
 

 

  

Abstract— For complex engineering optimizing problems, 

several problems are required to be controlled within the specific 

interval in which something can operate or act efficiently. Most 

researchers minimize the objective vector into a single objective and 

interested in the set known as Pareto optimal solution. However, in 

this paper is concerned with the application of genetic algorithm to 

solve multi-objective problems in which some objectives are 

requested to be balanced within its objective bounds. The proposed 

approach called genetic algorithms for objective boundary (GAsOB 

scheme) for searching the possible solutions for the particular multi-

objectives problems. The elite technique is employed to enhance the 

efficiency of the algorithm. The experimental results have compared 

with the results derived by a linear search technique and traditional 

genetic algorithms through the search space. From the experimental 

results, GAsOB scheme generates the solution efficiently with 

customization of the number of eras and immigration rate.  

 

Keywords—Optimization, genetic algorithms, objective 

boundary, simulation, multiobjective optimization.  

I. INTRODUCTION 

ENTIC algorithms (GAs)  have become popular meta-

heuristic models for finding solutions to the complex real-

life problems. The basic mechanism in GAs is a model of 

Darwinian evolution. In 1975, Holland had proposed an 

approach by the use of genetic algorithms [1] which are 

becoming used increasingly in several fields [2], [4], [5], [25], 

[27]. Also, examples of using multi-agent systems for solving 

optimization problems can be found in [22] and [26]. 

Traditional GAs are customized to a search technique that uses 

concepts from reproduction and natural selection to produce 

better offspring for the next generation from existing parents. 

Only good individuals of the population survive to the next 

generation while a bad one is eliminated from the selection 

process. Multiobjective optimization refers to the solution of 

problems with two or more objectives to be satisfied 

simultaneously. Often, traditional approaches for solving 

multi-objective optimization problems try to change the 

multiple objectives into a single objective problem in which 

only a global optimal point is desired [6]. A Pareto optimal set 

is the mathematical solution to a multi-objectives problem [7], 

[14], [24]. A solution is Pareto-optimal if no other solution can 

improve one object function without reducing at least one 

other objectives [9], [12], [19], [20]. However, there exist the 

multi-objective problems that fail to capture Pareto solutions 

for multi-objective optimizations [10]. For motivated example, 

 
 

let’s assume that Fk(a) and Fk(b) are the values of objective 

function k of decision vectors a, b ∈ X. These two parameter 

vectors are incomparable if and only if they are not equivalent, 

and neither dominates the other [8]. For equations (3), (4), and 

(5) shown in this paper, it is hard to say that the objective 

vector a is better than the objective vector b if both fi(a) and 

fi(b) ,for all i, are in the requested range of [li, ui]. For instance 

in real-world problems, there exist the problems in which their 

multi-objective vectors are required to be within the specific 

bounds. Having good upper and lower bounds is very 

important in many implicit enumeration methods [23], [25]. 

For example, in nutritive and health science the researchers try 

to find good bio-chemical treatments for mental and 

behavioral disorder patients which make patients recovery 

effectively with the good health. Of course, the main purpose 

of the treatments is designed to control the patient’s chemical 

level. However, it is difficult to achieve a low-cost chemical 

level control.  

    This paper is an extended work of conference paper by 

Sukstrienwong [3], so examples and further results are found. 

The paper’ aim is to handle bounded optimization problems.  

So The paper is divided into six sections, including this 

introduction section. Section 2 provides the fundamental 

concept of genetic algorithm. Section 3 explains the generality 

of the genetic algorithm and mathematical definition of multi-

objective optimization. Section 4 describes the generality of 

multi-criteria optimization problems. Then, section 5 shows 

the proposed algorithm in detail. The simulation setup and 

experimental results of the scheme are included in this section. 

The conclusions and future work are in  section 6. 

