

Abstract—Multi-core processors, which have more than one

Central Processing Unit (CPU), have been introduced widely into

personal computers. Therefore, in order to utilize the additional cores,

or CPUs, to execute various costly application programs, concurrent

implementations of them have been paid to attention. MapReduce is a

concurrent programming model and an associated implementation for

processing and generating large data sets. This paper has been

participated in plenary presentation at the conference of WSEAS and

is presenting a further progress of a concurrent implementation of

Differential Evolution (DE) based on MapReduce. Especially, through

the numerical experiment conducted on a wide range of benchmark

problems, the speedup of DE due to the use of multiple cores is

demonstrated. Furthermore, the goodness of the proposed concurrent

implementation of DE is examined and proved with respect to four

categories, namely efficiency, simplicity, portability and scalability.

Keywords—Algorithm, concurrent program, differential evolution,

evolutionary algorithm, MapReduce, parallel program.

I. INTRODUCTION

IFFERENTIAL Evolution (DE) is one of the most recent

Evolutionary Algorithms (EAs) for solving real-parameter

optimization problems [1]. Comparing with typical EAs such as

Genetic Algorithm (GA), Evolutionary Strategy (ES), and

Particle Swarm Optimization (PSO), it has been reported that

DE exhibits an overall excellent performance for a wide range

of benchmark problems [2], [3]. Furthermore, because of its

simple but powerful searching capability, DE has been applied

to numerous real-world applications successfully [4]–[6].

The procedure of EA for updating the individuals included in

the population is called a “generation model” or a “generation

alternation model”. EAs usually employ either of two types of

generation models [7]. The first one is called a “generational

model” or a “discrete generation model”, while the second one

is called a “steady-state model” or a “continuous generation

model” [8]. The classic DE proposed originally by R. Storn and

K. Price has been based on the discrete generation model [1].

According to the discrete generation model, the classic DE

holds two populations, namely the old one and the new one.

Then, by using a particular strategy, the individuals of the new

population are generated from those of the old one. After that,

the old population is replaced by the new one at a time.

Inspired by the great success of the classic DE, a variety of

revised DEs have been developed for solving different types of

optimization problems such as noisy [9], constrained [4], and

multi-objective optimization problems [10], [11]. Furthermore,

self-adaptive DEs that have various learning mechanisms to

choose appropriate strategies and control parameters [12], [13].

However, many of the conventional DEs have been also based

on the discrete generation model as well as the classic DE.

Recently, a new DE based on the continuous generation

model is proposed [14], [15]. The new DE is sometimes called

“Sequential DE (SDE)” [14]. According to the continuous

generation model, SDE holds only one population. Therefore,

SDE renews the individuals of the population one by one.

Exactly, SDE generates a new individual called the “trial

vector” from an existing individual called the “target vector” in

the same way with the classic DE. After that, if the target vector

included in the population is not better than the trial vector, the

target vector is replaced by the trial vector immediately. Since

the excellent newborn individual, namely the trial vector, can be

used soon to generate offspring, it can be expected that SDE

finds good solutions faster than the classic DE [8].

Multi-core processors, which have more than one Central

Processing Unit (CPU), have been introduced widely into

personal computers. Therefore, in order to utilize the additional

CPUs to execute costly application programs such as EAs

applied to real-world applications, concurrent implementations

of them have been paid to attention [16]. Because EAs including

DE maintain a lot of individuals manipulated competitively in

the population, EAs have a parallel and distributed nature

intrinsically. Therefore, many parallelization techniques of

various EAs have been reported [17], [18]. Actually, a parallel

implementation of the classic DE has been also proposed by

using Parallel Virtual Machine (PVM) [19]. However, the

concurrent implementation of DE executable on a multi-core

processor has not been reported yet.

In this paper, a concurrent implementation of DE is proposed.

Although various DEs have been reported [11], SDE is chosen

for the proposed concurrent implementation. That is because the

survival selection of SDE comparing the trial vector only with

the target vector enables us to manipulate all the individuals in

the population independently. Besides, SDE need not

synchronize the manipulations of the individuals in each

generation for replacing the old population by the new one.

