and 

K. Price has been based on the discrete generation model [1]. 

According to the discrete generation model, the classic DE 

holds two populations, namely the old one and the new one. 

Then, by using a particular strategy, the individuals of the new 

population are generated from those of the old one. After that, 

the old population is replaced by the new one at a time. 

Inspired by the great success of the classic DE, a variety of 

revised DEs have been developed for solving different types of 

optimization problems such as noisy [9], constrained [4], and 

multi-objective optimization problems [10], [11]. Furthermore, 

self-adaptive DEs that have various learning mechanisms to 

choose appropriate strategies and control parameters [12], [13]. 

However, many of the conventional DEs have been also based 

on the discrete generation model as well as the classic DE. 

Recently, a new DE based on the continuous generation 

model is proposed [14], [15]. The new DE is sometimes called 

“Sequential DE (SDE)” [14]. According to the continuous 

generation model, SDE holds only one population. Therefore, 

SDE renews the individuals of the population one by one. 

Exactly, SDE generates a new individual called the “trial 

vector” from an existing individual called the “target vector” in 

the same way with the classic DE. After that, if the target vector 

included in the population is not better than the trial vector, the 

target vector is replaced by the trial vector immediately. Since 

the excellent newborn individual, namely the trial vector, can be 

used soon to generate offspring, it can be expected that SDE 

finds good solutions faster than the classic DE [8]. 

Multi-core processors, which have more than one Central 

Processing Unit (CPU), have been introduced widely into 

personal computers. Therefore, in order to utilize the additional 

CPUs to execute costly application programs such as EAs 

applied to real-world applications, concurrent implementations 

of them have been paid to attention [16]. Because EAs including 

DE maintain a lot of individuals manipulated competitively in 

the population, EAs have a parallel and distributed nature 

intrinsically. Therefore, many parallelization techniques of 

various EAs have been reported [17], [18]. Actually, a parallel 

implementation of the classic DE has been also proposed by 

using Parallel Virtual Machine (PVM) [19]. However, the 

concurrent implementation of DE executable on a multi-core 

processor has not been reported yet. 

In this paper, a concurrent implementation of DE is proposed. 

Although various DEs have been reported [11], SDE is chosen 

for the proposed concurrent implementation. That is because the 

survival selection of SDE comparing the trial vector only with 

the target vector enables us to manipulate all the individuals in 

the population independently. Besides, SDE need not 

synchronize the manipulations of the individuals in each 

generation for replacing the old population by the new one. 

Therefore, comparing with the classic DE, SDE is especially 

suited for concurrent programming. The proposed concurrent 

implementation of SDE is based on MapReduce. Incidentally, 

MapReduce is a modern concurrent programming model and an 

associated implementation for processing and generating large 

data sets [20]. Finally, through the numerical experiment 

conducted on various benchmark problems, the speedup of SDE 

due to the use of multiple CPUs is demonstrated. Besides, the 
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goodness of the proposed concurrent implementation of SDE is 

examined and proved with respect to four categories, namely 

efficiency, simplicity, portability and scalability. 

The rest of the paper is organized as follows. Section II 

describes the classic DE and a basic strategy of DE. The basic 

strategy is also used by SDE for generating a new individual. 

Section III describes SDE. For designing concurrent and 

parallel programs, Section IV presents a model of the multi-core 

processor and explains MapReduce briefly. The concurrent 

implementation of SDE, which is called Concurrent DE (CDE), 

is proposed in Section V. Comparing with SED and the classic 

DE, the performance of the proposed CDE is evaluated through 

the numerical experiment in Section VI. Finally, Section VII 

concludes this paper. 