II. THE FUNDAMENTAL CONCEPT OF GENETIC ALGORITHMS 

Genetic algorithms are efficient search methods based on 

principles of natural selection and recombination. Only good 

individuals in the current population survive to the next 

generation while a bad one is eliminated from the selection 

process. The fitness value of each element, which could be the 

objective of the solution, is used to distinct good and bad 

individuals from the population. GAs often apply to find the 

optimal solution to the problem by manipulating a population 

of solutions. The manners of problems need to be encoded in 

chromosomes for distinguishing good solutions from bad ones. 

In general, the way to discriminate the best solutions from bad 

ones is called the fitness function. Once the problem is 

encoded in chromosomes with the fixed length, L, the genetic 

algorithm can be run. There are many variations of encoding 
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schemes of GAs. Often, the individuals are composed of 

binary (0 or 1) in specified places [9], [21], thus the search 

space is formed by 2
L
 points. The genetic algorithm begins 

with generation 0 with the completely random population. 

A. Basic GA-setup 

For basic GA-setup, the primary parameters for controlling 

the genetic algorithm are the population size (M) and the 

maximum number of generations to be run (Gen). Secondary 

parameters, the crossover probability (pc), and the mutation 

probability (pm) are required to create new population. In 

addition, several other quantitative control parameters and 

qualitative control variables must be specified in order to 

completely specify how to execute the genetic algorithm.  

In most GA-setup there are two operations to perform during 

one generation, crossover, and mutation. During the run, a 

given individual might be mutated, and crossed within a single 

generation. GA searches the search space of possible 

population in an attempt to find a good solution based on the 

fitness value of the chromosomes. The common operators 

which are used in the GA are described below. 

1) Crossover operation 

This operator creates two new offspring from two existing 

parents. Two random parents are selected and recombined 

with the probability pc. Suppose that, the crossover probability 

pc is 0.95. It means that 95% of current population might 

participate in crossover as part of creating the next generation. 

In the past few years, many crossover methods have been 

designed to apply in different specifications of the problems. 

The most common crossover techniques are one-point 

crossover, two-point crossover, and K-point crossover.  

• One-point crossover: It is the simplest crossover technique. 

A single crossover point, which is often between 1 the 

chromosome length, for both parents is randomly selected. 

All data beyond that point in either parent are swapped to 

form two new offspring. 

• Two-point crossover: Two random points are selected on 

the parent strings. Everything between the two points is 

swapped between the parent, rendering two offspring. 

• K-point crossover is an extension technique of one-point 

crossover and two-point crossover. Originally each point 

of is chosen randomly. This technique is able to create 

more offspring at one crossover process. 

 

2)  Mutation operation 

Basically, Mutation operation operator is used to maintain 

genetic diversity from the current population for the next 

generation. This creates a new offspring from an existing 

member in the population by randomly mutating the character 

at one position in the chromosome. Mutation probability, pm, 

should be relatively low. Suppose pm is 0.03, that is only 3% of 

the current population will participate in mutation process for 

creating the population of the next generation.  

III. MULTI-OBJECTIVE OPTIMIZATION FORMULATION 

In most real-world problems, several objectives of the 

problems must be simultaneously satisfied. The common idea 

for solving these problems is to optimize two or more 

conflicting objectives to certain constraints. The traditional 

approach is the combination of all objectives into a single 

object function.  The first multi-objective GA called Vector 

Evaluated Genetic Algorithm (VEGA) was presented by 

Schaffer [17]. After that several papers have been published on 

evolutionary multi-objective optimization including Multi-

objective GA [11]. Currently, GAs for multi-criteria are 

becoming popular for solving practical applications which are 

required to find the best solution among Pareto optima. In 

solving multi-objective optimization problems, many 

traditional methods minimize the objective vector into a single 

objective, and many researchers may be interested in the set 

known as Pareto optimal solution [7], [12]. Many papers such 

as [12], [13], [14], [19], [20] define the definition of Pareto-

optimality as following definitions: 

 

Definition 1: Consider without loss of generality the 

following multi-objective optimization problem with an input 

decision x = (x1,…,xm) in the decision space X and an 

objective y = (y1,…,ym) in the objective space Y. 

