
 

 

  

Abstract— This article describes some common problems faced 
in natural language processing. The main problem consist of a user 
given sentence, which has to be matched against an existing 
knowledge base, consisting of semantically described words or 
phrases. Some main problems in this process are outlined and the 
most common solutions used in natural language processing are 
overviewed. A sequence matching algorithm is introduced as an 
alternative solution and its advantages over the existing approaches 
are explained. The algorithm is explained in detail where the longest 
subsequences discovery algorithm is explained first. Then the major 
components of the similarity measure are defined and the 
computation of concurrence and dispersion measure is presented. 
Results of the algorithms performance on a test set are then shown 
and different implementations of algorithm usage are discussed. The 
work is concluded with some ideas for the future and some examples 
where our approach can be practically used. 
 
Keywords—Sequence matching, subsequence analysis, similarity 

measure, fuzzy string search, phrase detection   

I. INTRODUCTION 

N natural language processing, user input is usually being 
matched against a knowledge base, which consist of a finite 

collection of semantically described words or phrases. While 
trying to classify parts of the user input, a comparison between 
those two must eventually be made. In this article we will be 
dealing with the user input in the form of text, which is given 
in a form one or more sentences. 

Because of the structure of the knowledge base, which 
consists of words and phrases, the first task for a successful 
comparison is to break the sentences into these smaller parts. 
The most common approach is to break the sentence into 
words using word breakers. Word breakers are characters such 
as space, coma, or period, which delimit words in text. 
Determining which words form a phrase is a much more 
difficult task, which is usually solved after the comparison 
with the knowledge base has been made. For that to be 
possible, the knowledge base must consist only out of single 
words that can then later be linked together to a meaning of 
phrase. Detection is then possible in a later stage of text 
processing.  

Because of user input being an infinite set, either a 
reduction of input words or expansion of the knowledge base 
must be made. Popular approaches that solve this problem 
include stemming, lemmatization and various distance 
functions. Stemming is based upon a set of rules, which 
determine word morphing, and is therefore limited to weakly 
inflected languages, where such rule collections exist. 

 
 

Lemmatization is used in conjunction with large language 
specific dictionaries, which are used to expand the knowledge 
base dictionary. This information is then used to derive 
morphed words into their lemma. Both approaches are 
intolerable to user input errors and have a finite set of either 
rules or words. Distance functions such as Levenshtein 
distance [1], which are based on the number of changes 
required to transform one sequence into another, are used to 
address this issue. While they do offer some level of "fuzzy" 
sequence matching they lack the information and depth of 
analysis to determine sufficient sequence similarity. As 
already mentioned, all of the above methods require text 
segmentation to a smallest free form of a  language (word), 
which implies the usage of advanced matching algorithms 
when dealing with phrases or multiple word entities.  

In our work we were building a question answering 
system[2] in which we were focusing on matching words or 
phrases from our knowledge base against an user given 
sentence, which was a perquisite for future semantic 
processing. Therefore we present an alternative approach for 
determining sequence similarity based on subsequence 
analysis which is language invariant, error tolerable, does not 
require additional rules or language dictionaries and can be 
used with same efficiency on single words, phrases or even 
larger texts. Moreover it can also be used for phrase extraction 
or detection in sentences or larger quantities of text. In chapter 
II we describe the problems we have encountered while trying 
to deploy the more commonly used solutions for text 
processing described above. We also describe the proposed 
solution to this problems and define the necessary attributes 
for determining similarity between two sequences and a 
similarity metric. In chapter III an algorithm for determining 
the longest subsequences from a sequence pair is described. In 
chapter IV we describe the computation of similarity. We 
provide the measured similarity results on a test set in chapter 
V and describe some ideas on how to improve the algorithm 
accuracy when choosing the most similar sequence. In chapter 
VI, we describe the algorithm application in order to detect 
phrases and provide some ideas on how to solve phrase or 
word overlapping. We conclude our paper with some future 
work ideas in chapter VII. 