Therefore, comparing with the classic DE, SDE is especially

suited for concurrent programming. The proposed concurrent

implementation of SDE is based on MapReduce. Incidentally,

MapReduce is a modern concurrent programming model and an

associated implementation for processing and generating large

data sets [20]. Finally, through the numerical experiment

conducted on various benchmark problems, the speedup of SDE

due to the use of multiple CPUs is demonstrated. Besides, the

Concurrent Differential Evolution

Based on MapReduce

Kiyoharu Tagawa and Takashi Ishimizu

D

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

161

goodness of the proposed concurrent implementation of SDE is

examined and proved with respect to four categories, namely

efficiency, simplicity, portability and scalability.

The rest of the paper is organized as follows. Section II

describes the classic DE and a basic strategy of DE. The basic

strategy is also used by SDE for generating a new individual.

Section III describes SDE. For designing concurrent and

parallel programs, Section IV presents a model of the multi-core

processor and explains MapReduce briefly. The concurrent

implementation of SDE, which is called Concurrent DE (CDE),

is proposed in Section V. Comparing with SED and the classic

DE, the performance of the proposed CDE is evaluated through

the numerical experiment in Section VI. Finally, Section VII

concludes this paper.

II. DIFFERENTIAL EVOLUTION (DE)

A. Representation

The optimal solution of the real-parameter optimization

problem is represented by a D-dimensional real parameter

vector),,(10 −= Dxx ⋯x that minimizes the value of the

objective function f(x). Besides, the value of each decision

variable ℜ∈jx is usually limited to the range between the

lower
j

x and the upper jx boundaries. Therefore, the

real-parameter optimization problem can be formulated as






−=≤≤

= −

.1,,0,tosubject

),,()(minimize 10

Djxxx

xxff

jjj

D

⋯

⋯x
 (1)

Differential Evolution (DE) [1], [3] is used to solve the

optimization problem shown in (1). As well as conventional

real-coded GAs [21], each tentative solution is represented by a

real-parameter vector and called an “individual”. Furthermore,

DE holds NP individuals within the population. Therefore, an

individual)1,,0(−= Pi Nix ⋯ is represented as

.1,,0,,where

),,,,(

,

,1,,0

−=≤≤

= −

Djxxx

xxx

jijj

iDijii

⋯

⋯⋯x
 (2)

The members of an initial population Pi ∈x are generated

randomly by using the random number generator that is denoted

by]1,0[jrand and returns a uniformly distributed random

number from within the range between 0 and 1 as

;

}

}

1][0,)(

{);;0(for

{);;0(for












+−=

++<=

++<=

jjjjj,i

P

xrandxxx

jDjj

iNii

 (3)

B. Strategy of DE

Differential mutation is a unique genetic operator of DE [1].

Besides, a set of three genetic operators, namely reproduction

selection, differential mutation and crossover, is usually called

the strategy of DE [1]. As we will describe in detail later, SDE is

also uses the strategy of DE [8], [14], [15]. Even though various

strategies have been contrived for DE [1], [3], a basic strategy

named “DE/rand/1/exp” is described and used in this paper.

That is because the experimental result shows that the basic

strategy has relatively good compatibility with SDE [22]. Of

course, any strategies can be used in SDE.

For each of the individuals)1,,0(−= Pi Ni ⋯x within the

population, which is also called the target vector, three different

individuals, say 21, rr xx and)321(3 rrrir ≠≠≠x , are selected

randomly from the current population. Then a new individual

),,(,1,0 iDii uu −= ⋯u called the trial vector is generated from the

above four individuals, namely xi, xr1, xr2 and xr3 as


















+=

=

≠

≠∧≤

+=

−+=

−=

}

;)%1(

;

{)(while

)]1,0[(while}

;)%1(

;

{do

;]10[

,,

321

Djj

xu

jj

jjCrand

Djj

)x(xSxu

D,randj

ijij

r

rRj

j,rj,rFj,rj,i

r

 (4)

In the basic strategy of DE described in (4), a subscript

]1,0[−∈ Djr is selected randomly. Therefore, the trial vector

ui will be different from the target vector xi at least one element

that is specified by the subscript]1,0[−∈ Djr . Besides the

population size)4(≥RR NN , the scale factor]1,0(+∈FS and

the crossover rate]1,0[∈RC , which also appear in (4), are the

control parameters of DE decided by user in advance.