Minimize y = F(x) = (F1(x1,…,xm),…, Fn(x1,…,xm))  (1) 
,where       x = (x1,…,xm) ∈ X 

                  y = (y1,…,ym) ∈ Y.  

  
A decision vector a ∈ X is said to dominate a decision 

vector b∈ X (also written as a ≻  b) if and only if: 

 i∀ ∈{1,…,n}:Fi(a) ≥ Fi(b) and  

 i∃ ∈{1,…,n}: Fi(a) > Fi(b).               (2) 
 

Definition 2: The decision vector a ∈ X is called Pareto-

optimal if and only if a is nondominated regarding the whole 

decision of X. 

 

   The set of all Pareto-optimal points, denote by PS, is 

called Pareto Set. The set of all the Pareto objective vectors, 

PF = {F(x) ∈ R
m
 | x ∈ PS}, is called the Pareto front [15]. 

However, there are some particular problems of which Pareto 

optimal cannot be applied while considering the problems as 

multi-objectives. For example, as in this paper, let’s assume 

that Fi(a) and Fi(b) are the values of objective function i (i = 1, 

…, j) of decision vectors X. In (4) and (5), the objective 

function i (Fi) is requested to be within the lower limit li and 

upper limit ui. So, it is unnecessary to find that a dominates or 

nondominates b if both Fi(a) and Fi(b) are in their boundary. 

 

IV. PROBLEM DEFINED AND PROPOSED ALGORITHM 

A. Problem Defined  

The scenario considered in this paper involves the arbitrary 
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multi-objective problem with n decisions. In the particular 

multi-objective problem, there is a given set K = {k1, k2,…, 

kn} which is associated with the set of property P = {p1, p2,…, 

pn}. Moreover each kq is comprised of j components formed in 

the vector of (a
q
1, a

q
2,…, a

q
j). Let’s an input decision xi ∈ X, xi 

= (x
i
1,x

i
2,…,x

i
n) where x

i
j is an amount of kj in xi. Unlike linear 

programming problems, the objective functions of the problem 

are divided into two groups which are defined by the following 

equations: 

 

))(),(),...,(),(()( 11 iijiii xGxFxFxFxF =  (3) 
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And, a second objective function is written as:  
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,where G(xi) is required to be minimized while Fk(xi) (k=1, 

2, …, j) requested to be balanced within the objective 

boundary B = {[l1, u1], [l2, u2], …, [lj, uj]}, e. g, [l1, u1] is the 

pair of lower and upper limit of w1. The objective vectors 

failed to be in their boundary are undesirable to the solution.  

 

B. The GAsOB scheme design  

The flowchart of the GAsOB scheme is shown in the Fig. 1. 

The genetic algorithm begins with generation 0 with the 

completely random population size M. Note that the GAsOB 

works on fixed-length strings and searches the space of 

possible solutions in an attempt to find good decisions based 

on their fitness value.  

 

1)  Problem encapsulation 

For multi-objective genetic algorithm, let’s the 

chromosomes of the problems are encoded in a sequence of 

<x
i
1x

i
2x

i
3…x

i
n>, in which x

i
d represents the amount of kd, 0 < d 

≤ n. 

 

2) Fitness function 

All functions of (4) and (5) are considered as multi-

objective to the problem. However, the functions of (4) are 

requested to be in the fixed range, objective boundary B = {[l1, 

u1], [l2, u2], …, [lj, uj]}. The weighted-sum technique is applied 

to each of xi = <x
i
1 x

i
2 x

i
3 …x

i
n> to obtain a single cost for xi. 

The advantage of the weighted sum approach is a 

straightforward implementation. The weighted sum of xi can 

be written mathematical function as follows: 

∑
=

=
n

j

iii xdxw
1

)()(  

 
 

Fig. 1 flowchart of GAsOB scheme 
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 For example, let’s F1 and F2 yield the result as shown in 

Fig. 2. And, F1 is requested to be in the range of [0.5, 1.5], 

while F2 is requested to be in the range of [1.0, 1.5]. If F1(xi) = 

1.0 and F2(xi)  = 0.3, then d1(xi) = 1 and d2(xi) = 0 because 

only F1 is in its  objective boundary. The weighted sum of two 

functions of xi is w(xi) = 0+1 = 1.  