II. USER INPUT MATCHING 

The problem of user input manipulation, to better match the 
existing knowledge, is one being solved in different manners, 
mostly depending on the language in which the knowledge is 
contained and the user input is submitted. As mentioned in the 
introduction the first step in text processing is text 
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segmentation. The most simple way to split text into words is 
to use word breaking lists. These contain a list of literals, 
which delimit words. Such list can be found in various tools 
and offers a fast and reliable way of simple text segmentation. 
The problem of such text segmentation is, that it cannot 
determine phrases, should they occur in text and requires our 
knowledge base to consist of only single words. We must also 
prepare special structures in which we store information about 
word order, should we later want to perform phrase detection. 
After we split the text into words, we can process them with 
one of the common natural language processing methods:     

A. Stemming 

One of the most common approaches in natural language 
processing is stemming. It is very effective in languages that 
are weakly inflected like modern English, Swedish, 
Norwegian and Danish and struggles with languages that are 
moderately inflected such as Spanish, Italian, French, 
Portuguese and Romanian. Languages being highly inflected 
are considered inappropriate for efficient stemming [3]. Such 
languages include all the Slavic languages. Stemmers are also 
intolerable to user input errors (misspelling), which are bound 
to occur during natural text processing. 

B. Lemmatization 

In heavily inflected languages the use of lemmatization is 
preferred. It offers a fast and accurate way of matching user 
input to morphed instances of a headword but requires exact 
dictionaries, which have to be build by language experts. A 
major problem in the process of lemmatization is 
disambiguation, which occurs when a word or phrase can be 
transformed into two or headwords. It is most widely being 
solved with the usage of tree taggers which require large 
training corpuses and use probability to determine the most 
suitable headword, which we call a lemma. Building such 
large collections is very time consuming and requires the aid 
of language experts. Such corpuses can also suffer from 
domain specific language usage and can cripple the tree tagger 
results on a different domain. A very large portion of misses in 
lemmatization, when being used on heavily inflected 
languages, is produced from unknown words [4], such as 
names, surnames and geographical locations. Those are mostly 
excluded from dictionaries and tagged corpuses, which makes 
them nigh on impossible to convert to a lemma. Input error 
(misspelling) intolerance during lemmatization or tree tagging 
is in most cases also unaddressed. 

C. Edit distance  functions 

Edit distance function where designed to counter the 
occurrence of misspelling in sequence matching, which both 
of the above described approaches cannot resolve. The basic 
idea is to determine the number of transforms needed to 
convert one sequence to another. Different variations of edit 
distance are known and used, one of the most popular being 
the Levenshtein distance [1]. It is defined as the number of 
insertions, deletions and substitutions needed to align two 
sequences, where weights for each transformation can be 

defined. Its most commonly used in spellchecking and is 
implemented in various software that contains text processing.   

D. Sequence matching 

Algorithms for sequence matching exist but are more popular 
in DNA sequence matching then in string matching. They try 
to find global [5] or local [6] subsequence alignments and 
mostly use expert defined tables which determine the distance 
between single sequence elements. Because our goal was to 
find a measure of similarity expressed in a way, that would 
allow effective comparison between sequences and allowed us 
to find the most similar one, the above described sequence 
matching algorithms were not sufficient.  
 
After we successfully determined which words are contained 
in the user given text, the next step would be linking the words 
in possible phrases. For this step sufficient information must 
exists in our knowledge base otherwise the phrase detection is 
impossible. 
 

We propose a new algorithm that discovers the longest 
subsequences contained in a pair of sequences and then 
evaluates them. By doing so we measure similarity instead of 
difference. We define three main decision factors, that will 
help us calculate a similarity measure: 

• total length of common subsequences 
• dispersion of common subsequences 
• order of common subsequences 

Based on this decision factors, similarity between two 
sequences is calculated and present as a value between zero, 
meaning that the sequences are disjoint or completely 
scrambled,  and one, meaning that the sequences are identical.  

