
Apples & Oranges?
Comparing Unconventional Computers

Ed Blakey

Abstract— Complexity theorists routinely compare—via the pre-
ordering induced by asymptotic notation—the efficiency of computers
so as to ascertain which offers the most efficient solution to a given
problem. Tacit in this statement, however, is that the computers
conform to a standard computational model: that is, they are Turing
machines, random-access machines or similar. However, whereas
meaningful comparison between these conventional computers is well
understood and correctly practised, that of non-standard machines
(such as quantum, chemical and optical computers) is rarely even
attempted and, where it is, is often attempted under the typically false
assumption that the conventional-computing approach to comparison
is adequate in the unconventional-computing case. We discuss in the
present paper a computational-model-independent approach to the
comparison of computers’ complexity (and define the correspond-
ing complexity classes). Notably, the approach allows meaningful
comparison between an unconventional computer and an existing,
digital-computer benchmark that solves the same problem.

Keywords— Computational complexity, computational resource,
dominance, theoretical computer science, unconventional computa-
tion.

I. INTRODUCTION

COMPUTATIONAL complexity theory has as one of its
chief aims the quantification of mathematical problems’

difficulty: complexity theorists wish to make statements of the
form

‘solving problem X (e.g., the Travelling Salesperson
Problem, factorization or addition) requires O (f)
time, O (g) space, etc.’

(The ‘etc.’ here refers to computational resources other than
run-time and memory space—see [1], [4] and Sect. II-A.)
However, it is possible directly to measure the complexity not
of problems but only of methods that solve these problems:
whereas one would like to demonstrate that

‘problem X requires O (f) time’,
it is usually forthcoming only that

‘problem X can be solved by algorithm Y , which
requires O (f) time’.

Typically, then, all that is known about a problem’s complexity
is that it is bounded above by that of the most efficient, known
solution method for the problem.

(As an aside, we recall the novel approach given in [7] to
problems similar to the Travelling Salesperson Problem.)

It is clear from this that the ability to compare computers’
efficiency—and thereby to ascertain which computer offers

We acknowledge the generous financial support of the Engineering
and Physical Sciences Research Council: this work is funded by the
grant Complexity and Decidability in Unconventional Computational Models
(EP/G003017/1).

the most efficient solution to a problem—is of the utmost
importance. It is unsurprising, then, that, when the computers
in question are ‘standard’ (e.g., when they are modelled
as Turing machines), the method by which they may be
compared is well understood; we now recap this method, by
first recalling the auxiliary notions of O-notation and the pre-
ordering induced thereby.

Definition 1:
• Let O (g (n)) denote the class of all functions f (n) such

that there exist a threshold n0 ∈ N and constant c ∈ R
satisfying |f (n)| ≤ c |g (n)| for all natural numbers n
such that n > n0.

• Write ‘f . g’ for ‘f ∈ O (g)’, and
• ‘f 6. g’ for ‘f 6∈ O (g)’.

It is trivial that . is both reflexive (since threshold 0
and constant 1 witness that f . f) and transitive (since,
if threshold-constant pair (n0, c) witnesses that f . g and
(n′0, c

′) that g . h, then (max {n0, n
′
0} , cc′) witnesses that

f . h); hence, . is a pre-ordering of functions. Of specific
interest here is that . may be used as a pre-ordering of
complexity functions (which we define in Definition 3). We can
now describe the method by which the efficiency of standard
computers is compared.

Suppose that (conventional, Turing-machine-style) comput-
ers Φ and Ψ have respective time-complexity functions T ∗Φ
and T ∗Ψ (that is, given an arbitrary input value of size n, Φ
requires at most T ∗Φ (n) time steps to return the corresponding
output value; similarly Ψ—see Definition 3). One may utilize
the pre-ordering . to determine which (if either) of Φ and Ψ
is the more efficient, in the obvious way:
• if T ∗Φ . T ∗Ψ 6. T ∗Φ, then Φ is deemed the more efficient

computer;
• if T ∗Φ 6. T ∗Ψ . T ∗Φ, then Ψ is deemed the more efficient

computer;
• if T ∗Φ . T ∗Ψ . T ∗Φ, then Φ and Ψ are deemed equally

efficient; and
• if T ∗Φ 6. T ∗Ψ 6. T ∗Φ, then Φ and Ψ are deemed incompa-

rably efficient.
(These computers, one supposes, solve the same problem,

for else, if they solved different problems, then little mean-
ing could be attributed to a comparison of their efficiency.
One may, prima facie, assume that such comparison would
be meaningful, that it would say something, for example,
about which problem is harder to solve, but a problem’s
complexity is defined in terms of an optimal—not arbitrary—
solution method’s complexity; comparison of problems is

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

185

better achieved using the standard, complexity-theoretic notion
of reduction.)

