
 

  

Abstract— The study of extracting electroencephalogram (EEG) 
data as a source of significant information has recently gained 

attention.  However, since EEG data are complex, it is difficult to 

extract them as a source of intended, significant information. In order 

to effectively extract EEG data, this paper employs the maximum 

entropy method (MEM) for frequency analyses and investigates an 

alpha frequency band and beta frequency band in which features are 

more apparent.  At this time, both the alpha and beta frequency bands 

are divided further into several sub-bands so as to extract detailed EEG 

data where the loss of data is small. In addition, learning vector 

quantization (LVQ) is used for clustering the EEG data with features 

extracted. In this paper, we will demonstrate the effectiveness of the 

proposed method by applying it to the EEG data of one subject and 

two subjects and comparing the results with other related studies. By 

applying the proposed method further to the EEG data of three subjects, 

and comparing the results with a related study, the effectiveness of the 

proposed method will be determined. 
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I. INTRODUCTION 

ECENTLY, there have been many studies on the 

brain-computer interface (BCI), which interprets EEG data 

of brain activities generated by picturing images and human 

physical actions and then serves as an interface between the 

human brain and a computer. The process flow of BCI is: 

measurement of brain activities, preprocessing, feature 

extraction, learning, recognition, and postprocessing.  When 

creating a BCI, it is important to note that postprocessing cannot 

be carried out correctly unless recognition is properly 

completed.  Therefore, determining the method by which the 

BCI executes the processes from preprocessing to learning is 

crucial for accurate recognition.  This paper proposes an 

effective method for processing from preprocessing to learning. 
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The measurement methods of brain activities fall into two 

approaches: invasive [13]-[17] and noninvasive. In a 

noninvasive approach, studies on the BCI using EEG data have 

been actively conducted [4]-[10]. The EEG is the oldest, 

popular noninvasive measuring technique and, owing to its 

simplicity, used widely. However, satisfactory results in terms 

of recognition accuracy have yet to be obtained through BCI 

studies using noninvasive approaches. This study uses the EEG 

data released from the Colorado State University [1]. 

For the BCI to be realized, it is important to recognize the 

meaning the recorded EEG data contain.  For this purpose, 

processing for feature extraction and learning is of particular 

significance. Although various methods have been used for 

these processing [11],[12], [18]-[22], there is not yet a definite, 

established approach, leaving today's researchers following a 

process of trial and error. 

With regard to recognition accuracy studies using the EEG 

data released from the Colorado State University, Inagaki et al. 

proposed a method by which EEG features were extracted 

through the Fourier transform and the EEG data was clustered 

using back propagation (BP), one of the learning algorithms in 

neural networks [2]. Also, Anderson et al. proposed a method 

by which EEG features were extracted through the short-time 

principal component analysis (STPCA) and the EEG data was 

clustered by the linear discriminant analysis (LDA) [3]. 

This study uses maximum entropy method (MEM) to 

effectively extract EEG features and investigates both an alpha 

frequency band and a beta frequency band. At this time, both the 

alpha and beta frequency bands are divided further into several 

sub-bands to capture precise features of the EEG data. Then, all 

these frequency sub-bands are used as features. Moreover, LVQ, 

which is a model of neural networks, is used in this study for 

clustering the EEG data.  

In this paper, we will demonstrate the effectiveness of the 

proposed method by applying it to the EEG data of one subject 

and two subjects and comparing the results with other related 

studies. Moreover, each subject will be examined to determine 

which task is more likely to be recognized falsely as what task 

and, based on these examinations, we will seek a combination of 

tasks that has a higher positive recognition rate. 

In addition, by applying the proposed method further to the 

EEG data of three subjects, and comparing the results with a 

related study, the effectiveness of the proposed method will be 

determined. 
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This paper is organized as follows. Section 2 explains 

maximum entropy method and LVQ, and Section 3 describes 

EEG data and mental tasks used in this study. Section 4 explains 

a method for extracting features, more specifically,   

segmentation, feature extraction, normalization. Section 5 

explains an experimental method, and shows the experimental 

results.  We will demonstrate the effectiveness of the proposed 

method by comparing the experimental results with other 

related studies. In addition, the combination of tasks by which 

the recognition rate increases is examined. Section 6 shows the 

experiment results of the case where three more subjects have 

been added in the experiment, again demonstrating the 

effectiveness of the proposed method. Lastly, the conclusion is 

provided in Section 7. 

