

Abstract— This article describes some common problems faced
in natural language processing. The main problem consist of a user
given sentence, which has to be matched against an existing
knowledge base, consisting of semantically described words or
phrases. Some main problems in this process are outlined and the
most common solutions used in natural language processing are
overviewed. A sequence matching algorithm is introduced as an
alternative solution and its advantages over the existing approaches
are explained. The algorithm is explained in detail where the longest
subsequences discovery algorithm is explained first. Then the major
components of the similarity measure are defined and the
computation of concurrence and dispersion measure is presented.
Results of the algorithms performance on a test set are then shown
and different implementations of algorithm usage are discussed. The
work is concluded with some ideas for the future and some examples
where our approach can be practically used.

Keywords—Sequence matching, subsequence analysis, similarity

measure, fuzzy string search, phrase detection

I. INTRODUCTION

N natural language processing, user input is usually being
matched against a knowledge base, which consist of a finite

collection of semantically described words or phrases. While
trying to classify parts of the user input, a comparison between
those two must eventually be made. In this article we will be
dealing with the user input in the form of text, which is given
in a form one or more sentences.

Because of the structure of the knowledge base, which
consists of words and phrases, the first task for a successful
comparison is to break the sentences into these smaller parts.
The most common approach is to break the sentence into
words using word breakers. Word breakers are characters such
as space, coma, or period, which delimit words in text.
Determining which words form a phrase is a much more
difficult task, which is usually solved after the comparison
with the knowledge base has been made. For that to be
possible, the knowledge base must consist only out of single
words that can then later be linked together to a meaning of
phrase. Detection is then possible in a later stage of text
processing.

Because of user input being an infinite set, either a
reduction of input words or expansion of the knowledge base
must be made. Popular approaches that solve this problem
include stemming, lemmatization and various distance
functions. Stemming is based upon a set of rules, which
determine word morphing, and is therefore limited to weakly
inflected languages, where such rule collections exist.

Lemmatization is used in conjunction with large language
specific dictionaries, which are used to expand the knowledge
base dictionary. This information is then used to derive
morphed words into their lemma. Both approaches are
intolerable to user input errors and have a finite set of either
rules or words. Distance functions such as Levenshtein
distance [1], which are based on the number of changes
required to transform one sequence into another, are used to
address this issue. While they do offer some level of "fuzzy"
sequence matching they lack the information and depth of
analysis to determine sufficient sequence similarity. As
already mentioned, all of the above methods require text
segmentation to a smallest free form of a language (word),
which implies the usage of advanced matching algorithms
when dealing with phrases or multiple word entities.

In our work we were building a question answering
system[2] in which we were focusing on matching words or
phrases from our knowledge base against an user given
sentence, which was a perquisite for future semantic
processing. Therefore we present an alternative approach for
determining sequence similarity based on subsequence
analysis which is language invariant, error tolerable, does not
require additional rules or language dictionaries and can be
used with same efficiency on single words, phrases or even
larger texts. Moreover it can also be used for phrase extraction
or detection in sentences or larger quantities of text. In chapter
II we describe the problems we have encountered while trying
to deploy the more commonly used solutions for text
processing described above. We also describe the proposed
solution to this problems and define the necessary attributes
for determining similarity between two sequences and a
similarity metric. In chapter III an algorithm for determining
the longest subsequences from a sequence pair is described. In
chapter IV we describe the computation of similarity. We
provide the measured similarity results on a test set in chapter
V and describe some ideas on how to improve the algorithm
accuracy when choosing the most similar sequence. In chapter
VI, we describe the algorithm application in order to detect
phrases and provide some ideas on how to solve phrase or
word overlapping. We conclude our paper with some future
work ideas in chapter VII.

