
 

 

  
Abstract— This work attempts to understand some of the basic 

properties of Petri nets and their relationships to directed graphs. 
Different forms of directed graphs are widely used in computer 
science. Normally various names are given to these structures. E.g. 
directed acyclical graphs (DAGs), control flow graphs (CFGs), task 
graphs, generalized task graphs (GTGs), state transition diagrams 
(STDs), state machines, etc. Some structures might exhibit bi-
similarity. The justification for this work is that Petri nets are based 
on graphs and have some similarities to them. Transforming Petri 
nets into graphs opens up a whole set of new interesting possible 
experimentations. Normally this is overlooked. Directed Graphs have 
a lot of theory and research associated with them. This work could be 
further developed and used for Petri net evaluation. The related 
works justifies the reasoning how and why Petri nets are obtained or 
supported using graphs. The transformation approach can be formal 
or informal. The main problem tackled is how graphs can be obtained 
from Petri nets. Possible solutions that use reduction methods to 
simplify the Petri net are presented. Different methods to extract 
graphs from the basic or fundamental Petri net classes are explained. 
Some examples are given and the findings are briefly discussed. 
 
Keywords— Directed Graphs, Graphs, Petri nets, 

Transformation, Reduction  

I. INTRODUCTION 
ETRI nets are expressive graphical formalisms that serve to 
model discrete event behavior that takes place in different 

systems [12]-[15]. They are designed to model system 
behavior like: sequential behavior, concurrency, mutual 
exclusion, non-determinism, choice and conflict.  Petri nets 
are classified into different classes ranging from elementary 
nets to higher order nets, colored Petri nets and object oriented 
nets. All these classes can be converted to time Petri nets. 

Ordinary Petri nets have a ‘dual identity’ they can be 
represented graphically or by using equations. These can be 
analyzed using mathematical models.  Petri nets have at least 
three decades of use. Normally speaking, the analysis of Petri 
nets is based on i) structural properties and ii) behavioral 
properties [6]. The structural properties of Petri nets are 
suitable to understand the basic underlying structure. If the 
Petri net is viewed, basic structural features can be seen. E.g. 
the Petri net can be cycle free (acyclical) [9]. It could have 
bounded places, etc. On the other hand behavioral properties 
explain the behavior of the Petri net. These properties cannot 
be applied to all types of Petri nets especially if the net is 
unbounded or improperly designed. Some basic behavioral 
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properties are i) reachability, ii) boundedness, iii) safeness, iv) 
conservativeness, v) liveness, vi) reversiblility, vii) 
repetitiveness, viii) home states. Sometimes these properties 
are also called structural properties by some authors [6], [7]. 
Other properties like persistence and synchronic distance 
could be included.  From these main properties others like 
partially conservative, structurally bounded, partially 
repetitive, etc. can be defined. These properties can be found 
using reachability methods such as the marking graph or place 
and transition invariants or the analysis of the Petri net 
incidence matrix [6],[7]. Other analysis is based on the siphon 
and trap method. Most of these forms of analysis are 
applicable to structurally bounded Petri net structures with the 
exception of reachability which can be solved to provide for 
some unbounded states. Simulation is another method by 
which the Petri net can be tested and functionally verified. 
This should normally be done after the behavioral properties 
have been checked and verified. In general for the purpose of 
analysis, Petri net structures can be classified into two 
categories: i) unsolvable and ii) solvable. The structurally 
limited Petri nets are normally solvable whilst those that are 
not structurally limited and have state space explosion 
problems are not simple to solve. One possible solution is to 
reduce the structure. 

One of the salient points for using Petri nets is precisely the 
ability to transform them or obtain them from other 
formalisms or notations. Petri nets are classified as directed 
bi-partite graphs, definitely sharing some common properties 
with graphs. This means that they could be transformed into 
graphs and analyzed from this point of view. This could serve 
to generate many new ideas. E.g. the static structure or 
topological features are examinable. Structure is easier to 
control and understand than behavior. This is because 
normally the structure should remain fixed in relation to time, 
whist behavior can be modified or applied differently, being 
dynamic. Another important aspect is the reduction of the 
Petri net model. Even though normally reduction implies 
fusion/augmentation of places, transitions etc.; in the wider 
sense a higher order net can be reduced to a simple place 
transition net by keeping the graphical outline structure and 
removing other information. 

The work in this paper is restricted to the basic or 
fundamental classes of Petri nets. 

II. BACKGROUND 
A normal Petri net is basically defined as directed bipartite 

graph or bipartite digraph that can be basically represented as 
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a five tuple (P, T, I,O,M0) where P is a finite set of places, T is 
a finite set of transitions, I ⊆  (P x T) Input arcs,  and O ⊆  (T 
x P) Output arcs, P ∪ T φ≠    and P ∩  T =φ  , M0 represents 
the initial marking. 