 

3)  Parameter setup and GAsOB operators 

A set of parameters is initialized in the first era, such as 

population size (M) of each era, mutation rate (pm), crossover 

rate (pc), immigration rate (Img_rate), maximum generation 

(Max_Gen), and maximum era (Max_Era). Then, initial 

population is generated in a complete random. Create a new 

population for the next generation based on fitness value. 

Three operators are applied to find solutions shown in Fig. 1. 

a)  Two-point crossover operator 

In this operator, two parents are selected from the matting 

pool, an intermediate approach to separate only best parents 

who will produce offspring from the current population. Let’s 

call two parents are xi and xj, where i, j ∈ M. Then, two-point 

crossover is applied by randomly selecting two points on both 

parents. Everything between the two points is swapped 

between the parent, rendering two offspring. If the random 

crossover pointers are 3 and 7, the possible result of two-point 

crossover is represented in Fig. 3. 

b)  Two-point mutation operator 

Due to the size of chromosomes used for this particular 

problem, the mutation operation in this approach creates three 

new offspring from an existing member. The technique is that 

one random member of the current population is chosen with 

two mutation points. Suppose xi is the chosen member and two 

mutation points are 3 and 7. The possible result of mutation 

operator is shown in Fig. 4. 

c)  Elitism operator 

In [28], [29], elitism has been shown to improve the 

performance and convergence of the GA in both single and 

multiple objective applications. In this paper, new offspring 

created from two-point mutation and two-point crossover are 

evaluated by the fitness function. Then, new offspring and 

current parents are sorted by their fitness value. Each 

individual with bad fitness cost is eliminated, so the rest of the 

population is transferred to the next generation. It needs to run 

several generations until it gets the maximum number of 

generations (Max_Gen). The best members of the current era 

are found. Reference [6] recommends using the elitism to 

ensure the best solutions. Some of these winners migrate to the 

next era. So, in this paper the numbers of immigrating 

members are controlled by Img_rate. The population of the 

following era is derived from two parts, selected members of 

the previous era and its own initial random population with the 

size of M so that the population size of the following era can 

be greater than M. In order to avoid that random immigrants 

disrupt the ongoing search progress too much, the immigrant 

ratio is usually set to a small value, e.g. 0.2 [16]. 

 

V. THE SIMULATION AND EXPERIMENTAL RESULTS  

A.  Simulation Setup  

The simulation of the proposed algorithm was implemented 

more than 3000 lines of Java language on a Pentium (R) D 

CPU 2.80 GHz, 2 GB of RAM, IBM PC. The simulation has 

been tried several of runs with different values of the 

population size (M), mutation probability (pm), and crossover 

probability (pc), to find which values would steer the search 

towards the best solution. After several runs I have chosen a 

population size (M) = 400, maximum generation (Max_Gen) 

for each era = 500, the probability of crossover of 0.95 and the 

probability of mutation of 0.05. Brief particular set of 

simulation parameters is shown in Table 1.  

 

 

 
Fig. 3 example of two-point crossover  

 

 
Fig. 4 example of two-point mutation  
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Table 1 Summarize the parameter setup of the GAsOB scheme 

Variable 

name 
Detail Value 

M Initial of  population size  400 

Max_Era Maximum number of eras 1-10 

Max_Gen Maximum number of 

generations for each era 

500 

pc Crossover probability (pc) 0.95 

pm Mutation probability (pm) 0.05 

Img_rate Immigration rate of the 

current population (%) 

0.01-1.0 

L Fixed length of chromosome  14 

 

 
Table 2 Summarize objective functions and decision 

parameters.  

Constant Detail Value 

NumOfObjectiveF Number of objecitve 

funcitons (F) with their 

objecitve boundary 

6,13 

NumOfObjectiveG Number of objecitve 

funcitons (G)  needed to be 

minimized 

1 

NumOfComponent Maximum number of 

components of each 

decision  

5,14 

 

 

B. Data setting 

In this paper, two different data sets are used for the GAsOB 

simulation.  