II. USER INPUT MATCHING

The problem of user input manipulation, to better match the
existing knowledge, is one being solved in different manners,
mostly depending on the language in which the knowledge is
contained and the user input is submitted. As mentioned in the
introduction the first step in text processing is text

Text analysis with sequence matching

Marko Ferme, Milan Ojsteršek

I

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

235

segmentation. The most simple way to split text into words is
to use word breaking lists. These contain a list of literals,
which delimit words. Such list can be found in various tools
and offers a fast and reliable way of simple text segmentation.
The problem of such text segmentation is, that it cannot
determine phrases, should they occur in text and requires our
knowledge base to consist of only single words. We must also
prepare special structures in which we store information about
word order, should we later want to perform phrase detection.
After we split the text into words, we can process them with
one of the common natural language processing methods:

A. Stemming

One of the most common approaches in natural language
processing is stemming. It is very effective in languages that
are weakly inflected like modern English, Swedish,
Norwegian and Danish and struggles with languages that are
moderately inflected such as Spanish, Italian, French,
Portuguese and Romanian. Languages being highly inflected
are considered inappropriate for efficient stemming [3]. Such
languages include all the Slavic languages. Stemmers are also
intolerable to user input errors (misspelling), which are bound
to occur during natural text processing.

B. Lemmatization

In heavily inflected languages the use of lemmatization is
preferred. It offers a fast and accurate way of matching user
input to morphed instances of a headword but requires exact
dictionaries, which have to be build by language experts. A
major problem in the process of lemmatization is
disambiguation, which occurs when a word or phrase can be
transformed into two or headwords. It is most widely being
solved with the usage of tree taggers which require large
training corpuses and use probability to determine the most
suitable headword, which we call a lemma. Building such
large collections is very time consuming and requires the aid
of language experts. Such corpuses can also suffer from
domain specific language usage and can cripple the tree tagger
results on a different domain. A very large portion of misses in
lemmatization, when being used on heavily inflected
languages, is produced from unknown words [4], such as
names, surnames and geographical locations. Those are mostly
excluded from dictionaries and tagged corpuses, which makes
them nigh on impossible to convert to a lemma. Input error
(misspelling) intolerance during lemmatization or tree tagging
is in most cases also unaddressed.

C. Edit distance functions

Edit distance function where designed to counter the
occurrence of misspelling in sequence matching, which both
of the above described approaches cannot resolve. The basic
idea is to determine the number of transforms needed to
convert one sequence to another. Different variations of edit
distance are known and used, one of the most popular being
the Levenshtein distance [1]. It is defined as the number of
insertions, deletions and substitutions needed to align two
sequences, where weights for each transformation can be

defined. Its most commonly used in spellchecking and is
implemented in various software that contains text processing.

D. Sequence matching

Algorithms for sequence matching exist but are more popular
in DNA sequence matching then in string matching. They try
to find global [5] or local [6] subsequence alignments and
mostly use expert defined tables which determine the distance
between single sequence elements. Because our goal was to
find a measure of similarity expressed in a way, that would
allow effective comparison between sequences and allowed us
to find the most similar one, the above described sequence
matching algorithms were not sufficient.

After we successfully determined which words are contained
in the user given text, the next step would be linking the words
in possible phrases. For this step sufficient information must
exists in our knowledge base otherwise the phrase detection is
impossible.

We propose a new algorithm that discovers the longest
subsequences contained in a pair of sequences and then
evaluates them. By doing so we measure similarity instead of
difference. We define three main decision factors, that will
help us calculate a similarity measure:

• total length of common subsequences
• dispersion of common subsequences
• order of common subsequences

Based on this decision factors, similarity between two
sequences is calculated and present as a value between zero,
meaning that the sequences are disjoint or completely
scrambled, and one, meaning that the sequences are identical.

III. SUBSEQUENCE DISCOVERY

In order to find similarity between two sequences we
pursued an idea of finding the longest common subsequences
which do not overlap. Our first step was to find all the
subsequences contained in a sequence pair. We derived an
algorithm from the solution to the longest common substring
problem. In Fig 1. we can see how algorithm transverses
through the matrix, building a list of subsequences candidates.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

236

Fig. 1 Subsequences discovery

We start the procedure by ordering the subsequences
candidates list according to their length. The longest
subsequence is added to the list of final longest subsequences
and removed from the list of subsequence candidates. The rest
of the subsequence candidates is then filtered for overlapping.
Based on the longest subsequence list start and end
coordinates, three zones are constructed. If we name the
longest subsequence l we can describe its start (1) and end (2)
coordinates as a coordinate pair , where the meaning of i
and j is shown in the matrix in Fig 1.