Note that we tacitly identify (overall) efficiency with time
efficiency in particular. This is because, in the case of
conventional, Turing-style computers, the only computational
resources that need be considered are time and space (recall
also the approach of [10]), and, of these, time is always
consumed in greater quantity (the space complexity S∗Φ of
a conventional computer Φ is always a smaller function than
the time complexity T ∗Φ—in that S∗Φ (n) ≤ T ∗Φ (n) for all n—,
since writing to a tape cell takes one time step).

However, there exist unconventional computers (conform-
ing, for example, to quantum—and in addition to the quantum
model as a whole, one may consider the quantum gener-
alization of the Turing machine; see, for example, [6]—,
chemical, analogue or genetic-algorithm—recall in relation
to this latter example [9]—paradigms), for which this is not
the case: such computers may consume resources other than
time and space, whence it is no longer valid to identify time
efficiency with overall efficiency; consequently, one cannot
simply apply the pre-ordering . to these unconventional
computers’ time-complexity functions in order to determine
which is the most efficient. For example, we describe in [2] an
analogue computer that can factorize natural numbers in time
and space polynomial in the size of the input value; since the
true (exponential) complexity of the system lies in its precision
complexity (which notion is introduced in [3] and discussed in
[2]), an exclusively time-based consideration—à la standard,
Turing-machine complexity theory—of the system leads to
an overly generous quantification of its complexity and to
misleading comparisons with other (e.g., Turing-machine)
solutions to the problem of factorization.

In summary, then, the difficulty is that unconventional
computers may consume unconventional resources (in addition
to the standard resources of time and space), which leads to
each computer’s having many complexity functions. The com-
parison of the efficiency of two such computers, then, is not
merely a case of applying the pre-ordering . to the respective
time-complexity functions. We describe in this paper a more
suitable method whereby such computers’ efficiency can be
meaningfully compared.

II. COMPARISON OF COMPUTERS

A. Resource

We mention above the widely considered computational re-
sources of time and space. We also hint that certain (unconven-
tional) computers consume other resources (such as precision).
We defer to [1] and [4] a full motivation and discussion of
resources, making instead the following definition, which is
adequate for present purposes.

Definition 2:
• We model a resource as a function (denoted by an upper-

case letter A, B, C, etc.) that depends upon the choice
of computational system (shown as a subscript to the
function) and that maps each input value to a natural
number, which can be thought of as the corresponding

number of units of the resource consumed by the system
in processing the input value.

• Let T denote the resource of time,
• S space, and
• P precision.

Hence, for computer Φ and input value x, AΦ (x) denotes
the amount of resource A consumed by Φ in processing x.
Specific and notable examples are TΦ (x), which denotes the
number of units of time (e.g., the number of time steps if Φ is
a Turing machine) taken by Φ to process x, and SΦ (x), the
number of units of space occupied (e.g., the number of tape
cells used if Φ is a Turing machine); the resource of precision
is discussed in, for example, [3].

B. Complexity

Given a computer, and considering a specific resource, we
may ask how this resource scales. In particular, we may be
interested not in the resource used/required by the computer
given one specific input value (that is, in some ‘AΦ (x)’), but in
the resource used as a function of the size of the input value—
this is what is meant by the complexity function corresponding
to the resource. Specifically, we have the following.

Definition 3: For resource A, the corresponding complexity
function A∗ is defined by

A∗Φ (n) := sup {AΦ (x) | |x| = n } .

In this definition, |x| stands for the size of input value x. If,
for example, x is a natural number expressed in binary, then
we can take as its size the number of bits, excluding leading
zeros (or, as is sufficient for virtually all complexity-theoretic
purposes, the approximation log2 (x) to this number of bits).