III. SUBSEQUENCE DISCOVERY 

In order to find similarity between two sequences we 
pursued an idea of finding the longest common subsequences 
which do not overlap. Our first step was to find all the 
subsequences contained in a sequence pair. We derived an 
algorithm from the solution to the longest common substring 
problem. In Fig 1. we can see how algorithm transverses 
through the matrix, building a list of subsequences candidates. 
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Fig. 1 Subsequences discovery 

We start the procedure by ordering the subsequences 
candidates list according to their length. The longest 
subsequence is added to the list of final longest subsequences 
and removed from the list of subsequence candidates. The rest 
of the subsequence candidates is then filtered for overlapping. 
Based on the longest subsequence list start and end 
coordinates, three zones  are constructed. If we name the 
longest subsequence l we can describe its start (1) and end (2) 
coordinates as a coordinate pair , where the meaning of i 
and j is shown in the matrix in Fig 1. 

 (1) 

 (2) 
The longest subsequence l then splits the entire matrix into 
three zones (3), (4), and (5) as shown by example in Fig 2.  
 

 (3) 

  (4) 

 (5) 

 

 
Fig. 2 Matrix division into zones for determining the longest 

subsequences 
 
Every remaining subsequence is then processed depending 

on the zone it is residing in. For each subsequence the start 
and end coordinates are compared with the conditions shown 
in (3), (4) and (5) and a fitting zone is assigned. Three 
outcomes are possible: 

1. If the subsequence candidate start and end coordinates 
are both located in zone I or in zone III, we remove 
that subsequence from the list of subsequences 
candidates, because it is already contained in the 
subsequence just added to the final list. 

2. If the subsequence candidate start and end coordinates 
are located in zone II, we leave the subsequence 
unaltered, because it does not overlap with the 
subsequence just added to the final list and is still a 
potential candidate for the final subsequence list. 

3. If the subsequence candidate start or end coordinates are 
located in zone III, subsequence overlapping must be 
solved. The subsequence cannot start and end in zone 
III, since that would mean that it is longer than the 
subsequence we just added to the final list, which 
cannot be true, since we ordered the list descending by 
sequence length. We then must either remove the 
leading or the trailing members of the subsequence 
depending on where the subsequence starts. If it starts 
inside zone I, we must remove the leading elements 
until we move its starting coordinates into zone II. If it 
starts inside zone III we must remove its trailing 
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elements until we move its end coordinates into zone 
II. That way we removed the possible overlapping by 
favoring the longest sequence to retain all its member 
elements and removing the overlapped elements from 
the shorter subsequence candidates. 

 The candidate list is again ordered according to the 
subsequences length, the longest subsequence added to the 
final subsequences list and the candidates list is checked for 
overlapping again. This process is repeated until the 
candidates list is empty and we are left with the final list of 
longest subsequences, which do not overlap.  

IV. MEASURING SEQUENCE SIMILARITY  

The similarity measure between two sequences is composed 
out of the following three parts:  

• concurrence measure, 
• dispersion measure and 
• ordering measure.  

The first part measures the subsequence concurrence in both 
sequences being matched and is calculated as shown in (6). 

 

 (6) 

 - length of sequence a 
 - length of sequence b 
 - longest subsequences list 
 - length of the i-th subsequence in the longest 

subsequences list 
 
This part of comparison basically represents the share of 

elements contained in both sequences. If the sequences are 
identical the result is one. If the sets are disjoint the result is 
zero.  

 The second part measures the subsequences dispersion and 
is calculated as shown in (7). 