If an element of the trial vector ui generated by the strategy

comes out of the range shown in (2), it will be repaired as

jjjjij xrandxxu +−=]1,0[)(, (5)

C. Procedure of DE

The procedure of the classic DE [1] can be described by using

the pseudo-code in Fig. 1. Because the classic DE is based on

the discrete generation model, two populations, namely the old

one oldi P∈x and the new one newi P∈z , are used. Then the

members of the old population are replaced by those of the new

one such as xi=zi. Furthermore, as the stopping condition, the

generation g is limited to the maximum GM.

III. SEQUENTIAL DE (SDE)

The procedure of SED [14] can be described by using the

pseudo-code shown in Fig. 2. Because SDE is based on the

continuous generation model, only one population Pi ∈x is

used in Fig. 2. If a newborn trial vector ui is not worse than the

corresponding target vector xi, the trial vector ui is added to the

population immediately. Therefore, the excellent trial vector ui

can be used soon to generate succeeding trial vectors.

Fig. 3 illustrates the procedure of the classic DE, while Fig. 4

illustrates the procedure of SDE. Comparing the procedure of

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

162

SDE in Fig. 4 with that of the classic DE in Fig. 3, we can

confirm that SDE obviously saves both the memory space for

one population and the processing time spent for replacing the

old population oldi P∈x by the new population newi P∈z .

;bestheOutput

}

}

;

{);;0(for

/*populationUpdate*/

}

;else

;))()((if

);(Evaluate

;(5)and(4)fromGenerate

{);;0(for

{);;0(for

}

);(Evaluate

{);;0(for

;generateRendomly

oldi

ii

P

ii

iiii

i

i

P

M

i

P

oldi

Pt

iNii

ff

f

iNii

gGgg

f

iNii

P

∈

=

++<=

=

=≤

++<=

++<=

++<=

∈

x

zx

xz

uzxu

u

u

x

x

Fig. 1 Pseudo-code of the classic DE

;besttheOutput

}

}

;))()((if

);(Evaluate

;(5)and(4)fromGenerate

{);;0(for

{);;0(for

}

);(Evaluate

{);;0(for

;generateRandomly

P

ff

f

iNii

gGgg

f

iNii

P

i

iiii

i

i

P

M

i

P

i

∈

=≤

++<=

++<=

++<=

∈

x

uxxu

u

u

x

x

Fig. 2 Pseudo-code of SDE

IV. CONCURRENT PROGRAM

A. Parallel Random Access Machine

A program is said to be concurrent if it can support two or

more tasks in process at the same time. On the other hand, a

program is said to be parallel if it can support two or more tasks

executing simultaneously [23]. The difference between these

definitions is the phrase in progress. A concurrent program may

perform multiple tasks in parallel if the concurrent program is

executed on a multi-core processor. Therefore, it can be

expected that the execution time of an algorithm is reduced by

using the concurrent program on the multi-core processor.

For designing parallel or concurrent programs, the multi-core

processor is model by the Parallel Random Access Machine

(PRAM) [16]. Fig. 5 shows a configuration of PRAM. PRAM

has multiple cores, or CPUs, attached to an unlimited memory

that is shared among all the CPUs. PRAM uses a shared bus

connecting the memory and respective CPUs, where details of

the connection mechanism between them are ignored. Therefore,

all the threads running on CPUs are assumed to be advancing in

lockstep fashion. Furthermore, all the threads running on CPUs

are assumed to have the same access time to the memory

locations regardless the number of CPUs.

Fig. 3 Procedure of the classic DE

Fig. 4 Procedure of SDE

All the CPUs in PRAM will usually require some form of

synchronization and communication in order to cooperate on a

given application. However, PRAM makes no assumption about

software or hardware support of synchronization objects

available to a programmer [16]. Therefore, PRAM need to be

specified how threads running on respective CPUs will be able

to access memory for both reading and writing. In this paper, we

introduce the Concurrent Read and Exclusive Write (CREW)

[16] memory access into PRAM. In accordance with CREW,

multiple threads running on respective CPUs may read from the

same memory location at the same time and only one thread may

write to a given memory location at any time.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

163

B. MapReduce Framework

MapReduce is a modern concurrent programming model and

an associated implementation for processing and generating

large data sets [20]. Recently, MapReduce is used widely to

realize various concurrent and parallel applications [16], [24].