 (1)

 (2)
The longest subsequence l then splits the entire matrix into
three zones (3), (4), and (5) as shown by example in Fig 2.

 (3)

 (4)

 (5)

Fig. 2 Matrix division into zones for determining the longest

subsequences

Every remaining subsequence is then processed depending

on the zone it is residing in. For each subsequence the start
and end coordinates are compared with the conditions shown
in (3), (4) and (5) and a fitting zone is assigned. Three
outcomes are possible:

1. If the subsequence candidate start and end coordinates
are both located in zone I or in zone III, we remove
that subsequence from the list of subsequences
candidates, because it is already contained in the
subsequence just added to the final list.

2. If the subsequence candidate start and end coordinates
are located in zone II, we leave the subsequence
unaltered, because it does not overlap with the
subsequence just added to the final list and is still a
potential candidate for the final subsequence list.

3. If the subsequence candidate start or end coordinates are
located in zone III, subsequence overlapping must be
solved. The subsequence cannot start and end in zone
III, since that would mean that it is longer than the
subsequence we just added to the final list, which
cannot be true, since we ordered the list descending by
sequence length. We then must either remove the
leading or the trailing members of the subsequence
depending on where the subsequence starts. If it starts
inside zone I, we must remove the leading elements
until we move its starting coordinates into zone II. If it
starts inside zone III we must remove its trailing

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

237

elements until we move its end coordinates into zone
II. That way we removed the possible overlapping by
favoring the longest sequence to retain all its member
elements and removing the overlapped elements from
the shorter subsequence candidates.

 The candidate list is again ordered according to the
subsequences length, the longest subsequence added to the
final subsequences list and the candidates list is checked for
overlapping again. This process is repeated until the
candidates list is empty and we are left with the final list of
longest subsequences, which do not overlap.

IV. MEASURING SEQUENCE SIMILARITY

The similarity measure between two sequences is composed
out of the following three parts:

• concurrence measure,
• dispersion measure and
• ordering measure.

The first part measures the subsequence concurrence in both
sequences being matched and is calculated as shown in (6).

 (6)

 - length of sequence a
 - length of sequence b
 - longest subsequences list
 - length of the i-th subsequence in the longest

subsequences list

This part of comparison basically represents the share of

elements contained in both sequences. If the sequences are
identical the result is one. If the sets are disjoint the result is
zero.

 The second part measures the subsequences dispersion and
is calculated as shown in (7).

 (7)

-number of longest subsequences found

 - length of sequence a
 - length of sequence b

 - length of the longest subsequence

Dispersion measure is designed around the fact that good

similarity can be achieved only if there is a small number of
found subsequences. Two identical sequences should only
have one found subsequence, where the dispersion measure
would be one. On the other hand, two sequences that might
have the same elements, but their order is completely
scrambled, would have n subsequences, where n is the length
of the shorter sequence. In that case the dispersion similarity
would be zero. The equation constructs a curve between these
two values where its shape is affected by the length of the
longest subsequence found. The division of the length of the
longest subsequence by 4 makes this function either a convex,

concave or a linear function. The higher the value the slower
the curve will decline from the value 1, which means that it
will be more tolerable to the higher number of subsequences,
and the other way around. The value 4 which makes the curve
linear was chosen for our test sets under the assumption that
when comparing sequence and finding the longest
subsequence with its length less than 4 should decline more
rapidly. For other test or working sets a different value can be
chosen as the convex/concave limit. Fig 3. shows the
dispersion measure behavior for different function parameters
based on the comparison of two sequences, which contained
15 elements. Axis Z represents the calculated dispersion

measure (), axis X represents the length of the longest

subsequence found ()and axis Y represents the number

of subsequences found (. We can see that in cases of

longer sequences the dispersion measure is very high when the
number of found subsequences (Y) is low. The value declines
more rapidly if the maximum subsequence length (X) is low.