 

II. MAXIMUM ENTROPY METHOD AND LVQ 

This section explains MEM and LVQ used in this study. 

 Today, the fast Fourier transform (FFT) is widely used as a 

frequency analysis. The FFT, however, is unsuitable for 

analyzing ever-changing frequencies. The wavelet transform, 

also, is one of the frequency analysis methods but is unsuitable 

for analyzing continuous and steady frequencies. In this study, 

we use MEM, which has higher spectral resolutions than other 

frequency analysis methods and provides the ability to analyze 

even short-time data. From the above, it can be said that MEM is 

an optimal analysis method for EEG data. 

 

 In LVQ, several reference vectors, each of which is a 

representative of a cluster, are set first and then updated for the 

formation of ideal clusters. A learning algorithm of LVQ is 

simple while the learning time of it is shorter than that of the BP 

method [23]. Since LVQ can be applied to a large-scale 

recognition problem, it can be considered that LVQ is suitable 

for problems requiring recognition of a character with many 

data or classification of EEG data. There are several models, 

such as LVQ1, LVQ2.1, and LVQ3, for LVQ. In this study, we 

use the LVQ2.1 model for which the recognition rate is said to 

be the highest [24]. 

 

III. MENTAL TASKS AND EEG DATA 

This study utilizes EEG data, which is released by Colorado 

State University, as experimental data [1]. The mental tasks 

used in the EEG measurement are as follows. 

 

� Task1 : Resting task 

� Task2 : Mental multiplication of two multi-digit numbers 

� Task3 : Mental letter writing 

� Task4 : Visual rotation of a three dimensional block    
figures 

� Task5 : Visual counting 

 

EEG signals are measured at the points C3, C4, P3, P4, O1, 

and O2 designated by the ten-twenty electrode system (Fig.1). 

Also, signals generated from eye movements are recorded by 

the electrooculogram (EOG). Accordingly, a total of seven 

channels are used. Because EEG signals are measured for 10 

seconds at the sampling frequency of 250Hz against each 

mental task, there will be 2,500 (250Hz ×10 seconds) sample 

data for each channel. Data from the seven channels will 

constitute a data set. 

 

IV. FEATURE EXTRACTION METHOD 

The feature extraction is carried out in the order of 

segmentation, frequency analysis, and normalization. 

  

A Segmentation 

 

The segmentation is to eliminate fluctuations in EEG data. 

Because of this, EEG data can be analyzed in real time. In this 

study, 10-second recording of EEG data are segmented by 0.4 

seconds, and a frequency analysis is conducted on each 

segment. 

Experiments were undertaken within various segment 

division times, and we adopted the segment time which brought 

the best results among them. Moreover, experiments were 

undertaken in two cases: a case by which there was an overlap of 

segments and a case by which there was no overlap of segments. 

As result of this experimentation, we adopted the case in which 

there is no overlap of segments as it produced the best results. 

 

B Frequency Analysis and Normalization 

 

The maximum entropy calculation method (MemCalc), 

which is developed from MEM, is used for frequency analysis. 

In MemCalc, the frequency of time-series signals can be 

analyzed with minimum noise interference, and it is possible to 

process a signal that is of only a few seconds duration. 

In this study, the power spectra of alpha frequency and beta 

frequency bands, where changes readily appear in EEG data, are 

used. The alpha frequency band from 8Hz to 12Hz is divided 

into three frequency sub-bands: alpha1 frequency band of 8Hz; 

alpha2 frequency band from 9Hz to 10Hz; and alpha3 frequency 

band from 11Hz to 12Hz. Similarly, the beta frequency band 

from 13Hz to 30Hz is divided into two frequency sub-bands: 

beta1 frequency band from 13Hz to 19Hz and beta2 frequency 

band from 20Hz to 30Hz. 