 (7) 

-number of longest subsequences found 

 - length of sequence a 
 - length of sequence b 

 - length of the longest subsequence 
 
Dispersion measure is designed around the fact that good 

similarity can be achieved only if there is a small number of 
found subsequences. Two identical sequences should only 
have one found subsequence, where the dispersion measure 
would be one. On the other hand, two sequences that might 
have the same elements, but their order is completely 
scrambled, would have n subsequences, where n is the length 
of the shorter sequence. In that case the dispersion similarity 
would be zero. The equation constructs a curve between these 
two values where its shape is affected by the length of the 
longest subsequence found. The division of the length of the 
longest subsequence by 4 makes this function either a convex, 

concave or a linear function. The higher the value the slower 
the curve will decline from the value 1, which means that it 
will be more tolerable to the higher number of subsequences, 
and the other way around. The value 4 which makes the curve 
linear was chosen for our test sets under the assumption that 
when comparing sequence and finding the longest 
subsequence with its length less than 4 should decline more 
rapidly. For other test or working sets a different value can be 
chosen as the convex/concave limit. Fig 3. shows the 
dispersion measure behavior for different function parameters 
based on the comparison of two sequences, which contained 
15 elements. Axis Z represents the calculated dispersion 

measure ( ), axis X represents the length of the longest 

subsequence found ( )and axis Y represents the number 

of subsequences found ( . We can see that in cases of 

longer sequences the dispersion measure is very high when the 
number of found subsequences (Y) is low. The value declines 
more rapidly if the maximum subsequence length (X) is low. 

 

 
Fig. 3 Dispersion function graph for =15 

    
The measure of ordering is the last measure included in the 

measure of similarity. We do recognize its importance in 
sequence analysis but since our original problem was a 
sequence set, where ordering was not so important for 
discovering similarity (our sequence domain was a flexible 
word order language), we did not developed it further. So in 
our current solution we used the maximum value of order 
measure for each case of comparison, which is one. We do 
plan to address and solve this problem in our future work. 

Since all the single measures are normalized the final 
measure of similarity S (8) is computed as a product of sub 
measures. 
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 (8) 

 - concurrence measure 
 - dispersion measure 
 - ordering measure (has value of 1) 

The result of such a product is also normalized and can be 
used for simple comparison to find the most similar sequence.  

V. RESULTS  

For measuring the results we had to create a test set, which 
would allow us to compare sequences against each other and 
would at the same time contain the information about the 
closest match. Therefore we chose to use a Slovene language 
dictionary, which contains a large number of words in all 
morphed forms and their relation to the lemma as our test set. 
We suspected that our algorithm could have troubles on such a 
set, since it contains a lot of sequences that are very similar, 
where their distinction could prove to be difficult.  The 
dictionary contains over 3 million distinct words which are 
linked to over 250 thousand lemmas. We then randomly chose 
one thousand words out of the whole dictionary creating a test 
set with an average sequence length of 10. We used the 
algorithm to compare each of the chosen sequences against the 
entire lemma collection in order to find the most similar 
match. That way we calculated all possible similarity 
measures and also got a lot of additional information, which 
can help us make the right decision. The most obvious choice 
now would be to choose the lemma with the highest similarity 
measure, which is what we did in our test. We also noted the 
similarity measure between the random word and its true 
lemma. If the lemma with the highest similarity measure is the 
same as the sequence true lemma, our algorithm performed 
well.  

Fig 4. shows the measured result of our comparison. We 
can see, that the highest similarity between a sequence and its 
lemma was achieved 80,5 % of the time. In that cases the 
average similarity was 86,4%. In cases where the algorithm 
missed the lemma we can see, that the average similarity was 
70,5%. From the collection of the missed cases we see that 
there were in majority considerably different as their lemma. 
Based on our result we can conclude that this algorithm is 
successful and suits the needs of natural language processing. 
Its success rate is slightly worse than those of stemmers and 
tree taggers when compared on a set that is strictly build out of 
the dictionary.  