Fig. 3 Dispersion function graph for =15

The measure of ordering is the last measure included in the

measure of similarity. We do recognize its importance in
sequence analysis but since our original problem was a
sequence set, where ordering was not so important for
discovering similarity (our sequence domain was a flexible
word order language), we did not developed it further. So in
our current solution we used the maximum value of order
measure for each case of comparison, which is one. We do
plan to address and solve this problem in our future work.

Since all the single measures are normalized the final
measure of similarity S (8) is computed as a product of sub
measures.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

238

 (8)

 - concurrence measure
 - dispersion measure
 - ordering measure (has value of 1)

The result of such a product is also normalized and can be
used for simple comparison to find the most similar sequence.

V. RESULTS

For measuring the results we had to create a test set, which
would allow us to compare sequences against each other and
would at the same time contain the information about the
closest match. Therefore we chose to use a Slovene language
dictionary, which contains a large number of words in all
morphed forms and their relation to the lemma as our test set.
We suspected that our algorithm could have troubles on such a
set, since it contains a lot of sequences that are very similar,
where their distinction could prove to be difficult. The
dictionary contains over 3 million distinct words which are
linked to over 250 thousand lemmas. We then randomly chose
one thousand words out of the whole dictionary creating a test
set with an average sequence length of 10. We used the
algorithm to compare each of the chosen sequences against the
entire lemma collection in order to find the most similar
match. That way we calculated all possible similarity
measures and also got a lot of additional information, which
can help us make the right decision. The most obvious choice
now would be to choose the lemma with the highest similarity
measure, which is what we did in our test. We also noted the
similarity measure between the random word and its true
lemma. If the lemma with the highest similarity measure is the
same as the sequence true lemma, our algorithm performed
well.

Fig 4. shows the measured result of our comparison. We
can see, that the highest similarity between a sequence and its
lemma was achieved 80,5 % of the time. In that cases the
average similarity was 86,4%. In cases where the algorithm
missed the lemma we can see, that the average similarity was
70,5%. From the collection of the missed cases we see that
there were in majority considerably different as their lemma.
Based on our result we can conclude that this algorithm is
successful and suits the needs of natural language processing.
Its success rate is slightly worse than those of stemmers and
tree taggers when compared on a set that is strictly build out of
the dictionary.

Fig. 4 Algorithm results for detecting prime forms(lemmas)

In an absence of a test set, against which the most similar

word is compared, the decision if a word is similar enough
must also be made. It can easily happen, that the word we are
comparing against a knowledge base is not contained in it. In

this case we must use additional approaches to avoid
suggesting a not so similar word, just because it is the most
similar of all the words contained in the knowledge base. Here
a simple threshold can be used, where only the words with
similarity above it are considered. From our test we can see,
that the average similarity measure was 86.5% when finding
the correct form and it was 70,5% when finding a false one.
So if we would approximate a threshold of a minimum 75%
similarity measure to mark a word as the most similar one, we
would greatly improved our false positives results. By doing
so our success rate dropped to 72,7% but instead of giving
19,5% of false answers, we only selected the wrong word
7,2% of the time. Using such a threshold when applying the
algorithm in a real application would greatly improve its
precision by not giving the wrong answers and just marking
the words below the threshold as unknown. In some systems
selecting a wrong word may cause more problems and provide
worse results as not recognizing a word at all. We are also
aware that the measurements taken in our test set do not
represent a real environment and that further research is
needed to obtain better information on determining the right
threshold values for specific languages or specific domains.