II. DIFFERENTIAL EVOLUTION (DE) 

A. Representation 

The optimal solution of the real-parameter optimization 

problem is represented by a D-dimensional real parameter 

vector ),,( 10 −= Dxx ⋯x  that minimizes the value of the 

objective function f(x). Besides, the value of each decision 

variable ℜ∈jx  is usually limited to the range between the 

lower 
j

x and the upper jx boundaries. Therefore, the 

real-parameter optimization problem can be formulated as 






−=≤≤
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Differential Evolution (DE) [1], [3] is used to solve the 

optimization problem shown in (1). As well as conventional 

real-coded GAs [21], each tentative solution is represented by a 

real-parameter vector and called an “individual”. Furthermore, 

DE holds NP individuals within the population. Therefore, an 

individual )1,,0( −= Pi Nix ⋯  is represented as 

.1,,0,,where
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,
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The members of an initial population Pi ∈x  are generated 

randomly by using the random number generator that is denoted 

by ]1,0[jrand and returns a uniformly distributed random 

number from within the range between 0 and 1 as 

;
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B. Strategy of DE 

Differential mutation is a unique genetic operator of DE [1]. 

Besides, a set of three genetic operators, namely reproduction 

selection, differential mutation and crossover, is usually called 

the strategy of DE [1]. As we will describe in detail later, SDE is 

also uses the strategy of DE [8], [14], [15]. Even though various 

strategies have been contrived for DE [1], [3], a basic strategy 

named “DE/rand/1/exp” is described and used in this paper. 

That is because the experimental result shows that the basic 

strategy has relatively good compatibility with SDE [22]. Of 

course, any strategies can be used in SDE. 

For each of the individuals )1,,0( −= Pi Ni ⋯x  within the 

population, which is also called the target vector, three different 

individuals, say 21, rr xx and )321(3 rrrir ≠≠≠x , are selected 

randomly from the current population. Then a new individual 

),,( ,1,0 iDii uu −= ⋯u  called the trial vector is generated from the 

above four individuals, namely xi, xr1, xr2 and xr3 as 
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In the basic strategy of DE described in (4), a subscript 

]1,0[ −∈ Djr  is selected randomly. Therefore, the trial vector 

ui will be different from the target vector xi at least one element 

that is specified by the subscript ]1,0[ −∈ Djr . Besides the 

population size )4( ≥RR NN , the scale factor ]1,0( +∈FS  and 

the crossover rate ]1,0[∈RC , which also appear in (4), are the 

control parameters of DE decided by user in advance. 

If an element of the trial vector ui generated by the strategy 

comes out of the range shown in (2), it will be repaired as 

jjjjij xrandxxu +−= ]1,0[)(,                                           (5) 

C. Procedure of DE 

The procedure of the classic DE [1] can be described by using 

the pseudo-code in Fig. 1. Because the classic DE is based on 

the discrete generation model, two populations, namely the old 

one oldi P∈x  and the new one newi P∈z , are used. Then the 

members of the old population are replaced by those of the new 

one such as xi=zi. Furthermore, as the stopping condition, the 

generation g is limited to the maximum GM. 

III. SEQUENTIAL DE (SDE) 

The procedure of SED [14] can be described by using the 

pseudo-code shown in Fig. 2. Because SDE is based on the 

continuous generation model, only one population Pi ∈x  is 

used in Fig. 2. If a newborn trial vector ui is not worse than the 

corresponding target vector xi, the trial vector ui is added to the 

population immediately. Therefore, the excellent trial vector ui 

can be used soon to generate succeeding trial vectors. 

Fig. 3 illustrates the procedure of the classic DE, while Fig. 4 

illustrates the procedure of SDE. Comparing the procedure of 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 4, Volume 4, 2010

162



 

 

SDE in Fig. 4 with that of the classic DE in Fig. 3, we can 

confirm that SDE obviously saves both the memory space for 

one population and the processing time spent for replacing the 

old population oldi P∈x  by the new population newi P∈z . 
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Fig. 1 Pseudo-code of the classic DE 
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Fig. 2 Pseudo-code of SDE 

  

IV. CONCURRENT PROGRAM 

A. Parallel Random Access Machine  

A program is said to be concurrent if it can support two or 

more tasks in process at the same time. On the other hand, a 

program is said to be parallel if it can support two or more tasks 

executing simultaneously [23]. The difference between these 

definitions is the phrase in progress. A concurrent program may 

perform multiple tasks in parallel if the concurrent program is 

executed on a multi-core processor. Therefore, it can be 

expected that the execution time of an algorithm is reduced by 

using the concurrent program on the multi-core processor. 