Although many different implementations of MapReduce are

possible, the right choice of them depends on both the

application and the environment [16]. For example, one

implementation of MapReduce may be suitable for a small

shared-memory machine that can be modeled by the above

PRAM, another for a cluster of commodity machines, and yet

another for an even larger collection of networked machines.

MapReduce is a kind of the “divide and conquer” framework

for handling a large data set. The procedure of MapReduce

consists of two functions, namely “map” and “reduce”. First of

all, MapReduce running on the master divides a large data set

into some blocks and distributes them to multiple workers that

execute the map function respectively. A worker corresponds to

a processor in the parallel program, but it corresponds to a

thread in the concurrent program. The map function takes a set

of input (key, value) pairs associated with the specified “key”

and produces a set of intermediate (key, value) pairs. After that,

MapReduce groups together all the intermediate pairs and

passes them to the reduce function. Finally, the reduce function

accepts the intermediate (key, value) pairs and merges together

these values to form a possibly smaller set of values [20].

Fig. 5 Parallel random access machine (PRAM)

V. CONCURRENT DE (CDE)

A. Procedure of CDE

First of all, from the results of the numerical experiment and

the statistical test conducted on various benchmark problems,

there is not a significant difference between the classic DE and

SDE in their performances [8]. On the other hand, comparing

with the classic DE, SDE is more suitable for the concurrent

programming. That is because SDE does not have the procedure

replacing the old population by the new one at a time. Therefore,

the concurrent implementation of SDE is proposed. As we have

mentioned above, the proposed concurrent implementation of

SDE is called Concurrent DE (CDE).

The implementation of CDE is based on MapReduce. The

input (key, value) pair corresponds to the structure of individual

Pi ∈x associated with the index]1,0[−∈ PNi . Therefore, all

the individuals Pi ∈x are distributed to multiple workers, or

threads, based on their indexes. At that time, the modulus

function of the index tends to result in fairly well-balanced

partition. Furthermore, the intermediate (key, value) pair, which

is the output of the map function and the input of the reduce

function, corresponds to the objective function value f(xi) that is

also associated with the index. Finally, the output of the reduce

function is the best individual in the population associated with

the minimum objective function value.

}

}

}

}

;))()((if

);(Evaluate

;(5)and(4)fromGenerate

{)%(if

{);;0(for

{);;0(for

}

}

);(Evaluate

{)%(if

{)0(for

{

/***Worker**/*

;besttheOutput

/*phaseReduce*/

();

}

}

);(

{);;0(for

{doparallelinallfor

/*phaseMap*/

;generateRandomly

/***Master***/

iiii

i

i

T

P

M

i

T

P

i

T

i

ff

f

nNi

iNii

gGgg

f

nNi

i;Ni;i

Thread(n)

P

Barrier

nThread

nNnn

n

P

uxxu

u

u

x

x

x

=≤

==

++<=

++<=

==

++<=

∈

++<=

∈

Fig. 6 Pseudo-code of CDE

The procedure of CDE can be described by using the

pseudo-code shown in Fig. 6. At the beginning of the procedure

of CDE, an initial population is generated randomly. Then the

population Pi ∈x is divided into NT blocks called chunks.

Therefore, each chunk is regarded as a subpopulation holding

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

164

NP/NT individuals. The task for updating the individuals

included in one chunk is assigned to one thread statically. As a

result, NT tasks are executed concurrently by NT threads.

In the map phase of CDE shown in Fig. 6, the procedures of

)1,,0()(−= TNnnThread ⋯ may be executed in parallel. Each

)(nThread is assigned to one thread object and contracts the

task for updating the individuals included in the chunk. Besides,

()Barrier denotes the object that waits until all the procedures

of)(nThread are completed. Finally, in the reduce phase of

CDE shown in Fig. 6, the best individual is selected from the

final population. Even though the procedure of the reduce phase

is described sequentially in Fig. 6, the procedure can be also

executed in parallel by using several threads. Fig. 7 shows the

procedure of the proposed CDE in case of NT=3 threads.

Fig. 7 Procedure of CDE

B. Inspection of CDE

The goodness of a concurrent program is usually examined

with respect to four categories, namely efficiency, simplicity,

portability and scalability [16]. Therefore, we will examine the

proposed CDE with respect to the above four categories.