 
 

 
Fig.1: Positions of EEG electrodes measured and released by 

Colorado State University 
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After a power spectrum of each frequency band is derived, 

linear normalization of the power spectrum is carried out for 

each frequency band.  The power spectrum of all frequency 

bands (alpha1, alpha2, alpha3, beta1, and beta2) from each of 

the seven channels is used as input data. Therefore, as shown in 

Fig.2, 35 (7×5) power spectrum values, which are the features, 

become the input data of LVQ. 

 

V. EXPERIMENTAL METHOD AND RESULTS, COMPARISONS AND 

CONSIDERATIONS 

In this section, we give an experimental method and 

experimental results.  

This study uses EEG data [1] released by Colorado State 

University. These data are obtained in the following manner. 

 

� EEG data are measured 10 times, each time for a duration 

of 10 seconds, against each mental task. 

� This measurement is conducted for each of the five mental 

tasks. 

 

In this study, 40 data sets out of a total of 50 are used for 

learning data and the remaining 10 for test data, as in the method 

adopted by Inagaki et al. Experiments were conducted with a set 

of test data, which was combined with consistency without 

producing biased data. Then, the average recognition rate 

derived from all the combined data sets was determined as the 

final recognition rate. 

The experimental conditions in LVQ are: a total of 10 

reference vectors (2 vectors a class × 5 classes); the learning rate 

of 0.01; and the learning count of 10000. The reference vectors 

are drawn at random from vectors in the learning data. 

The task-specific recognition rates observed in the proposed 

method are shown in Table 1. It can be noted from Table 1 that 

the recognition rate varies according to tasks and subjects. It can 

also be said that the higher the number of subjects is, the lower 

the recognition rate becomes. 

Next, we will demonstrate the effectiveness of the proposed 

method by comparing the results with other related studies 

[2],[3].   

 

A  Comparing the proposed method with the method by Inagaki  

et al.  

 

In this section, we compare the proposed method with the 

method by Inagaki et al.  

The differences between the proposed method and the 

method by Inagaki et al. are shown in Fig.3. 

As shown in Table 2, the average of task-specific recognition 

rates in the proposed method are compared with those in the 

method used by Inagaki et al. 

 

 
Fig.2: Input data 

 

TABLE 1 

TASK-SPECIFIC RECOGNITION RATES IN THE PROPOSED METHOD 

 Task1 Task2 Task3 Task4 Task5 Average 

Subject1 73.2 97.8 66.4 93.2 74.2 81.0 

Subject2 66.5 99.0 77.5 81.0 69.0 78.6 

Subject3 65.3 61.4 73.7 50.8 15.4 53.3 

Subjects of 1 and 2 49.8 96.0 81.0 95.3 35.5 71.5 

Subjects of 1 and 3 57.9 79.3 53.1 66.1 30.2 57.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3: The differences between the proposed method and the method by 

Inagaki et al. 
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TABLE 2 

COMPARING WITH RECOGNITION RATES IN THE METHOD BY INAGAKI ET AL. 

Subject 
Proposed 

Method 

Method by 

Inagaki et al. 

Subject1 81.0 78.0 

Subject2 78.6 72.0 

Subject3 53.3 42.0 

Subjects of 1 and 2 71.5 65.0 

Subjects of 1 and 3 57.3 53.0 

 

B Comparing the proposed method with the method by 

Anderson et al. 

 

In this section, we compare the proposed method with the 

method by Anderson et al.  

The differences between the proposed method and the 

method by Anderson et al. are shown in Fig.4. 

 

Next, we compare recognition rates with those in the method 

used by Anderson et al. in Table 3. 

 

TABLE 3 

COMPARING RECOGNITION RATES WITH THOSE IN THE METHOD BY ANDERSON 

ET AL. 

Subject 
Proposed 

Method 

Method by 

Anderson et al. 