For designing parallel or concurrent programs, the multi-core 

processor is model by the Parallel Random Access Machine 

(PRAM) [16]. Fig. 5 shows a configuration of PRAM. PRAM 

has multiple cores, or CPUs, attached to an unlimited memory 

that is shared among all the CPUs. PRAM uses a shared bus 

connecting the memory and respective CPUs, where details of 

the connection mechanism between them are ignored. Therefore, 

all the threads running on CPUs are assumed to be advancing in 

lockstep fashion. Furthermore, all the threads running on CPUs 

are assumed to have the same access time to the memory 

locations regardless the number of CPUs. 

 

 
 

Fig. 3 Procedure of the classic DE 

 

 

 
 

Fig. 4 Procedure of SDE 

  

All the CPUs in PRAM will usually require some form of 

synchronization and communication in order to cooperate on a 

given application. However, PRAM makes no assumption about 

software or hardware support of synchronization objects 

available to a programmer [16]. Therefore, PRAM need to be 

specified how threads running on respective CPUs will be able 

to access memory for both reading and writing. In this paper, we 

introduce the Concurrent Read and Exclusive Write (CREW) 

[16] memory access into PRAM. In accordance with CREW, 

multiple threads running on respective CPUs may read from the 

same memory location at the same time and only one thread may 

write to a given memory location at any time. 
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B. MapReduce Framework 

MapReduce is a modern concurrent programming model and 

an associated implementation for processing and generating 

large data sets [20]. Recently, MapReduce is used widely to 

realize various concurrent and parallel applications [16], [24]. 

Although many different implementations of MapReduce are 

possible, the right choice of them depends on both the 

application and the environment [16]. For example, one 

implementation of MapReduce may be suitable for a small 

shared-memory machine that can be modeled by the above 

PRAM, another for a cluster of commodity machines, and yet 

another for an even larger collection of networked machines. 

MapReduce is a kind of the “divide and conquer” framework 

for handling a large data set. The procedure of MapReduce 

consists of two functions, namely “map” and “reduce”. First of 

all, MapReduce running on the master divides a large data set 

into some blocks and distributes them to multiple workers that 

execute the map function respectively. A worker corresponds to 

a processor in the parallel program, but it corresponds to a 

thread in the concurrent program. The map function takes a set 

of input (key, value) pairs associated with the specified “key” 

and produces a set of intermediate (key, value) pairs. After that, 

MapReduce groups together all the intermediate pairs and 

passes them to the reduce function. Finally, the reduce function 

accepts the intermediate (key, value) pairs and merges together 

these values to form a possibly smaller set of values [20]. 

 

 
 

Fig. 5 Parallel random access machine (PRAM) 

 

V. CONCURRENT DE (CDE) 

A. Procedure of CDE  

First of all, from the results of the numerical experiment and 

the statistical test conducted on various benchmark problems, 

there is not a significant difference between the classic DE and 

SDE in their performances [8]. On the other hand, comparing 

with the classic DE, SDE is more suitable for the concurrent 

programming. That is because SDE does not have the procedure 

replacing the old population by the new one at a time. Therefore, 

the concurrent implementation of SDE is proposed. As we have 

mentioned above, the proposed concurrent implementation of 

SDE is called Concurrent DE (CDE). 

The implementation of CDE is based on MapReduce. The 

input (key, value) pair corresponds to the structure of individual 

Pi ∈x associated with the index ]1,0[ −∈ PNi . Therefore, all 

the individuals Pi ∈x are distributed to multiple workers, or 

threads, based on their indexes. At that time, the modulus 

function of the index tends to result in fairly well-balanced 

partition. Furthermore, the intermediate (key, value) pair, which 

is the output of the map function and the input of the reduce 

function, corresponds to the objective function value f(xi) that is 

also associated with the index. Finally, the output of the reduce 

function is the best individual in the population associated with 

the minimum objective function value. 
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Fig. 6 Pseudo-code of CDE 

 

The procedure of CDE can be described by using the 

pseudo-code shown in Fig. 6. At the beginning of the procedure 

of CDE, an initial population is generated randomly. Then the 

population Pi ∈x  is divided into NT blocks called chunks. 