Note that our usage in Sect. I of ‘T ∗’ and ‘S∗’ conforms
with the notation of Definition 3.

C. Dominance Motivated

We see in Sect. I that O-notation, and in particular the
pre-ordering . induced thereby, allows comparison of the
respective time-complexity functions of standard (e.g., Turing-
machine) computers (in this standard context, the comparison
of time-efficiency actually offers an assessment of the relative,
overall efficiency of the computers being analysed, as we
comment in Sect. I). More generally, the pre-ordering allows
‘apples-to-apples’ comparison, in that computers Φ and Ψ
may be compared with respect to the same (arbitrarily chosen)
resource A.

However, when one considers unconventional (optical,
quantum, DNA, etc.) computers, which may consume many
unconventional resources (precision, energy, thermodynamic
cost, etc.), it is no longer generally true that an ‘apples-to-
apples’ comparison with respect to any given resource equates
to a fair comparison of the computers’ overall efficiency. We
now illustrate this phenomenon by recalling an instance from
[3].

Supposing that we wish to find the greatest common divisor
of two given, natural numbers (with a combined length of n

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

186

digits, say), we have available (amongst others) two solution
methods:
• Euclid’s Algorithm (which we denote by ‘E’), which

has time and space complexities polynomial, and preci-
sion complexity constant, in n (that is, T ∗E ∈ O (

nk
)

(Lemma 11.7 of [8]), S∗E ∈ O (
nk

)
(since S∗E (n) ≤

T ∗E (n) for all n) and P ∗E ∈ O (1) (Theorem 1 of [3])
(k constant)); and

• an analogue system (which we denote by ‘B’, and of
which we defer description to [3]), which has time and
space complexities constant, and precision complexity
exponential, in n (that is, T ∗B, S∗B ∈ O (1) and P ∗B ∈
O (ln) (see [3]) (l constant)).

(As an aside, see [5] for a cryptographic application of the
algorithm E.)

One may describe the methods E and B respectively as
polynomial- and constant-time (and infer by ‘apples-to-apples’
comparison that B is the more time-efficient); however, it
is intuitively more insightful to describe the latter as an
exponential-precision (and, hence, less efficient overall), rather
than constant-time, method, since the former description fo-
cuses on the more ‘relevant’ resource. We now define dom-
inance so as to formalize this notion of ‘relevance’, and to
allow meaningful comparison between computers regardless
of how many different resources they consume.

D. Dominance Defined

The intent of dominance is that the complexity functions
corresponding to resources deemed to be dominant should be
.-greater than those corresponding to other resources; non-
dominant resources, then, are negligible in the sense that
their asymptotic contribution to a computer’s overall resource
consumption is dwarfed by that of dominant resources. Ac-
cordingly, we make the following tentative definition.

Definition 4 (provisional—see Definition 5): A dominant
resource for a computer Φ is a resource A such that, for any
resource B, B∗

Φ . A∗Φ.

This definition requires modification for the following two
reasons.
• First, A’s dominance is over every other resource B. It

is not sufficient (in order that, for example, precision
is shown to be dominant according to Definition 4)
to show that precision complexity .-exceeds time and
space complexity; rather, precision complexity must be
shown to .-exceed time, space, and all other conceiv-
able resources’ complexity, of which resources there are
indeterminately many—this is clearly a futile task and a
worthless definition. Accordingly, we redefine dominance
below relative to an explicit set of resources.

• Secondly, Definition 4 does not for every computer guar-
antee the existence of a dominant resource (much as we
should like one), since there exist pairs of functions f
and g such that f 6. g 6. f . We weaken accordingly the
definition of dominance (essentially from ‘A∗ .-exceeds

all other complexity functions’ to ‘A∗ .-exceeds all other
complexity functions with which it is .-comparable’).

Definition 5 (to replace Definition 4): Let Φ be a com-
puter, and let R be a finite, non-empty set of resources
consumed by Φ (this consumption may be null: important
is that it is meaningful to ask how much of a resource is
consumed, even though the answer may be ‘none’). An R-
dominant resource for Φ is a resource A ∈ R such that, for any
resource B ∈ R satisfying A∗Φ . B∗

Φ, we have that B∗
Φ . A∗Φ.