First of all, EAs that are applied to real-world applications

spend the majority of the computational time for evaluating the

objective function values. The proposed CDE evenly distributes

the objective function evaluation to NT threads by using the

modulus function. Next, each individual in the population

Pi ∈x is overwritten only by a unique thread, or)(nThread ,

that satisfies the condition: TNin %== . On the other hand,

every individual can be red from every

)1,,0()(−= TNnnThread ⋯ at a time. Since the mutual

exclusion is guaranteed naturally in CDE, any thread need not to

synchronize with the other threads. Consequently, the proposed

CDE can be regarded as an efficient program.

Comparing CDE with SDE, there is not so much difference in

their procedures. Therefore, the proposed CDE is simple as well

as SDE. Furthermore, the pseudo-code of CDE can be translated

into any program languages that support multiple threads.

Therefore, the proposed CDE is portable. Finally, the proposed

CDE can be also regarded as scalable. That is because the

population Pi ∈x can be divided into multiple chunks of an

arbitrary number NT within the range: PT NN ≤≤1 .

VI. NUMERICAL EXPERIMENT

A. Benchmark Problems

In order to evaluate the performance of CDE, the following six

benchmark problems are employed. Functions f0 and f1 are

unimodal, while f2, f3, f4 and f5 are multimodal. All the

benchmark problems have D=30 dimensional real-parameters.

Besides, the objective function values of their optimal solutions
*
x are known as follows:)5,,0(0)(*

⋯== pf p x .

� Sphere function

.1,,0,100100

)(

1

0

2

0

−=≤≤−

=∑
−

=

Djx

xf

j

D

j

j

⋯

x

� Schwefel’s Ridge function

.1,,0,100100

)()(
1

0

2

0

1

−=≤≤−

=∑ ∑
−

= =

Djx

xf

j

D

j

j

k

k

⋯

x

� Rosenbrock function

.1,,0,3030

))1()(100()(
2

0

222

12

−=≤≤−

−+−=∑
−

=

+

Djx

xxxf

j

D

j

jjj

⋯

x

� Rastrigin function

.1,,0,12.512.5

)10)2cos(10()(

1

0

2

3

−=≤≤−

+−=∑
−

=

Djx

xxf

j

D

j

jj

⋯

πx

� Ackley function

.1,,0,3232

20)2cos(
1

exp

1
2.0exp20)(

1

0

1

0

2

4

−=≤≤−

++













−














−−=

∑

∑
−

=

−

=

Djx

ex
D

x
D

f

j

D

j

j

D

j

j

⋯

π

x

� Griewank function

.1,,0,600600

1cos
4000

1
)(

1

0

1

0

2

5

−=≤≤−

+













−= ∑ ∏

−

=

−

=

Djx

j

x
xf

j

D

j

D

j

j

j

⋯

x

B. Performance Metric

In order to evaluate the performance of a parallel program

executed on a multi-processor machine, the speedup of the

parallel program is usually used. The well-known definition of

the speedup is the ratio of the serial execution time spent by a

single processor to the parallel execution time spent by a set of

multiple processors [17]. However, in order to evaluate the

performance of a concurrent program executed on a multi-core

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

165

processor, the conventional definition of the speedup has to be

modified [16]. In case of the multiple-core processor, the

execution of multiple threads, which are invoked from the

concurrent program, is distributed automatically to respective

CPUs by the operating system. Although the programmer can

specify the number of the threads within his program, he cannot

decide the number of CPUs that execute his program.

Furthermore, in order to evaluate the performance of CDE, a

single execution of CDE is not statistically significant. That is

because CDE is a stochastic algorithm as well as the other EAs.

Therefore, the speedup of CDE is defined as follows:

)(

)1(
)(

Tm

m
Tm

NT

T
NS = (6)

In the definition of the speedup in (6), Tm(1) denotes the

execution time of SDE averaged over m runs, while Tm(NT)

denotes the execution time of the proposed CDE achieved by

using NT threads. Tm(NT) is also averaged over m runs. If the

speedup Sm(NT) is close to the number of threads NT, most

threads are executed in parallel through multiple CPUs. On the

other hand, if Sm(NT) is close to one, most threads are executed

sequentially. Hence, it is desirable that Sm(NT) is close to NT.