Therefore, each chunk is regarded as a subpopulation holding 
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NP/NT individuals. The task for updating the individuals 

included in one chunk is assigned to one thread statically. As a 

result, NT tasks are executed concurrently by NT threads. 

In the map phase of CDE shown in Fig. 6, the procedures of 

)1,,0()( −= TNnnThread ⋯ may be executed in parallel. Each 

)(nThread  is assigned to one thread object and contracts the 

task for updating the individuals included in the chunk. Besides, 

()Barrier  denotes the object that waits until all the procedures 

of )(nThread  are completed. Finally, in the reduce phase of 

CDE shown in Fig. 6, the best individual is selected from the 

final population. Even though the procedure of the reduce phase 

is described sequentially in Fig. 6, the procedure can be also 

executed in parallel by using several threads. Fig. 7 shows the 

procedure of the proposed CDE in case of NT=3 threads. 

 

 
 

Fig. 7 Procedure of CDE 

 

B. Inspection of CDE 

The goodness of a concurrent program is usually examined 

with respect to four categories, namely efficiency, simplicity, 

portability and scalability [16]. Therefore, we will examine the 

proposed CDE with respect to the above four categories. 

First of all, EAs that are applied to real-world applications 

spend the majority of the computational time for evaluating the 

objective function values. The proposed CDE evenly distributes 

the objective function evaluation to NT threads by using the 

modulus function. Next, each individual in the population 

Pi ∈x  is overwritten only by a unique thread, or )(nThread , 

that satisfies the condition: TNin %== . On the other hand, 

every individual can be red from every 

)1,,0()( −= TNnnThread ⋯  at a time. Since the mutual 

exclusion is guaranteed naturally in CDE, any thread need not to 

synchronize with the other threads. Consequently, the proposed 

CDE can be regarded as an efficient program. 

Comparing CDE with SDE, there is not so much difference in 

their procedures. Therefore, the proposed CDE is simple as well 

as SDE. Furthermore, the pseudo-code of CDE can be translated 

into any program languages that support multiple threads. 

Therefore, the proposed CDE is portable. Finally, the proposed 

CDE can be also regarded as scalable. That is because the 

population Pi ∈x can be divided into multiple chunks of an 

arbitrary number NT within the range: PT NN ≤≤1 . 

VI. NUMERICAL EXPERIMENT 

A. Benchmark Problems  

In order to evaluate the performance of CDE, the following six 

benchmark problems are employed. Functions f0 and f1 are 

unimodal, while f2, f3, f4 and f5 are multimodal. All the 

benchmark problems have D=30 dimensional real-parameters. 

Besides, the objective function values of their optimal solutions 
*
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B. Performance Metric 

In order to evaluate the performance of a parallel program 

executed on a multi-processor machine, the speedup of the 

parallel program is usually used. The well-known definition of 

the speedup is the ratio of the serial execution time spent by a 

single processor to the parallel execution time spent by a set of 

multiple processors [17]. However, in order to evaluate the 

performance of a concurrent program executed on a multi-core 
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processor, the conventional definition of the speedup has to be 

modified [16]. In case of the multiple-core processor, the 

execution of multiple threads, which are invoked from the 

concurrent program, is distributed automatically to respective 

CPUs by the operating system. Although the programmer can 

specify the number of the threads within his program, he cannot 

decide the number of CPUs that execute his program. 

Furthermore, in order to evaluate the performance of CDE, a 

single execution of CDE is not statistically significant. That is 

because CDE is a stochastic algorithm as well as the other EAs. 

Therefore, the speedup of CDE is defined as follows: 

)(

)1(
)(

Tm

m
Tm

NT

T
NS =                                                        (6) 

In the definition of the speedup in (6), Tm(1) denotes the 

execution time of SDE averaged over m runs, while Tm(NT) 

denotes the execution time of the proposed CDE achieved by 

using NT threads. Tm(NT) is also averaged over m runs. If the 

speedup Sm(NT) is close to the number of threads NT, most 

threads are executed in parallel through multiple CPUs. On the 

other hand, if Sm(NT) is close to one, most threads are executed 

sequentially. Hence, it is desirable that Sm(NT) is close to NT. 