We note in passing that R-dominance has the following
‘all-or-nothing’ property.

Proposition 6: Let Φ and R be as in Definition 5, and let
X, Y ∈ R. Suppose that X∗

Φ . Y ∗
Φ . X∗

Φ. Then X is R-
dominant for Φ if and only if Y is.

Proof: Suppose that X, Y ∈ R are such that X∗
Φ .

Y ∗
Φ . X∗

Φ.
(We prove first the ‘X dominant ⇒ Y dominant’ direction.)

Suppose that X is R-dominant. Then, by Definition 5, X∗
Φ .

B∗
Φ ⇒ B∗

Φ . X∗
Φ for all B ∈ R. If, for some B ∈ R,

Y ∗
Φ . B∗

Φ, then X∗
Φ . B∗

Φ (by the fact that X∗
Φ . Y ∗

Φ and by
transitivity of ‘.’), whence B∗

Φ . X∗
Φ (by R-dominance of

X), whence B∗
Φ . Y ∗

Φ (again by the fact that X∗
Φ . Y ∗

Φ and
by transitivity of ‘.’). Since this holds for arbitrary B ∈ R,
we have that Y is R-dominant.

(‘Y dominant ⇒ X dominant’ direction.) The converse ar-
gument differs only in that the roles of X and Y are switched,
which is valid since the hypotheses of the proposition are
symmetrical in X and Y .

It is at this juncture natural to introduce the following
complexity classes.

Definition 7: Let R be as in Definition 5.

• For A ∈ R and function f , let CR (f, A) denote the
complexity class of problems of which each is solved
by some deterministic computer Φ with R-dominant
resource A such that A∗Φ . f .

• Let NCR (f,A) denote the analogous non-deterministic
class.

• Let CR (f) =
⋃

R∈R CR (f, R).
• Let NCR (f) =

⋃
R∈R NCR (f, R).

Note, then, that we model non-determinism as a feature of
computational paradigms, rather than as a resource function—
see [4] for further discussion of this issue.

We define also a notion of ‘overall complexity’.

Definition 8: Let Φ and R be as in Definition 5.

• Define BR,Φ by

BR,Φ (n) :=
∑

A is R−dominant

A∗Φ (n) .

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

187

Call this the R-complexity of Φ; it is intended to capture,
in a single complexity function, the ‘overall complexity’
of Φ.

• Let BR (f) denote the complexity class of problems for
each of which there exists a deterministic computer Φ
with BR,Φ (n) ≤ f (n) for all n.

• Let NBR (f) denote the analogous non-deterministic
class.

III. COMPLEXITY CLASS INCLUSIONS

So as to give a flavour of the structure of the hierarchy of
complexity classes (namely, CR (f,A), CR (f), BR (f), and
their non-deterministic counterparts) defined in Definitions 7
and 8, we state and prove the following theorems.

We note first (in Theorem 9) the connection between deter-
minism and non-determinism (specifically, that deterministic
computers are a special case of non-deterministic computers).

Theorem 9: If R is a set of resources with A ∈ R, and if
f is a function, then
• CR (f, A) ⊆ NCR (f,A),
• CR (f) ⊆ NCR (f) and
• BR (f) ⊆ NBR (f).

Proof: This follows directly from the fact that each
deterministic computer is automatically a non-deterministic
computer.

We consider now the dependency of our classes CR (f,A),
etc. upon their resource-set parameter R,
• first (in Theorem 10, Corollary 11 and Theorem 12) by

contrasting a subset R against a superset S ,
• secondly (in Theorem 13) by contrasting disjoint sets R

and S , and
• thirdly (in Theorem 14) by contrasting non-disjoint, non-

enveloping sets R and S .

Theorem 10: If S is a resource set and A ∈ R ⊆ S , then
• CS (f, A) ⊆ CR (f, A) and
• NCS (f,A) ⊆ NCR (f, A).

Proof: Suppose that problem π is in class CS (f,A).
Then, by definition, π is solved by a deterministic computer
Φ for which resource A is S-dominant and such that A∗ .
f . Since A ∈ R ⊆ S , A is also R-dominant: that A is S-
dominant gives that no B ∈ S has the property that A∗ .
B∗ 6. A∗, so certainly no B ∈ R ⊆ S has this property,
whence A is R-dominant for Φ. Hence, π ∈ CR (f, A), as
required.