C. Experimental Results

SDE, CDE and the classic DE are coded by Java language,

which is a very popular language supporting multiple threads,

and executed on a personal computer equipped with a

multi-core processor (CPU: IntelⓇ Core
TM

 i7 @3.33[GHz];

OS: Windows XP). The multi-core processor has four cores that

can respectively manipulate two threads at the same time.

In order to measure the speedup defined in (6), SDE and CDE

are applied to the six benchmark problems m=20 times

respectively. For making a comparative study, the classic DE is

also applied to the six benchmark problems in the same way.

During the experiments, the control parameters of every DE are

fixed as the population size NP=160, the scale factor SF=0.5,

and the crossover rate CR=0.9. These values are decided

considering the results of our preliminary experiments about

SDE [8]. For the stopping condition of every DE, the maximum

generation is specified as GM=10
2
, 10

3
, and 10

4
.

Table I shows the objective function values of the best

solutions obtained by CDE, SDE and the classic DE with the

maximum generation GM=10
3
. For the proposed CDE, the

number of threads is chosen as NT=2, 4, 8 and 16. Similarly,

Table II shows the minimum objective function values obtained

by the three DEs with the maximum generation GM=10
4
. The

results in Table I and Table II are averaged over 20 runs.

Table III shows the computational times spent by CDE, SDE

and the classic DE for obtaining the results shown in Table I.

Similarly, Table IV shows the computational times spent by the

three DEs for obtaining the results in Table II. The results in

Table III and Table VI are also averaged over 20 runs.

The speedup carves achieved by the proposed CDE for the

six benchmark problems are plotted in from Fig. 8 to Fig. 13

respectively. As we have mentioned above, in order to evaluate

the speedup achieved by CDE, the number of threads is chosen

as NT=2, 4, 8 and 16. Furthermore, three different maximum

generations, namely GM=10
2
, 10

3
, and 10

4
, are specified for the

stopping condition of CDE in every benchmark problem.

Table I Objective function value (GM=10
3
)

fp
CDE (NT)

SDE DE
(2) (4) (8) (16)

f0 0.0 0.0 0.0 0.0 0.0 0.0

f1 53.6 47.9 48.7 135.8 51.2 55.8

f2 18.5 18.5 18.3 23.8 18.5 19.4

f3 24.8 23.1 25.2 24.9 24.4 25.2

f4 0.0 0.0 0.0 0.0 0.0 0.0

f5 0.0 0.0 0.0 0.0 0.0 0.0

Table II Objective function value (GM=10
4
)

fp
CDE (NT)

SDE DE
(2) (4) (8) (16)

f0 0.0 0.0 0.0 0.0 0.0 0.0

f1 0.0 0.0 0.0 0.0 0.0 0.0

f2 0.0 0.0 0.0 0.0 0.0 0.0

f3 0.0 0.0 0.0 0.0 0.0 0.0

f4 0.0 0.0 0.0 0.0 0.0 0.0

f5 0.0 0.0 0.0 0.0 0.0 0.0

Table III Computational time [msec] (GM=10
3
)

fp
CDE (NT)

SDE DE
(2) (4) (8) (16)

f0 93.7 71.8 52.3 47.6 156.2 185.9

f1 135.1 88.3 66.4 62.5 244.5 278.1

f2 97.6 71.1 53.1 50.8 162.5 192.9

f3 216.4 123.4 89.0 92.1 417.9 446.9

f4 189.0 111.7 82.8 78.9 356.2 385.1

f5 207.0 120.3 82.0 88.3 392.9 424.2

Table IV Computational time [msec] (GM=10
4
)

fp
CDE (NT)

SDE DE
(2) (4) (8) (16)

f0 1038.2 869.5 590.6 427.3 1618.7 1807.0

f1 1432.0 972.6 646.8 564.0 2431.3 2758.5

f2 1084.3 801.5 567.2 456.2 1678.1 1897.6

f3 1767.2 1066.4 753.1 648.4 3185.9 3457.8

f4 1589.8 1083.6 752.3 603.1 2762.5 2962.5

f5 1960.9 1146.1 792.9 710.2 3657.0 3903.9

D. Discussion of Experimental Results

From Table I, there is not a significant difference between

CDE and SDE in the quality of solutions except one benchmark

problem: f1. In the benchmark problem: f1, the quality of

solutions obtained by CDE depends on the number of threads NT.