Subject1 81.0 77.9 

Subject2 78.6 69.0 

 

 

In the method used by Anderson et al., out of 50 data sets, 25 

data sets from the first five experiments (trial 1 to trial 5) are 

used for learning data, and  the remaining 25 data sets from the 

sixth to tenth experiments (trial 6 to trial 10) are used for test 

data. Moreover, while the number of electrodes used in our 

study and the study of Inagaki et al. is seven, Anderson et al. 

used six electrodes in their experiments. 

 

C Comparing the proposed method with the method using 

MEM and BP 

 

This section shows the effectiveness of the proposed method 

by comparing with the method using MEM and BP. 

The differences between the proposed method and the 

method using MEM and BP are shown in Fig.5. 

First, task-specific recognition rates derived from the method 

using MEM and BP are shown in Table 4. Then, the average of 

 

TABLE 4 

TASK-SPECIFIC RECOGNITION RATES IN THE METHOD USING MEM AND BP 

 Task1 Task2 Task3 Task4 Task5 Average 

Subject1 67.2 96.4 62.7 86.4 61.8 74.9 

Subject2 72.5 93.5 72.0 89.5 48.5 75.2 

Subject3 59.0 60.6 63.0 57.6 20.0 52.0 

Subjects of 1 and 2 56.8 82.0 71.8 88.3 41.8 68.1 

Subjects of 1 and 3 54.3 69.5 47.9 64.3 32.4 53.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.5: The differences between the proposed method and the method 

using MEM and BP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig.4: The differences between the proposed method and the method by 

Anderson et al. 
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task-specific recognition rates in the proposed method is 

compared to that of the method using MEM and BP in Table 5. 

 

 
TABLE 5 

COMPARING THE PROPOSED METHOD WITH THE METHOD USING MEM AND BP 

Subject 
Proposed 

Method 
MEM and BP 

Subject1 81.0 74.9 

Subject2 78.6 75.2 

Subject3 53.3 52.0 

Subjects of 1 and 2 71.5 68.1 

Subjects of 1 and 2 57.3 53.7 

 

D Considerations 

From Sections of A, B and C, we can make the following 

statement.  

 

It can be noted from Table 1 that, except a portion of Task5, 

the recognition rates are relatively high. In addition, Tables 2 

and 3 show that the recognition rates observed in the proposed 

method are higher than those in the methods used by Inagaki et 

al. and Anderson et al. for all the cases where the number of 

participating subjects is either one or two. Especially from 

Table 2, our recognition rates of Subject2, Subject3, and 
Subjects of 1 and 2 are shown to far exceed those of Inagaki et 

al. 

Although the recognition rate of Subject3 is slightly lower in 

this record of measurement, it still surpasses that of Inagaki et al. 

by 11.3%. Table 3 also shows that, compared to the one of 

Anderson et al., the recognition rate of Subject2 is higher by 

10%. Considering these results, it can be said that the proposed 

method is more effective than the ones adopted by both Inagaki 

et al. and Anderson et al. We speculate these results are due to 

the following reasons: 

 

� The use of MEM with higher spectral resolutions allows 

the time to be segmented into shorter divisions, thereby 

extracting features effectively and letting LVQ exert its 

maximum classification potential. 

� By subdividing alpha frequency and beta frequency bands, 

differences of features found in each frequency band are 

revealed to some extent, contributing to improvement in 

recognition accuracy. 

 

In addition, it is demonstrated from Table 1 and Table 4 that, 

with some exceptions, the proposed method shows higher 

recognition rates. Also from Table 5, it is demonstrated that the 

recognition rates of the proposed method are higher than those 

of the method using MEM and BP for all the cases where the 

number of experimental subjects is either one or two. While 

Subject3 shows little difference in recognition rate, the 

recognition rates of other subjects are significantly higher with 

the proposed method than the method using MEM and BP. 

These findings confirm that LVQ employed in our proposed 

method acquires a higher recognition rate than the 

BP-employed method. We believe that this is because LVQ is 

capable of handling a large-scale recognition problem and, 

therefore, has well adapted to the problem, such as EGG data 

used in this study, which is complex and extensive. 