 

Fig. 4 Algorithm results for detecting prime forms(lemmas) 
 
In an absence of a test set, against which the most similar 

word is compared, the decision if a word is similar enough  
must also be made. It can easily happen, that the word we are 
comparing against a knowledge base is not contained in it. In 

this case we must use additional approaches to avoid 
suggesting a not so similar word, just because it is the most 
similar of all the words contained in the knowledge base. Here 
a simple threshold can be used, where only the words with 
similarity above it are considered. From our test we can see, 
that the average similarity measure was 86.5% when finding 
the correct form and it was 70,5% when finding a false one. 
So if we would approximate a threshold of a minimum 75% 
similarity measure to mark a word as the most similar one, we 
would greatly improved our false positives results. By doing 
so our success rate dropped to 72,7% but instead of giving 
19,5% of false answers, we only selected the wrong word 
7,2% of the time. Using such a threshold when applying the 
algorithm in a real application would greatly improve its 
precision by not giving the wrong answers and just marking 
the words below the threshold as unknown. In some systems 
selecting a wrong word may cause more problems and provide 
worse results as not recognizing a word at all. We are also 
aware that the measurements taken in our test set do not 
represent a real environment and that further research is 
needed to obtain better information on determining the right 
threshold values for specific languages or specific domains. 

Another problem that occurs with our algorithm is when 
high similarities measures are computed for more sequences 
contained in the knowledge base. If the sequences are very 
similar to each other, it can easily happen that we will get a lot 
of sequences with high similarity measures with very similar 
values. The decision to pick the word with the highest 
similarity measure is highly doubtful in that case, since the 
difference between the first and the second candidate is very 
small. We developed an approach based on the relative 
distance between the calculated similarity measures, which 
helps us determine when such a case has occurred. In our test 
case the average difference between the word with the highest 
similarity measure and the similarity measure of the words 
lemma, when we detected a false lemma was 8,9%. That tells 
us, that in case our algorithm missed, the word's lemma and 
some other lemma were quite similar. This was an expected 
result, since we took a full dictionary as our test set, but it also 
showed us the potential problems that could occur when using 
this algorithm. When other means of solving disambiguation 
are applied, selecting more words as potential candidates is 
not a problem, but when relaying solely on this algorithm, 
selecting a wrong word should be avoided if possible. 
Applying a relative distance threshold can greatly help to 
reduce suggesting wrong lemmas when faced with the 
situation described above. When other words have the 
similarity measure inside the relative threshold of the highest 
rated word, the algorithm should mark the word as unknown, 
since it cannot decide on the correct one with high enough 
probability. Determining the value of the relative threshold 
can be a difficult task, dependent on the language or the 
domain the algorithm is being used in. Selecting a too high 
value can result in low precision. 

 The relative similarity distance can also be used as a test 
measure between the elements in the knowledge base or the 
collection against which the comparison will be made. The 
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first step would be creating a test sample out of the full set, 
and comparing it against the rest of the set, similar as we did 
in our test. By determining the average relative distances the 
suitability of this algorithm can be determined. If the relative 
similarity distance between the words is not to low, our 
algorithm will perform well. Otherwise the use of a different 
approach is advised. 

Spelling mistakes or flexible sequence order were not taken 
into account in our test, since they are harder to produce and 
measure. Unfortunately our test set also did not include 
phrases where our algorithm would excel. As described in our 
plans for future work, we attempt to compare our algorithm 
against other natural language processing techniques on a test 
set that would include both regular and irregular spelled words 
and would also include phrases. We would also like to test 
different approaches for determining the algorithm  threshold 
and maximum variance. Based on our test result, we conclude 
that the use of our algorithm is best suited in a environment 
where words or sequences are in general not to similar to each 
other. When dealing with such cases similarity threshold and 
relative similarity distance can be used to improve the 
algorithm accuracy.  

VI. PHRASE DETECTION  

As we explained in our introduction, the first step in natural 
language processing, when dealing with natural text, is text 
segmentation. We explained how such segmentation could 
generate words from user given sentences and how extended 
knowledge bases could be used to detect phrases. When 
developing our algorithm we realized that with slight 
modification our algorithm could be successfully used to 
detect phrases in sentences given a knowledge base that would 
contain such phrases.  