In case of SDE, the target vectors)1,,0(−= Pi Ni ⋯x ordered

within the population are selected sequentially to generate the

trial vectors ui. However, in case of CDE, the number of threads

NT changes the original order of the target vectors xi selected to

generate the trial vectors ui. Therefore, the number of threads NT

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

166

may have an effect on the performance of CDE in some sorts of

optimization problems.

Fig. 8 Speedup by CDE on Sphere function: f0

Fig. 9 Speedup by CDE on Schwefel’s Ridge function: f1

Fig. 10 Speedup by CDE on Rosenbrock function: f2

From Table II, we can see that every DE has found the

optimal solutions for all the benchmark problems. Therefore,

the proposed CDE has an advantage over other DEs only in the

computational time, because CDE can utilize multiple CPUs.

From Table III and Table IV, we can confirm the advantage

of the proposed CDE in the computational time. From Table III,

the most efficient number of threads is either NT=8 or NT=16

depending on the benchmark problems. On the other hand, from

Table IV, CDE is the most efficient with NT=16 threads for all

the benchmark problems. Therefore, the desirable number of

threads NT depends not only on the benchmark problem but also

on the maximum generation.

Fig. 11 Speedup by CDE on Rastrigin function: f3

Fig. 12 Speedup by CDE on Ackley function: f4

Fig. 13 Speedup by CDE on Griewank function: f5

From the speedup carves shown in from Fig. 8 to Fig. 13, we

can confirm that the speedup is larger than one in every instance.

Therefore, we can say that the proposed CDE reduces the

computational time that has been spent by SDE apparently.

Especially, in case of the large maximum generation GM=10
4
,

the speedup achieved by CDE increases as the number of

threads increases in all the benchmark problems. Even though

the multi-core processor guarantees the parallel processing of

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

167

NT=8 threads at the maximum, we can observe the increase of

the speedup until NT=16. On the other hand, in case of the small

maximum generation GM=10
2
, the speedup achieved by CDE

increases steady until NT=8 threads but decreases with NT=16 in

all the benchmark problems. However, we can say that CDE

utilizes all resources provided by the multi-core processor.

From the results of the numerical experiment, the speedup

achieved by CDE actually depends on the type of benchmark

problems. Exactly, for expensive benchmark problems that

require the calculation of costly functions such as trigonometric

function and exponential function for evaluating their objective

function values, namely f3, f4 and f5, the speedup achieved by

CDE is kept in high. Consequently, we can expect that the

proposed CDE is useful specifically for solving the real-world

applications that spend the majority of the computational time

for evaluating their objective function values.

VII. CONCLUSION

In order to utilize the recent multi-core processor efficiently,

a concurrent implementation of DE named Concurrent DE

(CDE) was proposed. The proposed CDE was based on a

modern concurrent programming model called “MapReduce”.

CDE divided the population into multiple chunks. Then CDE

assigned the task for updating the individuals included in each

chunk to a thread statically. The multi-core processor executed

multiple threads in parallel by using multiple CPUs. Therefore,

we could expect that the computational time was reduced by

using the proposed CDE on the multi-core processor. From the

numerical experiment conducted on a variety of benchmark

problems, it was confirmed that the speedup achieved by CDE

generally increased as the number of the threads increased.

In our future work, we need to study the effect of the number

of threads on the performance of CDE. Besides, we would like

to utilize CDE to solve expensive real-world applications.

ACKNOWLEDGMENT

The research reported in this paper was supported in part by

the Grant-in-Aid for Scientific Research (C) (No. 21560432)

from Japan Society of the Promotion of Science (JSPS).

REFERENCES

[1] R. Storn and K. Price, “Differential evolution – a simple and efficient

heuristic for global optimization over continuous space,” Journal of

Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[2] J. Vesterstrom and R. Thomson, “A comparative study of differential

evolution, particle swarm optimization, and evolutionary algorithms on

numerical benchmark problems” in Proc. IEEE Congress on

Evolutionary Computation, 2004, pp. 1980–1987.

[3] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution – A

Practical Approach to Global Optimization. Springer, 2005.

[4] R. Storn, “System design by constraint adaptation and differential

evolution,” IEEE Trans. Evolutionary Computation, vol. 3, no. 1, pp.