 

E Searching for a task combination with a higher recognition 

rate 

 

In this section, we will examine each subject to determine 

which task is more likely to be recognized falsely as what task 

and then seek a combination of tasks that has a higher positive 

recognition rate. 

The relation of tasks is shown in Table 6, Table 7, Table 8, 

Table 9 and Table 10. 

 
TABLE 6 

RELATIONSHIP BETWEEN TASKS IN SUBJECT1 

  predicted 

  Task1 Task2 Task3 Task4 Task5 

Actual 

Task1 73.2 9.2 15.0 1.3 1.2 

Task2 0.8 97.8 0.8 0.4 0.2 

Task3 11.2 7.6 66.4 3.2 11.6 

Task4 1.9 0.3 1.8 93.2 2.8 

Task5 8.0 2.3 12.2 3.2 74.2 

 
TABLE 7 

RELATIONSHIP BETWEEN TASKS IN SUBJECT2 

  predicted 

  Task1 Task2 Task3 Task4 Task5 

Actual 

Task1 66.5 0.5 17.5 0.0 15.5 

Task2 0.0 99.0 0.0 0.0 1.0 

Task3 4.0 0.5 77.5 1.0 17.0 

Task4 5.0 0.0 14.0 81.0 0.0 

Task5 6.0 6.0 19.0 0.0 69.0 

 

TABLE 8 

RELATIONSHIP BETWEEN TASKS IN SUBJECT3 

  predicted 

  Task1 Task2 Task3 Task4 Task5 

Actual 

Task1 65.3 16.4 5.3 8.3 4.6 

Task2 4.0 61.4 24.6 4.2 5.8 

Task3 7.3 5.2 73.7 4.3 9.4 

Task4 10.4 15.3 11.4 50.8 12.0 

Task5 9.1 18.3 31.4 25.7 15.4 
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TABLE 9 

RELATIONSHIP BETWEEN TASKS IN SUBJECTS OF 1 AND 2 

  predicted 

  Task1 Task2 Task3 Task4 Task5 

Actual 

Task1 49.8 16.8 23.3 2.5 7.8 

Task2 1.5 96.0 0.5 0.0 2.0 

Task3 14.5 0.3 81.0 0.3 4.0 

Task4 2.0 0.5 1.0 95.3 1.3 

Task5 5.8 13.0 26.5 19.3 35.3 

 

 

TABLE 10 

RELATIONSHIP BETWEEN TASKS IN SUBJECTS OF 1 AND 3 

  predicted 

  Task1 Task2 Task3 Task4 Task5 

Actual 

Task1 57.9 14.2 19.0 4.8 4.1 

Task2 4.8 79.3 10.6 2.7 2.6 

Task3 19.8 6.8 53.1 7.4 12.8 

Task4 10.2 7.9 6.4 66.1 9.4 

Task5 14.2 12.9 21.2 21.4 30.2 

 

Extracting two data sets of the same trial for each task, test 

data consists of 10 data sets (2 data sets × 5 tasks). To have the 
test data recognized, two out of 10 data sets are recognized 

individually, and the recognition rate is obtained for the number 

of possible combinations. The values shown on each table are 

the averages of these recognition rates. The vertical scale of the 

tables indicates from which tasks two data sets are derived. 

Table 6 shows that the percentage of Task1 and Task5 falsely 

recognized as Task3, out of all five tasks, is relatively high with 

15.0% and 12.2% respectively. Similarly, the percentage of 

Task3 falsely recognized as Task1 or Task5 is also high with 

11.2% and 11.6% respectively. The percentage of Task2 

positively recognized as Task2 is significantly high with 97.8% 

while Task4 falsely recognized as Task2 with the low 

percentage of 0.3%. From these, it can be noted in Subject1 that 

combinations of Task1 and Task3 and of Task3 and Task5 are 

more likely to be recognized falsely while Task2 and Task4 are 

less likely. 