Similarly, if problem ρ is in class NCS (f, A), then, by
definition, ρ is solved by a non-deterministic computer Ψ for
which resource A is S-dominant and such that A∗ . f . Since
A ∈ R ⊆ S, A is also R-dominant: that A is S-dominant
gives that no B ∈ S has the property that A∗ . B∗ 6. A∗,
so certainly no B ∈ R ⊆ S has this property, whence A is
R-dominant for Ψ. Hence, ρ ∈ NCR (f, A), as required.

As a consequence, we have the following.

Corollary 11: If S is a resource set and R ⊆ S , then
• CS (f) ⊆ CR (f) and
• NCS (f) ⊆ NCR (f).

Proof: If π ∈ CS (f) =
⋃

R∈S CS (f, R), then π ∈
CS (f, A) for some A ∈ S . Hence, by Theorem 10, π ∈
CR (f,A), and so π ∈ ⋃

R∈R CR (f,R) = CR (f).
Similarly, if ρ ∈ NCS (f) =

⋃
R∈S NCS (f,R), then ρ ∈

NCS (f, A) for some A ∈ S . Hence, by Theorem 10, ρ ∈
NCR (f, A), and so ρ ∈ ⋃

R∈R NCR (f, R) = NCR (f).

Theorem 12: If S is a resource set, and if R ⊆ S , then
BR,Φ . BS,Φ for all computers Φ. It does not necessarily
hold, however, that BS (f) ⊆ BR (f) for bounding function f ,
and neither do we have the converse class inclusion; similarly,
it necessarily holds neither that NBS (f) ⊆ NBR (f) nor
conversely.

Proof: We consider a fixed computer, the cor-
responding subscripts of which we omit. Let R̄ =
{A ∈ R | A is R-dominant }, and define S̄ analogously; sup-
pose that R̄ =

{
A1, . . . , A|R̄|

}
. Now, for each Ai ∈ R̄,

there exists Bi ∈ S̄ such that A∗i . B∗
i (if Ai ∈ S̄ , then

this Bi may be taken to be Ai itself; else, if Ai 6∈ S̄ , then
Ai is, by definition of S̄ , .-smaller than some element—
which we may take as Bi—of S̄); hence, there exists a
mapping d: R̄ → S̄: Ai 7→ Bi (where non-uniqueness of
Bi given Ai is resolved via arbitrary choice, which does
not require the axiom of choice since S̄ is finite) such that
A∗i . d (Ai)

∗. Now, for each B ∈ S̄ , B∗ is an addend of BS
(by definition, BS =

∑
B∈S̄ B∗), and so B∗ ≤ BS (by non-

negativity of the other addends); in particular, d (Ai)
∗ ≤ BS

for all Ai ∈ R̄. Hence,
∑|R̄|

i=1 d (Ai)
∗ ≤

∣∣R̄
∣∣BS , whence

O
(∑|R̄|

i=1 d (Ai)
∗
)
⊆ O (∣∣R̄

∣∣BS
)

= O (BS); so BR =

∑|R̄|
i=1 A∗i ∈ O

(∑|R̄|
i=1 d (Ai)

∗
)
⊆ O (BS). BR ∈ O (BS),

as required.
Now, despite this relation between BR and BS , it may not

be the case that BS (f) ⊆ BR (f) (or that BR (f) ⊆ BS (f)).
Consider a deterministic computer and resource sets R and S
such that BR: n 7→ 10 and BS : n 7→ n2. Note that BR . BS ,
but that BR � BS (specifically when n < 4). Let f : n 7→ 20
and f ′: n 7→ 2n2. Then we have that BR ≤ f , BR � f ′,
BS ≤ f ′, and BS � f ; so BS (f ′) * BR (f ′) and BR (f) *
BS (f) (in each case, our deterministic computer places the
corresponding problem in the former but not the latter class).

By considering instead a non-deterministic computer, we
obtain the analogous results for NB rather than B.