 

Example 1: Maximization 

In this example, the objective functions are bounded within 

their boundaries listed in Table 3. And, the property and  

components of each decision are shown in Table 4.  
 

 

Table 3 the example of Set K and its components used in the 

simulation 

Objectives Lower bound Upper bound 

F1(xi) 3500 4200 

F2(xi) 0.10 5.00 

F3(xi) 4.00 - 

F4(xi) 0.01 2.30 

F5(xi) 8.5 - 

∑

∑

=

==
n

k

i

k

n

k

k

i

k

i

x

px

xGMaximize

1

1)(
 

 

 

 

 

Table 4 The example of set K and its component used in the 

simulation 

Decision 

(kq) Property 

(p)  

Components 

 aq1 aq2 aq3 aq4 aq5 

k1 1200 3050 0 1 0.03 7.6 

k2 125 3000 0 3.7 .3 2.5 

k3 25 3000 0.18 10 0.07 12 

k4 101 3900 1.5 2 2 1 

k5 990 5063 2.00 0.9 6.50 58.0 

 

 

Example 2: Let the multi-objective problems with 13 

objective functions are defined as below: 

 

Minimize 

G(xi)=(5x1+8.5x2+8.5x3+35.78x4+45x5+26x6+24.5x7+0.31x8    

          +1.33x9+ 0.41x10+57x11+80x12+25x13)/∑xi  

where i = 1 to 13, subject to: 

F1(xi) = 0.18x1+0.35x5+98x8+1.28 x13, F1(xi) ∈ [400,700], 

F2(xi) = 10x1+x2+2.5x3+5x4+2x5, F2(xi)∈ [1000,3000], 

F3(xi) = 0.07x1+0.03x2+0.03x3+0.25x4+0.5x5+38 x8+16 x1, 
F3(xi) ∈ [1000, 1300], 

F4(xi) = 12x1+7.6x2+8x3+38x4+38x5+37x7+94 x10+58 x11+73.5 

x12, F4(xi) ∈ [2000024000], 

F5(xi) =15.5x1+1.2x2+3.6x3+18x4+x5+99x6+98x7, F5(xi)≥5000 

F6(xi)=0.45x1+ 0.27x2+0.24x3+2.4x4+2.55x5+78.8x8, 

F6(xi)≥1500, 

F7(xi)=2900x1+3500x2+3300x3+3750x4+3370x5+8800x6+800

0x7+4250x8+5280x11+3700x12, 

F7(xi)∈[3500000,4000000], 

F8(xi)=0.25x1+ 0.04x2+0.1x3+0.2x4+0.42x5+15.4x13, 

F7(xi)≥550, 

F9(xi)=1.45x1+0.18x2+0.25x3+0.2x4+0.6x5+21x13,F9(xi) ≥750, 

F10(xi)=0.30x1+0.30x2+0.32x3+1.09x4+1.11x5+98.5x11, 

F10(xi)≥900, 

F11(xi)=0.20x1+0.20x2+0.18x3+0.57x5+98.5x11, F11(xi)≥450, 

F12(xi)=0.30x1+0.28x2+0.3x3+1.69x4+1.51x5+98.5x12, 

F12(xi)≥910, and 

F13(xi)=0.08x1+0.09x2+0.07x3+0.52x4+0.47x5, F13(xi) ≥260. 

 

C.  Experimental results  

From the experimental results, there are three factors 

involving the efficiency of the GAsOB scheme.  

1)  Immigration rate of elitism operator 

As shown in Fig. 5, the maximal value of example 1 derived 

from the GAsOB scheme is approximately 823 when 

immigration rate is about 5% of the current population. The 

best minimal value of example 2 generated by the GAsOB 

scheme is about 20.5 when immigration is also 5%. This is 

because the elitism operator immigrants some of the best 

winners of the current era to the successive era. However, if the 

immigration rate is over than 5%, the quality of the solution is 

decreased due to the larger size of the current population.  
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2) Number of Eras 

In both Fig. 7 and 8 the average value derived from GAsOB 

scheme is convergent to one value when the number of eras 

(Max_Era) ≥ 5. However, if the Max_Era to be run is big, the 

computational time of the simulation is also increasing high.  