Normal Petri nets are very simple and convenient to use for 
a variety of purposes. Similar to them are elementary nets and 
augmented marked graphs which are a special subclass of 
Petri nets. Normal Petri nets have a reduced or limited state 
space. 

There are problems to find simple ways for understanding 
and analyzing Petri nets. Another aspect is that certain Petri 
net models that are created are just too complex to analyze and 
verify using the traditional approaches. Other fundamental 
properties of Petri nets are normally not applicable to certain 
classes of Petri nets like higher order nets.  An interesting 
idea, that is often overlooked, is to analyze the structural 
properties of Petri nets by representing the Petri net as a 
graph. The graph although static can be used for different 
objectives such as visual inspection, etc. 

Some works are listed below. These just confirm the 
importance of Petri nets for supporting other forms of 
graphical structures and the possible transformation or support 
of Petri nets using graphs. A vast amount of literature is 
available in this respect. 

Obviously the transformation or mapping is done 
informally or formally or it just happens. In [6] it is shown 
how a Petri net having exactly one incoming arc and exactly 
one outgoing arc with unit weight can be directly represented 
as directed marked graph where directed edges correspond to 
places and nodes to transitions. The augmented marked graphs 
presented in [4] seem to share similar properties to this. The 
same Petri net can also be represented as a state machine. 
Augmented Marked Graphs are a special sub-class of Petri 
nets [4]. These are structurally bounded Petri nets that 
preserve certain properties. In [10] Petri nets are obtained 
from transfer resource graphs (TRGs). Here Petri nets are used 
to model a system at a higher level of abstraction. In [1] Petri 
net elements are defined as TGG rules from project or object 
elements. This is a form of formal mapping. In [2] it is 
proposed to use controlled time Petri nets (CtlTPNs) for RT 
systems dynamic modeling. Control class graphs (CCGs) are 
defined to explain CtlTPNs. Systolic Petri net structures [3] 
are based on restricted Petri net structures. These structures, 
whilst sharing some similarities to graphs, evidence the use of 
this type of transformation.  

Again, different classes of Petri nets can possibly be 
intuitively bi similar. It is possible to use a symbolic 
reachability graph for cases where the reachability graph 
cannot be normally generated. Other works are the generation 
of Petri nets from UML diagrams or vice-versa. UML 
diagrams are graphical structures [8].  

III. MOTIVATION 
 

The evidence presented shows that Petri nets are strongly 

associated with graphs and graph theory. Most of the work 
about Petri nets does not usually consider them from the graph 
point of view. This opens up a lot of new exciting possibilities 
for analyzing Petri nets. If Petri nets are transformed into 
graphs, then they can be analysed using graph theory. The 
graphs can also serve for visualization. It can be shown that 
some notations like control flow graphs (CFGs), state 
transition diagrams (STDs), etc. can be obtained directly from 
certain Petri net types.  

IV. PROBLEM FORMULATION 
The main problem that is dealt with in this paper is to try to 

examine how Petri nets can be converted into graphs for the 
purpose of analysis. It is possible to transform Petri nets into 
graphs. There are different ways how to obtain graphs from 
Petri nets. To obtain graphs from the Petri net the Petri net 
should have a reduced structure and has to be bounded. A 
possible solution it to reduce the class and structure of the 
Petri net before applying analysis methods and transformation 
of the Petri net structure into a graph. Sometimes there can be 
various issues, especially if the Petri net is too complex. It has 
to be reduced. I.e. it can be reduced structurally to a simpler 
model or class reduction could be performed. E.g. a more 
complex class can be reduced to a lower class by replacing or 
eliminating some properties or information.  

V. PROBLEM SOLUTION 
There are two aspects of the solution i.e. i) reduction of the 

Petri net and ii) explaining the possible transformations that 
can be done. Reduction might imply i) class reduction and ii) 
structural reduction. 

Once the Petri net is reduced it is possible to transform the 
Petri net to a graph by simply replacing the nodes and edges in 
the Petri net. 

Another simple way of obtaining a graph from a Petri net is 
by generating the marking graph or the reachability graph. 
Other possible methods could include replacing the Petri net 
node and edges. 

A. Reducing the Petri net 
Two possibilities are given. I.e. i) class reduction and ii) 

structural reduction. As previously stated, the best Petri nets 
used to obtain graphs have to be structurally reduced and 
limited. 

B. Class Reduction 
Class reduction can be defined as transformation of a higher 

order Petri net or net into a simpler net or a more basic class 
type.  There are various ways how this transformation can be 
carried out. 

Normally class reduction necessitates the loss of 
information [11]. The resulting Petri net is simplified and it is 
more comprehensible and simple for transforming it into a 
directed graph. The basic structural features of the Petri net 
should still be retained. This might not always be the case. 