22–34, 1999.

[5] K. Tagawa, “Multi-objective optimum design of balanced SAW filters

using generalized differential evolution,” WSEAS Trans. System, Issue 8,

vol. 8, pp. 923–932, 2009.

[6] R. Oonsivilai and A. Oonsivilai, “Differential evolution application in

temperature profile of fermenting process,” WSEAS Trans. System, Issue

6, vol. 9, pp. 618–628, 2010.

[7] G. Syswerda, “A study of reproduction in generational and steady-state

genetic algorithms,” Foundations of Genetic Algorithms 2, Morgan

Kaufmann Publ., 1991, pp. 94–101.

[8] K. Tagawa, “A statistical study of the differential evolution based on

continuous generation model,” in Proc. IEEE Congress on Evolutionary

Computation, 2009, pp. 2614–2621.

[9] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “Opposition-

based differential evolution for optimization of noisy problems,” in Proc.

IEEE Congress on Evolutionary Computation, 2006, pp. 6756–6763.

[10] S. Kukkonen and J. Lampinen, “GDE3: The third evolution step of

generalized differential evolution,” in Proc. IEEE Congress on

Evolutionary Computation, 2005, pp. 443–450.

[11] U. K. Chakraborty, Advances in Differential Evolution. Springer, 2008.

[12] A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution

algorithm for numerical optimization,” in Proc. IEEE Congress on

Evolutionary Computation, 2005, pp. 1785–1791.

[13] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution

with optional external archive,” IEEE Trans. Evolutionary Computation,

vol. 13, no. 5, pp. 945–958, 2009.

[14] V. Feoktistov, Differential Evolution in Search Solution. Chapter 6,

Springer, 2006.

[15] K. Tagawa and H. Takada, “Comparative study of extended sequential

differential evolutions,” in Proc. the 9th WSEAS International

Conference on Applications of Computer Engineering, 2010, pp. 52–57.

[16] C. Breshears, The Art of Concurrency – A Thread Monkey’s Guide to

Writing Parallel Applications, O’Reilly, 2009.

[17] E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms,”

IEEE Trans. Evolutionary Computation, vol. 6, no. 5, pp. 443–462,

2002.

[18] L. F. Bic and M. B. Dillencourt, “Advantages of self-migration for

distributed computing,” International Journal of Computers, Issue 3, vol.

2, pp. 320–329, 2008.

[19] D. Zaharie and D. Petcu, “Parallel implementation of multi-population

differential evolution,” Concurrent Information Processing and

Computing, ISO Press, 2005, pp. 223–232.

[20] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on

large clusters,” in Proc. 6th Symposium on Operating Systems Design

and Implementation, 2004, pp. 137–149.

[21] L. J. Eshelman and J. D. Schaffer, “Real-code genetic algorithms and

interval-schemata,” Foundations of Genetic Algorithms 2, Morgan

Kaufmann Publ., 1993, pp. 187–202.

[22] K. Tagawa, “A comparative study of distance dependent survival

selection for sequential DE,” in Proc. IEEE International Conference on

System, Man, and Cybernetics, 2010, to be published.

[23] K-Y. Wong, Y-M. Choi, and S-W. Lam, “The design, implementation

and application of the software framework for distributed computing,”

International Journal of Computers, Issue 3, vol. 1, pp. 109–116, 2007.

[24] J. Wan, W. Yu, and X. Xu, “Design and implementation of distributed

document clustering based on MapReduce,” in Proc. the 2nd Symposium

on International Computer Science and Computational Technology,

2009, pp. 278–280.

Kiyoharu Tagawa received his M.E. and Ph.D. degrees

from Kobe University Japan, in 1993 and 1997,

respectively. From 2005 to 2007, he served as an

Associate Professor of the Faculty of Engineering, Kobe

University. He is currently a Professor of the School of

Science and Engineering, Kinki University Japan. His

research interests include evolutionary computation,

concurrent programming, and real-world applications.

Takashi Ishimizu received his M.E. and Ph.D. degrees

from Nara Institute of Science and Technology (NAIST),

in 1997 and 2000, respectively. He is now an Assistant

Processor of the School of Science and Engineering,

Kinki University Japan. His main researches are parallel

algorithms and parallel complexity theory.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

168