Theorem 13: Let R and S be disjoint resource sets. Then
no relation of class inclusion (neither ‘⊆’ nor ‘⊇’) holds in
generality between
• CR (f, A) and CS (f, A);

similarly between

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

188

• NCR (f,A) and NCS (f, A),
• CR (f) and CS (f),
• NCR (f) and NCS (f),
• BR (f) and BS (f), and
• NBR (f) and NBS (f).
Neither is it generally the case that BR . BS or vice versa,

nor that BR ≤ BS or vice versa.

Here and in subsequent theorems, ‘≤’ as a relation between
functions is to be interpreted pointwise: ‘f ≤ g’ stands for
‘f (x) ≤ g (x) for all x’.

Proof: Suppose, for a contradiction, that such an
inclusion were to hold for all disjoint pairs (R,S)
of resource sets. So either XR ⊆ XS or XR ⊇ XS
(where XU stands for some element of the set XU :=
{CU (f, A) , NCU (f, A) , CU (f) , NCU (f) , BU (f) , NBU (f)}
of complexity classes); and, whichever is the case, we see by
reversing the roles of R and S (valid since, clearly, R and S
are disjoint if and only if S and R are) that the other must
also hold. Hence, XR = XS for all disjoint R and S .

Consider a computer that has constant R-complexity and
exponential S-complexity (for resources R and S). Let R =
{R} and S = {S}; these are clearly disjoint. Then the equality
XR = XS cannot hold when XR stands for any of the classes
belonging to XU , as a consideration of resource-constructible
functions shows. This is the sought contradiction.

Resource-constructibility aside, the claims concerning BR
are clear from consideration of the computer of the previous
paragraph.

Theorem 14: Let R and S be such that R * S * R and
R ∩ S 6= ∅. Then no relation of class inclusion (neither ‘⊆’
nor ‘⊇’) holds in generality between
• CR (f, A) and CS (f, A);

similarly between
• NCR (f,A) and NCS (f, A),
• CR (f) and CS (f),
• NCR (f) and NCS (f),
• BR (f) and BS (f), and
• NBR (f) and NBS (f).
Neither is it generally the case that BR . BS or vice versa,

nor that BR ≤ BS or vice versa.

Proof: Given any pair of disjoint, non-empty resource
sets R′ and S ′, we may define R = R′ ∪ {0} and S =
S ′ ∪ {0} where 0 is the null resource that is identically
equal to zero (for all computers and input values). Since the
classes under consideration (CR (f, A), NCR (f, A), CR (f),
NCR (f), BR (f) and NBR (f)) are defined in terms of dom-
inant resources, and since all resources dominate 0 (whence
R and R′ have the same dominant resources, as do S and
S ′), we have that the results of the previous case (in which
R∩S = ∅) hold also for R and S as just constructed, which
satisfy R * S * R (assuming that neither R′ nor S ′ is equal
to {0}, which assumption is not problematic) and R∩S 6= ∅.

We consider now the dependency of our classes CR (f,A),
etc. upon their bounding-function parameter f ,
• first (in Theorem 15, Corollary 16 and Theorem 17) by

contrasting functions related by ., and
• secondly (in Theorem 18) by contrasting functions related

by ≤.

Theorem 15: If f . g, then
• CR (f, A) ⊆ CR (g, A) and
• NCR (f,A) ⊆ NCR (g, A).

In particular, if f ≤ g, then, a fortiori, f . g, and so the
conclusions still hold.

Proof: The proof requires only the transitivity of .: if
a problem is in CR (f, A) by virtue of its being solved by
deterministic computer Φ with A R-dominant and A∗Φ . f ,
then certainly A∗Φ . g, and so the problem is in CR (g, A).

Similarly, if a problem is in NCR (f, A) by virtue of its
being solved by non-deterministic computer Ψ with A R-
dominant and A∗Ψ . f , then certainly A∗Ψ . g, and so the
problem is in NCR (g,A).

Consequently, we have the following.

Corollary 16: If f . g (and so, in particular, if f ≤ g),
then
• CR (f) ⊆ CR (g) and
• NCR (f) ⊆ NCR (g).

Proof: By definition, CR (f) =
⋃

R∈R CR (f,R).
By |R| evocations of Theorem 15, this is a subset of⋃

R∈R CR (g,R), which, by definition, is CR (g), as required.
Similarly NC.