The modification is done in the first part of the similarity 
measure, where we need to change the way that the 
concurrence measure is calculated. We derive two 
concurrence measures from the basic formula (6), which only 
differ in the denominator. Instead of using a maximum length 
of the both sequences, we calculate the concurrence measure 
against each length as shown in (9) and (10).  

 

 (9) 

 (10) 

 
We use these two concurrence measures to calculate two 

similarity measures Sa and Sb (11), where the first one 
measures how much sequence B resembles sequence A, and 
the second one measure how much the sequence A resembles 
sequence B. The dispersion measure is calculated only once in 
the same manner than in the original algorithm and its used for 
both similarity measure calculations. The same goes for the 
ordering measure.  

 

 (11) 

  

 
 - concurrence measures 

 - dispersion measure 
 - ordering measure (has value of 1) 

 
That way the similarity measures actually measures how 

much a sequence is contained in another sequence. If the 
similarity measure reaches its maximum value of one, then the 
sequence is a subsequence. We make use of this algorithm 
property for phrase detection. It allows us to compare whole 
phrases against whole sentences without the need to segment 
the sentence into words. The way the algorithm works, it is 
also very tolerable against slight changes in phrases caused by 
inflection and can, like in our case, to some degree ignore 
word order. The time complexity of using this approach is the 
same as using the original algorithm, since all the needed data 
is computed before calculating the concurrency measure. The 
only addition is one operation of division.  

In our application of the algorithm in a question answering 
system[9], we had to detect phrases from a sentence. We had a 
knowledge base that contained single words as well as phrases 
and had to compare them against text in form of sentences 
given by a user. We compared each of the sequences from the 
knowledge base as sequence A against the entire sentence as 
sequence B and tried to detect which of them are contained in 
the sentence. As a result we got a table, an example is shown 
in Fig 5., where each of the entries in the knowledge base had 
both similarity measures calculated and also had the remainder 
of the comparison, which, as mentioned above, is a side 
product of the longest subsequences discovery algorithm. That 
way we had enough information to decide which of the words 
or phrases are actually contained in the sentence. 

 

 
Fig. 5 Phrase detection example 

 
The easiest way to determine the phrases contained in the 

sentence is to order them first according to the similarity 
measure Sa. High Sa values presented the words or phrases, 
which are most likely to be contained in the user given 
sentence.  

Two major problems arise from such solution. First we 
must determine how many of the found words or phrases 
should we consider as the ones contained in the sentence. A 
very simple solution, which we used in our application at first, 
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is to use a threshold method suggested in chapter V. All the 
phrases above the threshold are considered to be similar 
enough and are marked as words or phrases contained in the 
sentence. In our example we chose a threshold of 80%, but as 
explained in chapter V. the threshold must be chosen very 
thoughtfully. This approach works very well if the application 
the algorithm is being used in has other means to solve 
disambiguation. Setting the threshold to low can result in large 
amounts of words or phrases being marked as contained in the 
user sentence, which can create problems for the 
disambiguation process. The main reason for a large number 
of found word or phrases lies in overlapping, which we can 
also see in our example. If the knowledge base contains 
complex phrases the overlapping between them and simple 
words can occur easily. The same happens if the base contains 
some very short or simple words like in, or, at, etc. In our 
example we have a complex phrase "zapora ceste na javni 
cesti" which contains a simple word "cesta" and our base has a 
very short word "na" which can easily be contained in other 
words or phrases. In order to reduce this number an approach 
with the remainder can be used. After applying the threshold 
method, the table is sorted according to the value of Sb. The 
first word is automatically chosen as the correct one. The next 
word, which is treated as sequence A, is then compared using 
our algorithm against the remainder of the first word, which is 
treated as sequence B. If the newly calculated value Sa is 
lower as the one previously calculated, overlapping must have 
occurred, and the word is removed from the table. If the value 
Sa remains the same, the newly acquired remainder becomes 
sequence B and the next sequence in the order table becomes 
sequence A. The process is repeated for all the words in the 
table as shown on our previous example in Fig 6. 