C. Experimental Results 

SDE, CDE and the classic DE are coded by Java language, 

which is a very popular language supporting multiple threads, 

and executed on a personal computer equipped with a 

multi-core processor (CPU: IntelⓇ Core
TM

 i7 @3.33[GHz]; 

OS: Windows XP). The multi-core processor has four cores that 

can respectively manipulate two threads at the same time. 

In order to measure the speedup defined in (6), SDE and CDE 

are applied to the six benchmark problems m=20 times 

respectively. For making a comparative study, the classic DE is 

also applied to the six benchmark problems in the same way. 

During the experiments, the control parameters of every DE are 

fixed as the population size NP=160, the scale factor SF=0.5, 

and the crossover rate CR=0.9. These values are decided 

considering the results of our preliminary experiments about 

SDE [8]. For the stopping condition of every DE, the maximum 

generation is specified as GM=10
2
, 10

3
, and 10

4
. 

Table I shows the objective function values of the best 

solutions obtained by CDE, SDE and the classic DE with the 

maximum generation GM=10
3
. For the proposed CDE, the 

number of threads is chosen as NT=2, 4, 8 and 16. Similarly, 

Table II shows the minimum objective function values obtained 

by the three DEs with the maximum generation GM=10
4
. The 

results in Table I and Table II are averaged over 20 runs. 

Table III shows the computational times spent by CDE, SDE 

and the classic DE for obtaining the results shown in Table I. 

Similarly, Table IV shows the computational times spent by the 

three DEs for obtaining the results in Table II. The results in 

Table III and Table VI are also averaged over 20 runs. 

The speedup carves achieved by the proposed CDE for the 

six benchmark problems are plotted in from Fig. 8 to Fig. 13 

respectively. As we have mentioned above, in order to evaluate 

the speedup achieved by CDE, the number of threads is chosen 

as NT=2, 4, 8 and 16. Furthermore, three different maximum 

generations, namely GM=10
2
, 10

3
, and 10

4
, are specified for the 

stopping condition of CDE in every benchmark problem. 

Table I Objective function value (GM=10
3
) 

fp 
CDE (NT) 

SDE DE 
(2) (4) (8) (16) 

f0 0.0 0.0 0.0 0.0 0.0 0.0 

f1 53.6 47.9 48.7 135.8 51.2 55.8 

f2 18.5 18.5 18.3 23.8 18.5 19.4 

f3 24.8 23.1 25.2 24.9 24.4 25.2 

f4 0.0 0.0 0.0 0.0 0.0 0.0 

f5 0.0 0.0 0.0 0.0 0.0 0.0 

 

Table II Objective function value (GM=10
4
) 

fp 
CDE (NT) 

SDE DE 
(2) (4) (8) (16) 

f0 0.0 0.0 0.0 0.0 0.0 0.0 

f1 0.0 0.0 0.0 0.0 0.0 0.0 

f2 0.0 0.0 0.0 0.0 0.0 0.0 

f3 0.0 0.0 0.0 0.0 0.0 0.0 

f4 0.0 0.0 0.0 0.0 0.0 0.0 

f5 0.0 0.0 0.0 0.0 0.0 0.0 

 

Table III Computational time [msec] (GM=10
3
) 

fp 
CDE (NT) 

SDE DE 
(2) (4) (8) (16) 

f0 93.7 71.8 52.3 47.6 156.2 185.9 

f1 135.1 88.3 66.4 62.5 244.5 278.1 

f2 97.6 71.1 53.1 50.8 162.5 192.9 

f3 216.4 123.4 89.0 92.1 417.9 446.9 

f4 189.0 111.7 82.8 78.9 356.2 385.1 

f5 207.0 120.3 82.0 88.3 392.9 424.2 

 

Table IV Computational time [msec] (GM=10
4
) 

fp 
CDE (NT) 

SDE DE 
(2) (4) (8) (16) 

f0 1038.2 869.5 590.6 427.3 1618.7 1807.0 

f1 1432.0 972.6 646.8 564.0 2431.3 2758.5 

f2 1084.3 801.5 567.2 456.2 1678.1 1897.6 

f3 1767.2 1066.4 753.1 648.4 3185.9 3457.8 

f4 1589.8 1083.6 752.3 603.1 2762.5 2962.5 

f5 1960.9 1146.1 792.9 710.2 3657.0 3903.9 

 

D. Discussion of Experimental Results 

From Table I, there is not a significant difference between 

CDE and SDE in the quality of solutions except one benchmark 

problem: f1. In the benchmark problem: f1, the quality of 

solutions obtained by CDE depends on the number of threads NT. 