From Table 8, the percentage of Task1 falsely recognized as 

Task2, out of all five tasks, is high with 16.4% and Task2 as 

Task3 with 24.6%. The percentage of Task4 falsely recognized 

as Task1, Task2, Task3 or Task5 is also high with 10.4%, 

15.3%, 11.4% and 12.0% respectively. The percentage of 

Task5 falsely recognized as Task2, Task3 and Task4 is 

significantly high with 18.3%, 31.4% and 25.7% respectively. 

Therefore, in Subject3, it is observed that combinations of 

Task2 and Task3 and of Task3 and Task5 are more likely to be 

recognized falsely while Task4 and Task5 are most likely to be 

recognized falsely. 

A tendency similar to that found in Table 6 is observed in 

Table 7 and Table 9. Moreover, a similar tendency to Table 8 is 

indicated in Table 10. 

From the findings above, it is clear that Task3 and Task5 do 

not make a good match for they are often recognized falsely one 

another. 

When using these five tasks, any task combinations that 

exclude a pairing of Task3 and Task5, such as a combination of 

Task1, Task2, Task3 and Task4 or of Task1, Task2, Task4 and 

Task5, are expected to produce higher recognition rates. 

 

VI. RECOGNITION RATES IN THE EEG DATA OF THREE 

In general, it is said that the more the number of subjects, the 

lower the recognition rate. 

In this section, by applying the proposed method to the EEG 

data of three subjects, and comparing the results with a related 

study, the effectiveness of the proposed method will be 

determined. Experimental results are shown in Table 11. 

From the average rates in Table 11, several recognition rates 

 

TABLE 11 

RECOGNITION RATES IN THE EEG DATA OF THREE SUBJECTS 

 Task1 Task2 Taask3 Task4 Task5 Average 

Subjects of 1,3, and 4 49.8 66.6 66.7 59.8 31.0 54.8 

Subjects of 1,3, and 5 53.2 67.1 73.4 62.9 31.1 57.5 

Subjects of 1,3, and 6 70.0 74.5 47.0 74.8 39.5 61.2 

Subjects of 1,4, and 5 42.4 72.0 72.0 61.8 41.7 58.0 

Subjects of 1,4, and 6 66.9 78.7 53.6 74.8 51.0 65.0 

Subjects of 1,5, and 6 56.1 46.8 62.3 80.9 59.6 61.1 

Subjects of 3,4, and 5 54.5 57.0 86.3 44.9 47.7 58.1 

Subjects of 3,4, and 6 62.9 56.2 68.4 53.2 41.6 56.5 

Subjects of 3,5, and 6 63.0 55.2 79.9 65.0 59.0 64.4 

Subjects of 4,5, and 6 58.7 63.0 75.0 60.0 68.3 65.0 
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in the proposed method are similar to those of Subjects of 1 and 

2, as shown in Table 2, in the method used by Inagaki et al. This 

means that, in some cases, the proposed method still can 

produce recognition rates similar to those of the method 

followed by Inagaki et al. even though one more subject was 

added, bringing the total to three subjects. Moreover, depending 

on a task, such as Task3, relatively high recognition rates were 

obtained. 

 

VII. CONCLUSIONS 

In this study, we proposed an effective method for increasing 

recognition rates of EEG data.  This study used MEM to 

effectively extract EEG features and investigated both an alpha 

frequency band and a beta frequency band. At this time, both the 

alpha and beta frequency bands are divided further into several 

sub-bands to capture precise features of the EEG data. Then, all 

these frequency sub-bands are used as features. Moreover, LVQ, 

which is a model of neural networks, was used in this study for 

clustering the EEG data. 

In addition, we demonstrated the effectiveness of the 

proposed method by applying it to the EEG data of one subject 

and two subjects and comparing the results with other related 

studies [2],[3].  By applying the proposed method further to the 

EEG data of three subjects, and comparing the results with 

related studies, the effectiveness of the proposed method was 

determined. 

However, an issue that an increase in the number of subjects 

tends to correlate with a decrease in recognition rates has been 

addressed. There are some cases where the recognition rates 

presented in this paper are not sufficient. We believe, however, 

that our study will raise questions regarding the development of 

practical systems in future. 
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