Theorem 17: Let f and g satisfy f . g. Then no relation
of class inclusion (neither ‘⊆’ nor ‘⊇’) holds in generality
between
• BR (f) and BR (g);

similarly between
• NBR (f) and NBR (g).

Proof: There exist f and g satisfying f . g, but with
g ≤ f everywhere; e.g., f : n 7→ 2n, g: n 7→ ⌊

n
2

⌋
. The claim

of the theorem is witnessed by any computer with an identity
time-complexity function T ∗ (n) = n, which necessarily exists
by the time-constructibility of polynomials.

However, the following restriction yields a more definite
result.

Theorem 18: If f ≤ g, then
• BR (f) ⊆ BR (g) and
• NBR (f) ⊆ NBR (g).

Proof: A problem in BR (f) is solved by a deterministic
computer Φ with BR,Φ ≤ f . By transitivity of ≤, BR,Φ ≤ g,
and so the problem is (by virtue of Φ) in BR (g).

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

189

Similarly, a problem in NBR (f) is solved by a non-
deterministic computer Ψ with BR,Ψ ≤ f . By transitivity of
≤, BR,Ψ ≤ g, and so the problem is (by virtue of Ψ) in
NBR (g).

Finally, we consider (in Theorem 19) the dependency of
our classes CR (f, A) and NCR (f, A) upon their resource
parameter A, by contrasting two resources of which one is
always pairwise dominant.

Theorem 19: Suppose that (R-dominant) resources A and
B are such that A∗Φ . B∗

Φ for all computers Φ (notably, this
inclusion is certainly true when A∗Φ ≤ B∗

Φ for all Φ). Then
• CR (f, B) ⊆ CR (f,A) and
• NCR (f,B) ⊆ NCR (f,A).

Proof: A problem in CR (f, B) is solved by a determin-
istic computer Φ with B∗

Φ . f and with B R-dominant for
Φ. By transitivity of ., then, A∗Φ . f , and so (since A is
R-dominant) the problem is in CR (f,A) by virtue of Φ.

Similarly, a problem in NCR (f, B) is solved by a non-
deterministic computer Ψ with B∗

Ψ . f and with B R-
dominant for Ψ. By transitivity of ., then, A∗Ψ . f , and
so (since A is R-dominant) the problem is in NCR (f, A) by
virtue of Ψ.

For a brief summary of the above theorems, see Table I.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

190

TABLE I
A BRIEF SUMMARY OF THE CLASS-INCLUSION THEOREMS OF SECT. III. WHERE NO CLASS INCLUSION (NEITHER ‘⊆’ NOR ‘⊇’) HOLDS IN GENERALITY

BETWEEN CLASSES A AND B, WE WRITE ‘A t B’; SIMILARLY, WHERE NO ORDER (NEITHER ‘.’ NOR ‘≤’, IN EITHER DIRECTION) HOLDS IN

GENERALITY BETWEEN FUNCTIONS f AND g, WE WRITE ‘f t g’. NUMBERS IN PARENTHESES AT THE BOTTOM-RIGHT OF CELLS INDICATE THE

CORRESPONDING THEOREMS/COROLLARIES.

R ⊆ S R ∩ S = ∅ f . g f ≤ g A∗ . B∗

R * S * R, A∗ ≤ B∗
R∩ S 6= ∅

CR (f,A) CS ⊆ CR CR t CS C (f,A) C (f, A) C (f,B)
⊆ C (g, A) ⊆ C (g,A) ⊆ C (f,A)

(10) (13/14) (15) (15) (19)

NCR (f, A) NCS ⊆ NCR NCR t NCS NC (f, A) NC (f,A) NC (f,B)
⊆ NC (g, A) ⊆ NC (g, A) ⊆ NC (f, A)

(10) (13/14) (15) (15) (19)

CR (f) CS ⊆ CR CR t CS C (f) ⊆ C (g) C (f) ⊆ C (g)
(11) (13/14) (16) (16)

NCR (f) NCS ⊆ NCR NCR t NCS NC (f) NC (f)
⊆ NC (g) ⊆ NC (g)

(11) (13/14) (16) (16)
(N/A)

BR (f) BR . BS , BR t BS , B (f) t B (g) B (f) ⊆ B (g)
BR t BS BR t BS

(12) (13/14) (17) (18)

NBR (f) BR . BS , BR t BS , NB (f) NB (f)
NBR t NBS NBR t NBS t NB (g) ⊆ NB (g)

(12) (13/14) (17) (18)

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

191

IV. DISCUSSION

Our notion of dominance formalizes resources’ relevance to
computational processes: resources that are dominant impose
the greatest asymptotic cost, so much so that non-dominant
resources can be disregarded as irrelevant. Thus, much as
the pre-ordering . can be used to compare the respective
time-complexity functions of Turing machines (or similar)
and thereby compare their overall efficiency, . can also
be used to compare the respective R-complexity functions
of arbitrary-paradigm computers and thereby compare their
overall efficiency.