 

 
Fig. 6 Detected words or phrases reduction using the remainder 

Using this method we can be more exact and can avoid 
running into problems when using additional disambiguation 
methods. As shown, the algorithm can perform phrase 
detection inside sentences and can also solve disambiguation 
to some degree.  

VII. FUTURE WORK 

The major unaddressed issue in our work is time 
complexity, which we feel can be improved. Because we 
developed our algorithm based on a premise of comparing two 
sequences, we ended up with time complexity O(n2). When 
comparing a sequence to a collection of other sequences, 

trying to find the most similar one, this time complexity can 
become an issue. In our future work, we propose building a 
special case of suffix trees best suited for subsequence 
discovery. Such trees would reduce the time complexity of 
single sequence comparison against a sequence collection and 
would allow the development of special algorithm designed to 
find the most similar match. In course of this work we also 
plan to evaluate most commonly found subsequences and 
equip them with statistics and semantics. That way we could 
further improve our similarity matching algorithm to either 
exclude certain subsequences or increase their importance in a 
sequence according to statistics or semantic annotation. We 
also plan to test our algorithm against other approaches used 
in natural language processing. We plan to construct a more 
suitable test set, which would mimic user input as close as 
possible. Two major cases that we would like to include in our 
test set are phrases and spelling errors. We plan to extract 
phrases out of openly available thesauruses such as 
EuroVoc[7] and add them to our test set. We also plan to 
insert custom spelling errors and change the word order in 
phrases to make the test set more representative. With the help 
of such a test set we plan to improve our algorithms 
effectiveness by trying out different algorithm parameter 
values. We also want to test different ways of determining the 
best sequence match. In our work we simply chose the 
sequence with the highest similarity measure, but as explained 
we think that other factors can have a large effect on the most 
relevant sequence found.  We plan to run additional test and 
measure the effects of using the approaches of relative 
distance and thresholds into account. We also plan to perform 
further testing on other corpuses to determine ideal threshold 
and relative distance values. With such measurements we hope 
to be able to predict good values for this parameters in a real 
environment. We also plan to apply external knowledge, 
which holds information about the sequence space we are in, 
to the similarity calculation. With such information we hope to 
lower the impact of some subsequences that hold no 
information or to raise the requirements on the similarity of 
specific words, such as names, surnames or places. 

VIII. CONCLUSION 

In our work, we presented an alternative approach to string 
matching. We based our work on sequence analysis and 
developed measures to evaluate similarity between two 
sequences. We preformed a test in which we tried to determine 
the accuracy of our algorithm and also provided some ideas on 
how to improve the best match selection. We presented the 
test results which helped us determine the values of some 
parameters in our algorithm for future implementation. We 
also presented a way to detect phrases from sentences with a 
slight algorithm modification. We shown the approach we 
used in our natural language processing application. We also 
pointed out some problems and gave some ideas for our future 
work. Our current work can be used in natural language 
processing either as a standalone metric to find the most 
appropriate matches in corpuses or as an addition to existing 
comparison techniques in a similar way that spellcheckers are 
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used. It can also be used to perform fuzzy string matching, 
either in full text searches across databases or as a text search 
in larger documents. It can also be used to extract phrases or 
even to compare documents. All of the above can be done 
with small modifications to the original algorithm and with 
smart parameters choice. We successfully deployed our 
algorithm into the advanced search in DKUM [8] making it a 
fuzzy full text search. We also used the algorithm in the 
upgraded version of the question answering system described 
in [10] as a process for detecting entities for solving 
disambiguation.  We plan to use our algorithm in our next 
applicative projects and with its help plan to increase our 
matching precision and with that improve our users 
experience. 
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