In case of SDE, the target vectors )1,,0( −= Pi Ni ⋯x  ordered 

within the population are selected sequentially to generate the 

trial vectors ui. However, in case of CDE, the number of threads 

NT changes the original order of the target vectors xi selected to 

generate the trial vectors ui. Therefore, the number of threads NT 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 4, Volume 4, 2010

166



 

 

may have an effect on the performance of CDE in some sorts of 

optimization problems. 

 
Fig. 8 Speedup by CDE on Sphere function: f0 

 

 
Fig. 9 Speedup by CDE on Schwefel’s Ridge function: f1 

 

 
Fig. 10 Speedup by CDE on Rosenbrock function: f2 

 

From Table II, we can see that every DE has found the 

optimal solutions for all the benchmark problems. Therefore, 

the proposed CDE has an advantage over other DEs only in the 

computational time, because CDE can utilize multiple CPUs. 

From Table III and Table IV, we can confirm the advantage 

of the proposed CDE in the computational time. From Table III, 

the most efficient number of threads is either NT=8 or NT=16 

depending on the benchmark problems. On the other hand, from 

Table IV, CDE is the most efficient with NT=16 threads for all 

the benchmark problems. Therefore, the desirable number of 

threads NT depends not only on the benchmark problem but also 

on the maximum generation. 

 
Fig. 11 Speedup by CDE on Rastrigin function: f3 

 

 
Fig. 12 Speedup by CDE on Ackley function: f4 

 

 
Fig. 13 Speedup by CDE on Griewank function: f5 

 

From the speedup carves shown in from Fig. 8 to Fig. 13, we 

can confirm that the speedup is larger than one in every instance. 

Therefore, we can say that the proposed CDE reduces the 

computational time that has been spent by SDE apparently. 

Especially, in case of the large maximum generation GM=10
4
, 

the speedup achieved by CDE increases as the number of 

threads increases in all the benchmark problems. Even though 

the multi-core processor guarantees the parallel processing of 
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NT=8 threads at the maximum, we can observe the increase of 

the speedup until NT=16. On the other hand, in case of the small 

maximum generation GM=10
2
, the speedup achieved by CDE 

increases steady until NT=8 threads but decreases with NT=16 in 

all the benchmark problems. However, we can say that CDE 

utilizes all resources provided by the multi-core processor. 

From the results of the numerical experiment, the speedup 

achieved by CDE actually depends on the type of benchmark 

problems. Exactly, for expensive benchmark problems that 

require the calculation of costly functions such as trigonometric 

function and exponential function for evaluating their objective 

function values, namely f3, f4 and f5, the speedup achieved by 

CDE is kept in high. Consequently, we can expect that the 

proposed CDE is useful specifically for solving the real-world 

applications that spend the majority of the computational time 

for evaluating their objective function values. 

VII. CONCLUSION 

In order to utilize the recent multi-core processor efficiently, 

a concurrent implementation of DE named Concurrent DE 

(CDE) was proposed. The proposed CDE was based on a 

modern concurrent programming model called “MapReduce”. 

CDE divided the population into multiple chunks. Then CDE 

assigned the task for updating the individuals included in each 

chunk to a thread statically. The multi-core processor executed 

multiple threads in parallel by using multiple CPUs. Therefore, 

we could expect that the computational time was reduced by 

using the proposed CDE on the multi-core processor. From the 

numerical experiment conducted on a variety of benchmark 

problems, it was confirmed that the speedup achieved by CDE 

generally increased as the number of the threads increased. 

In our future work, we need to study the effect of the number 

of threads on the performance of CDE. Besides, we would like 

to utilize CDE to solve expensive real-world applications. 
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