3)  Number of Generations for each era  

Since the smaller population size helps in reducing the 

computational time [18], the simulation had tried several 

numbers of generations to find which numbers tend to generate 

the best results. When the numbers of the population (M) were 

increased, the GAsOB generates the better results. The 

obtained results of both examples are shown in Fig. 9 and Fig. 

10. A considerable point in these figures is that when the 

number of generations was about 300 the quality of GAsOB of 

all tests is acceptable.  

 

D. Efficiency of the GAsOB scheme 

In this section, a new algorithm is also proposed to find the 

solution as shown in Fig. 11. The algorithm works by 

searching thought out the search space. It sequentially checks 

all decision values to see which decision values 

(∀xi=(k1,k2,…,km)∈X) give the best outputs which are within 

their acceptable range. Then, the algorithm finds the best 

decision value.  
As the simplicity of the algorithm in Fig. 11 is designed, the 

algorithm is able to find the best answer of the solution if it has 

one. However, this algorithm takes huge computational time to 

run when it is encountered with a large number of objective 

functions. So, only example 1 is able to apply in the algorithm 

to compare its result with GAsOB scheme. From the 

experiments, when the number of decisions is 5, the time for 

running this algorithm is getting slow, about 32 minutes. The 

results received by GAsOB scheme are almost 96.9% of the 

algorithm in Fig. 11. The comparison of the GAsOB scheme 

and the algorithm in Fig. 11 can be summarized in Table 5.  
  

E. The Comparison GAsOB to Traditional GA  

In most traditional GA-setup there are two operators to 

perform during one generation, crossover, and mutation. 

Briefly justifications for common GA with standard setup are: 

crossover probability pc = 0.95, mutation probability pm = 

0.05. From the experience result, the GAsOB scheme gives the 

best results when Max_Era = 5 and Gen = 200, so the total 

number of initial population of the GAsOB scheme is 

5x400=2000 and the total number of generations is 5x300 = 

1500. So, for fair comparison the initial parameters for the 

traditional GAs are population size (M) = 2000 and maximum 

generation (Max_Gen) = 1500. And, the fitness function of the 

traditional GAs is designed as it is appeared in GAsOB 

scheme. Basically, GAs with the huge population size and high 

number of generations is possible to give good outputs. 

However, the computational time is also huge. From 

experimental results shown in Fig. 12 and Fig. 13, the GAsOB 

 

 
Fig. 6 minimization (example 2) 

 
Fig. 7 number of eras example1 

 

 
Fig. 8 number of eras example2 

 

 
Fig. 5 maximization (example 1) 
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scheme is able to find better solutions than the traditional GA.  

 

Table 5 The comparison results of example 1  

Algorithm in Fig. 11 GAsOB 

Computational 

time 
Max G(xi) 

Computational 

time 
Max G(xi) 

32.23 Min 848.42 3.5 Sec 
822.96 

(96.9%) 

 

VI. CONCLUSIONS AND FUTURE WORK  

In this paper, a method of genetic algorithm called GAsOB 

has been proposed. The essence of this algorithm is for solving 

the multi-objective problems in which some objectives are 

requested to be in certain intervals. From the experiment, there 

are three factors involved in efficiency of GAsOB scheme; 

immigration rate, number of eras, and maximum number of 

generations. The experimental results showed that in most 

cases the best immigration rate for the GAsOB scheme is 

approximately 5% of the current population where the initial 

population (M) equals 300. And, GAsOB scheme needs at 

least 5 eras to get the best results. The experiment shows that 

the proposed algorithm is able to find the solution about 96.9% 

of the accuracy value. The computational time for GAsOB to 

search for the optimal solution is acceptable. For future works, 

the proposed algorithm will investigate in complex real-world 

problems and compare with other well-known approaches. 
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