Furthermore, we have specified (in Definitions 7 and 8)
complexity classes in which are categorized problems accord-
ing to their cost in terms of relevant (i.e., dominant) resources.
Consequently, we have a framework in which meaningful,
consistent comparison of model-heterogenous sets of com-
puters is possible; the framework’s complexity classes can
accommodate computers conforming to various computational
paradigms, and can provide structure reflecting the cost of
computation in terms of various resources.

The model-heterogeneity of our framework offers an imme-
diate and important advantage: a problem’s complexity, which
is the most commonly sought object in computational com-
plexity theory, is bounded above by the complexity of the most
efficient, known solution method for the problem; the ability
to compare model-heterogeneous—and, hence, larger—sets of
solution methods results in a lower minimal complexity of
methods, and, hence, tighter upper bounds on the complexity
of problems themselves.

A further advantage (especially for the unconventional-
computation community) of the definitions proposed in the
present paper is that a newly-designed, non-standard computer
that solves a problem can be meaningfully compared with the
benchmark of an existing, standard computer that solves the
same problem.

We hope that this work, and the above-mentioned ad-
vantages thereof, are of interest and use to practitioners of
complexity theory and unconventional computing, to readers
of the International Journal of Computers, and to participants
of ISTASC ’10.

ACKNOWLEDGMENT

We thank Bob Coecke and Joël Ouaknine for their continued
support, supervision and suggestions; participants of confer-
ences attended/organized by the author for their encouraging
feedback and useful discussion; and reviewers of publications
to which the author has contributed for their detailed com-
ments. Finally, we thank the organizers of ISTASC ’10 for
their kind invitation to present this work.

REFERENCES

[1] E. Blakey, “Beyond Blum: what is a resource?” International Journal
of Unconventional Computing, OCP Science, 2010, to be published.

[2] E. Blakey, “Factorizing RSA keys, an improved analogue solution”, New
Generation Computing, vol. 27, no. 2, Y. Suzuki, M. Hagiya, H. Umeo,
and A. Adamatzky (guest editors), Ohmsha/Springer, 2008.

[3] E. Blakey, “On the computational complexity of physical computing
systems”, Unconventional Computing 2007, A. Adamatzky, L. Bull,
B. De Lacy Costello, S. Stepney, and C. Teuscher (editors), Luniver
Press, 2007.

[4] E. Blakey, “Unconventional complexity measures for unconventional
computers”, Natural Computing, Springer, 2010, to be published.

[5] C. Chang, C. Lin, and J. Lee, “A file protection system based on a
trapdoor one-way hash function”, WSEAS International Conference on
Applied Computer Science, Hangzhou, China, 2006.

[6] S. Iriyama and M. Ohya, “On generalized quantum Turing machine
and its language classes”, WSEAS International Conference on Applied
Mathematics, Texas, USA, 2007.

[7] S. Negulescu, C. Oprean, C. Kifor, and I. Carabulea, “Elitist ant system
for route allocation problem”, WSEAS International Conference on
Applied Informatics and Communications, Rhodes, Greece, 2008.

[8] C. Papadimitriou, Computational Complexity, Addison-Wesley, 1995.
[9] B. Rylander and J. Foster, “Genetic algorithms, and hardness”, WSEAS

International Conference on Evolutionary Computation, Tenerife, Spain,
2001.

[10] A. Sharma, R. Kumar, and P. Grover, “Empirical evaluation and critical
review of complexity metrics for software components”, WSEAS Inter-
national Conference on Software Engineering, Parallel and Distributed
Systems, Corfu, Greece, 2007.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 4, Volume 4, 2010

192