 

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 2, Volume 5, 2011

290



 

 

C. Basic Structural Reduction 
According to well known Petri net theory [5]-[7] it is 

possible to classify five or six main rules for Petri net 
reduction whilst retaining the main properties. Basically a 
subnet or structures of the Petri net are reduced or simplified. 
These basic reduction rules obtained in part from [5] are 
shown in fig. 1-5. The rules in fig. 1-5 are applicable to 
various Petri net classes. Normally applying them results in 
the loss of information. One issue is that these rules are 
applicable to basic constructs. If there are advanced constructs 
like inhibitor arcs, test arcs, conflict, choice, etc. reduction is 
not so simple. 

Other more complex rules can be specified if required.  It is 
possible to use ideas from decomposition with Petri nets. I.e. a 
place can contain an entire subnet at a lower level. 

 
i) Serial Place Fusion/Reduction: 
This rule refers to combining two sequential or serial places 
into one single place. Normally the given pattern is that of a 
place followed by an output arc to a transition. An outgoing 
arc connects to another place. This rule is described as 
follows: 

,, 21 Ppp ∈∃ )1)(()()( 221 =∩= pinpinpout   

then replace the places and shared output/input transition with 
one single place. 
 
ii) Serial Transition Fusion/Reduction: 
This rule is similar to the Serial Place Fusion/Reduction but in 
this case serial transitions are considered. Here two sequential 
transitions are combined into a single transition. Normally the 
given pattern is that of a transition connecting to a place 
which connects to another transition in series. This rule is 
described as follows: 

              ,, 21 Ttt ∈∃ ( ) ( )1)(1)()()( 2121 =∩=∩= tintouttintout  

then replace the transitions and shared output/input place with 
one single transition. 
 
iii) Parallel Place Fusion/Reduction: 
This rule is applied to two places which connect to the same 
output transition and the same input transition. I.e. they are 
parallel places.  This rule can be extended to more than two 
places which might be in parallel. This rule is described as 
follows: 

112121 )(2)(),()()(,, tpouttpintinptouttinTtt =∩=∈∀∩=⊆∃   

then transform the subgraph by replacing all bounded parallel 
places with a single place which is the output place of the first 
transition and input place of the second transition. 
 
iv) Parallel Transition Fusion/Reduction: 
The idea behind this rule is similar to iii) Parallel Place 
Fusion/Reduction. Here instead of parallel places, parallel 
transitions are considered. Parallel transitions normally 
connect to the same input and output places. This rule can 
similarly be extended to more than two transitions in parallel. 

 

 
 
 

Fig. 1 serial place reduction  

 

 
 

Fig. 2 serial transition reduction  

 

 
 
 

Fig. 1 serial place reduction  

 

 
Fig. 3 parallel place reduction  

INTERNATIONAL JOURNAL OF COMPUTERS 
Issue 2, Volume 5, 2011

291



 

 

This rule is described as follows: 
)()(,,)()(,,,, 2121 binainpbaboutaoutpbaPpp =∈∀∩=∈∀⊆∃  

)()(,, 21 binaoutpbpa =∈∈∃∩  then transform the 
subgraph by replacing all transitions bounded by sets of places 
with a single transition having one input/output arc from every 
place connected to the original transitions. 
 
v) Self Loop Place Removal 
This rule is quite simple and refers to reducing the Petri net by 
removing a place that is looped onto the same transition. This 
place does not really affect the marking graph, so it can be 
removed along with its connections. This rule is described as 
follows. 

)()(, 111 pinpoutPp =∈∃ remove place with self-loop 
connections.  

 

vi) Self Loop Transition Removal 
This rule is similar to v) Self Loop Place Removal.  The 
difference is that here we have a transition looped onto a 
place. This transition does not really affect the marking of the 
Petri net. I.e. the marking is left unchanged if this transition 
fires, even though the transition can be shown in the marking 
graph. This transition can be removed. This rule is described 
as follows: 

)()(, 211 tintoutTt =∈∃ remove transition with self-loop 
connections. 

D. Other Forms of Reduction 
Other forms of reduction could be extraction or removal of 
subnets from the Petri net, removing loops, cycles, conflict or 
choice, etc. Extraction of the main subnet could make sense if 
this represents a system’s main functionality. However these 
reductions will not necessarily preserve the main properties 
of the net. 

VI. CONVERSION TO DIRECTED GRAPHS 
Four different ways to convert a Petri net to a directed 

graph are listed and explained below.  