Another problem that occurs with our algorithm is when
high similarities measures are computed for more sequences
contained in the knowledge base. If the sequences are very
similar to each other, it can easily happen that we will get a lot
of sequences with high similarity measures with very similar
values. The decision to pick the word with the highest
similarity measure is highly doubtful in that case, since the
difference between the first and the second candidate is very
small. We developed an approach based on the relative
distance between the calculated similarity measures, which
helps us determine when such a case has occurred. In our test
case the average difference between the word with the highest
similarity measure and the similarity measure of the words
lemma, when we detected a false lemma was 8,9%. That tells
us, that in case our algorithm missed, the word's lemma and
some other lemma were quite similar. This was an expected
result, since we took a full dictionary as our test set, but it also
showed us the potential problems that could occur when using
this algorithm. When other means of solving disambiguation
are applied, selecting more words as potential candidates is
not a problem, but when relaying solely on this algorithm,
selecting a wrong word should be avoided if possible.
Applying a relative distance threshold can greatly help to
reduce suggesting wrong lemmas when faced with the
situation described above. When other words have the
similarity measure inside the relative threshold of the highest
rated word, the algorithm should mark the word as unknown,
since it cannot decide on the correct one with high enough
probability. Determining the value of the relative threshold
can be a difficult task, dependent on the language or the
domain the algorithm is being used in. Selecting a too high
value can result in low precision.

 The relative similarity distance can also be used as a test
measure between the elements in the knowledge base or the
collection against which the comparison will be made. The

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

239

first step would be creating a test sample out of the full set,
and comparing it against the rest of the set, similar as we did
in our test. By determining the average relative distances the
suitability of this algorithm can be determined. If the relative
similarity distance between the words is not to low, our
algorithm will perform well. Otherwise the use of a different
approach is advised.

Spelling mistakes or flexible sequence order were not taken
into account in our test, since they are harder to produce and
measure. Unfortunately our test set also did not include
phrases where our algorithm would excel. As described in our
plans for future work, we attempt to compare our algorithm
against other natural language processing techniques on a test
set that would include both regular and irregular spelled words
and would also include phrases. We would also like to test
different approaches for determining the algorithm threshold
and maximum variance. Based on our test result, we conclude
that the use of our algorithm is best suited in a environment
where words or sequences are in general not to similar to each
other. When dealing with such cases similarity threshold and
relative similarity distance can be used to improve the
algorithm accuracy.

VI. PHRASE DETECTION

As we explained in our introduction, the first step in natural
language processing, when dealing with natural text, is text
segmentation. We explained how such segmentation could
generate words from user given sentences and how extended
knowledge bases could be used to detect phrases. When
developing our algorithm we realized that with slight
modification our algorithm could be successfully used to
detect phrases in sentences given a knowledge base that would
contain such phrases.

The modification is done in the first part of the similarity
measure, where we need to change the way that the
concurrence measure is calculated. We derive two
concurrence measures from the basic formula (6), which only
differ in the denominator. Instead of using a maximum length
of the both sequences, we calculate the concurrence measure
against each length as shown in (9) and (10).

 (9)

 (10)

We use these two concurrence measures to calculate two

similarity measures Sa and Sb (11), where the first one
measures how much sequence B resembles sequence A, and
the second one measure how much the sequence A resembles
sequence B. The dispersion measure is calculated only once in
the same manner than in the original algorithm and its used for
both similarity measure calculations. The same goes for the
ordering measure.

 (11)

 - concurrence measures

 - dispersion measure
 - ordering measure (has value of 1)

That way the similarity measures actually measures how

much a sequence is contained in another sequence. If the
similarity measure reaches its maximum value of one, then the
sequence is a subsequence. We make use of this algorithm
property for phrase detection. It allows us to compare whole
phrases against whole sentences without the need to segment
the sentence into words. The way the algorithm works, it is
also very tolerable against slight changes in phrases caused by
inflection and can, like in our case, to some degree ignore
word order. The time complexity of using this approach is the
same as using the original algorithm, since all the needed data
is computed before calculating the concurrency measure. The
only addition is one operation of division.

In our application of the algorithm in a question answering
system[9], we had to detect phrases from a sentence. We had a
knowledge base that contained single words as well as phrases
and had to compare them against text in form of sentences
given by a user. We compared each of the sequences from the
knowledge base as sequence A against the entire sentence as
sequence B and tried to detect which of them are contained in
the sentence. As a result we got a table, an example is shown
in Fig 5., where each of the entries in the knowledge base had
both similarity measures calculated and also had the remainder
of the comparison, which, as mentioned above, is a side
product of the longest subsequences discovery algorithm. That
way we had enough information to decide which of the words
or phrases are actually contained in the sentence.

Fig. 5 Phrase detection example

The easiest way to determine the phrases contained in the

sentence is to order them first according to the similarity
measure Sa. High Sa values presented the words or phrases,
which are most likely to be contained in the user given
sentence.

Two major problems arise from such solution. First we
must determine how many of the found words or phrases
should we consider as the ones contained in the sentence. A
very simple solution, which we used in our application at first,

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

240

is to use a threshold method suggested in chapter V. All the
phrases above the threshold are considered to be similar
enough and are marked as words or phrases contained in the
sentence. In our example we chose a threshold of 80%, but as
explained in chapter V. the threshold must be chosen very
thoughtfully. This approach works very well if the application
the algorithm is being used in has other means to solve
disambiguation. Setting the threshold to low can result in large
amounts of words or phrases being marked as contained in the
user sentence, which can create problems for the
disambiguation process. The main reason for a large number
of found word or phrases lies in overlapping, which we can
also see in our example. If the knowledge base contains
complex phrases the overlapping between them and simple
words can occur easily. The same happens if the base contains
some very short or simple words like in, or, at, etc. In our
example we have a complex phrase "zapora ceste na javni
cesti" which contains a simple word "cesta" and our base has a
very short word "na" which can easily be contained in other
words or phrases. In order to reduce this number an approach
with the remainder can be used. After applying the threshold
method, the table is sorted according to the value of Sb. The
first word is automatically chosen as the correct one. The next
word, which is treated as sequence A, is then compared using
our algorithm against the remainder of the first word, which is
treated as sequence B. If the newly calculated value Sa is
lower as the one previously calculated, overlapping must have
occurred, and the word is removed from the table. If the value
Sa remains the same, the newly acquired remainder becomes
sequence B and the next sequence in the order table becomes
sequence A. The process is repeated for all the words in the
table as shown on our previous example in Fig 6.

Fig. 6 Detected words or phrases reduction using the remainder

Using this method we can be more exact and can avoid
running into problems when using additional disambiguation
methods. As shown, the algorithm can perform phrase
detection inside sentences and can also solve disambiguation
to some degree.

VII. FUTURE WORK

The major unaddressed issue in our work is time
complexity, which we feel can be improved. Because we
developed our algorithm based on a premise of comparing two
sequences, we ended up with time complexity O(n2). When
comparing a sequence to a collection of other sequences,

trying to find the most similar one, this time complexity can
become an issue. In our future work, we propose building a
special case of suffix trees best suited for subsequence
discovery. Such trees would reduce the time complexity of
single sequence comparison against a sequence collection and
would allow the development of special algorithm designed to
find the most similar match. In course of this work we also
plan to evaluate most commonly found subsequences and
equip them with statistics and semantics. That way we could
further improve our similarity matching algorithm to either
exclude certain subsequences or increase their importance in a
sequence according to statistics or semantic annotation. We
also plan to test our algorithm against other approaches used
in natural language processing. We plan to construct a more
suitable test set, which would mimic user input as close as
possible. Two major cases that we would like to include in our
test set are phrases and spelling errors. We plan to extract
phrases out of openly available thesauruses such as
EuroVoc[7] and add them to our test set. We also plan to
insert custom spelling errors and change the word order in
phrases to make the test set more representative. With the help
of such a test set we plan to improve our algorithms
effectiveness by trying out different algorithm parameter
values. We also want to test different ways of determining the
best sequence match. In our work we simply chose the
sequence with the highest similarity measure, but as explained
we think that other factors can have a large effect on the most
relevant sequence found. We plan to run additional test and
measure the effects of using the approaches of relative
distance and thresholds into account. We also plan to perform
further testing on other corpuses to determine ideal threshold
and relative distance values. With such measurements we hope
to be able to predict good values for this parameters in a real
environment. We also plan to apply external knowledge,
which holds information about the sequence space we are in,
to the similarity calculation. With such information we hope to
lower the impact of some subsequences that hold no
information or to raise the requirements on the similarity of
specific words, such as names, surnames or places.

VIII. CONCLUSION

In our work, we presented an alternative approach to string
matching. We based our work on sequence analysis and
developed measures to evaluate similarity between two
sequences. We preformed a test in which we tried to determine
the accuracy of our algorithm and also provided some ideas on
how to improve the best match selection. We presented the
test results which helped us determine the values of some
parameters in our algorithm for future implementation. We
also presented a way to detect phrases from sentences with a
slight algorithm modification. We shown the approach we
used in our natural language processing application. We also
pointed out some problems and gave some ideas for our future
work. Our current work can be used in natural language
processing either as a standalone metric to find the most
appropriate matches in corpuses or as an addition to existing
comparison techniques in a similar way that spellcheckers are

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

241

used. It can also be used to perform fuzzy string matching,
either in full text searches across databases or as a text search
in larger documents. It can also be used to extract phrases or
even to compare documents. All of the above can be done
with small modifications to the original algorithm and with
smart parameters choice. We successfully deployed our
algorithm into the advanced search in DKUM [8] making it a
fuzzy full text search. We also used the algorithm in the
upgraded version of the question answering system described
in [10] as a process for detecting entities for solving
disambiguation. We plan to use our algorithm in our next
applicative projects and with its help plan to increase our
matching precision and with that improve our users
experience.

REFERENCES

[1] V. Levenshtein, Binary codes capable of correcting spurious insertions
and deletions of ones, Probl. Inf. Transmission 1, 8–17, 1965.

[2] I. Čeh, M. Ojsteršek, Slovene Language Question Answering System,
Proceedings of the 13th WSEAS International Conference on
COMPUTERS.

[3] M. Popovic, P. Willett, "The effectiveness of stemming for natural
language access to Slovene textual data", Journal of the American
Society for Information Science, 43(5), 384–390, 1992.

[4] T. Erjavec, S. Džeroski, "Machine learning of morphosyntactic
structure: Lemmatizing unknown Slovene words", Applied Artificial
Intelligence: An International Journal, 18(1), 17-41, 2004

[5] S. B. Needleman, C. D. Wunsch, "A general method applicable to the
search for similarities in the amino acid sequence of two proteins",
Journal of Molecular Biology 48 (3): 443–53, 1970.

[6] T. F. Smith, M. S. Waterman, "Identification of Common Molecular
Subsequences", Journal of Molecular Biology, 1981.

[7] “Eurovoc thesaurus”, http://europa.eu/eurovoc/, visited on September
2010

[8] J. Brezovnik, M. Ojsteršek, "Digital library of University of Maribor
(more than just a bunch of documents)", Proceedings of the International
Conference on Applied Computer Science, 2010.

[9] I. Čeh, M. Ojsteršek, “Developing a Question Answering System for the
Slovene Language”, WSEAS Transaction on Information science and
applications, Issue 9, Vol. 6, 2009.

[10] B. Gorenjak, M. Ferme, M. Ojsteršek, Ontology-Driven Question
Answering System with Semantic Web Services Support, Proceedings of
the European Conference on Advances in Communications, Computers,
Systems, Circuits and Devices (ECCS’10)

M. Ferme is a teaching assistant at University of Maribor, Faculty of

Electrical Engineering and Computer Science. He graduated in 2008 at
Faculty of Electrical Engineering and Computer Science at University of
Maribor. His research interests are natural language processing, Question-
answering systems, ontologies and semantic web. He has been involved in
several research and commercial projects on question-answering systems.
M. Ojsteršek M. Ojsteršek is an associate professor at University of

Maribor, Faculty of Electrical Engineering and Computer Science. His
research is focused on heterogeneous computing systems, semantic web,
service-oriented architecture, natural language processing and dialog systems.
He has been involved in several research and commercial projects on
question-answering systems

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

242