A. Transitions as nodes. Places, Input/Output Arcs as 
Edges 

Here the Petri net is converted into a graph and the 
transitions are replaced using nodes, whilst the places are 
their connecting input and output arcs are replaced with a 
single graph edge. The transformation of places into nodes 
and connecting transitions to edges works well only if places 
have single input points and single output (exit) points. For 
this type of conversion, it must be clearly explained that 
every place in the Petri net should have exactly one input arc 
and one output arc. If these conditions do not exist it is not 
possible to create a proper directed graph. 

B. Places as nodes. Transitions, Input/Output Arcs as 
Edges 

Here the Petri net is converted into a graph. The transitions 
and their connecting arcs are replaced using a single edge, 
places are replaced with nodes. For this type of conversion it 
must be clearly stated that a transition must have exactly one 
input arc and one output arc. If these conditions do not exist it 
is not possible to create a proper directed graph.  

The transformation of places into nodes and connecting 
transitions to edges works well only if places have single 
input points and single output (exit) points. Thus augmented 
marked graph Petri nets (AMG) or state-machine like Petri 
nets, etc. can easily be converted. Other more complex Petri 
net classes have to be reduced for conversion to be possible. 
Reduction methods presented should simplify the structure of 
the net. 

C. Places and Transitions as Nodes , Input/Output Arcs 
as Edges 
In this approach, when converting the Petri net the input and 
output arcs are replaced as graph edges and the places and 

 

 
Fig. 4 parallel place reduction  

 

 
Fig. 5 removal of self loops 
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transitions are replaced as nodes. It can be important to 
properly label the nodes. 
 I.e. in this case, there is not really any complex structural 
change in the Petri net. It is just that the places and transitions 
are represented as similar nodes. This implies that there is not 
any real change to the Petri net, it is only the structural 
representational notations of the net that have been modified. 

D. Marking Graph 
 If the Petri net is structurally limited and its state space is 

limited (i.e its markings are finite) it is possible to construct 
the marking graph for the net [6],[7]. Different algorithms can 
be used to construct the marking graph. In simple terms the 
marking graph represents all the possible states of the Petri 
net. The reachability tree or better known coverability tree for 
a restricted Petri net is easily constructed.  

The directed graph obtained from the Petri net can be used 
for different forms of analysis, which is often overlooked. 
This type of graph can become quite large if the Petri net has 
over one hundred states. A possible solution is to reduce the 
Petri net model and eliminate ambiguity. 

The marking graph or reachability tree is a simple directed 
graph or digraph where the nodes or vertices represent a 
marking whilst the directed edges represent the transitions 
used to reach a particular marking. The reachability tree can 
be drawn as a marked directed graph of the form G=(V,E), 
where E = edges representing transitions and V= States or 
markings. There are various forms of the marking graph 
having different names but in essence they are similar. The 
delay of a transition can be represented on the edges. 

For the marking graph an adjacency matrix can be 
constructed. 

VII. EXAMPLES 
Some simple examples illustrating the four conversion 

methods are given. A specific Petri net is taken and a 
corresponding directed graph is constructed using each one of 
the four methods. 

 It can be assumed that the structural reduction rules 
previously defined, have been applied as required. These are 
quite simple to comprehend and are self explanatory. Note 
that the resulting graph can obviously be drawn as required, 
i.e. the node or edge layout could be drawn aesthetically in 
different ways for visualization e.g. using rounded or flat 
edges, circles for nodes, etc. 

Fig.  6 shows a Petri net, complete with its marking graph 
below and a compacted or reduced form of marking graph. 
Below the reduced marking graph the adjacency matrix for the 
marking graph has been given. For the marking graph in fig. 6 
the adjacency matrix is easily constructed. It is assumed that 
edges represent transitions. The adjacency matrix is shown in 
fig 14.  

Fig. 7 and 8 show two examples where transitions are 
treated as nodes and places and input/output arcs are treated as 
edges. 

Fig. 9 shows an example where places are treated as nodes 

and transitions and their connecting input and output arcs are 
treated as edges. 

Fig. 10 shows an example where places and transitions are 
shown as nodes and input/output arcs are treated as edges. 
This is not much different from a typical Petri net except for 
representation of nodes.  

 
 
 
 

 

 
 

Fig. 6 Petri net, marking graph and simplified/concise 
marking graph and adjacency matrix 
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Fig. 7 conversion example 1 
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fig. 8 conversion example 2 
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Fig. 10 conversion example 4 
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Fig. 11 Petri net example 
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Fig. 12 marking graph for fig.10 
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fig. 9 conversion example 3 
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Fig. 13 reducing a Petri net, self loop place removal and generating its directed graph 
 

 
 

 
 

Fig. 14  transforming a Petri net into a directed graph 
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Fig. 11 shows a normal Petri net that is used for obtaining 
its marking graph. This Petri net contains a loop and is quite 
simple to obtain a small marking graph. 

Fig. 12 shows the marking graph for fig. 11.  
Fig. 13 shows a Petri net having a self loop place, the 

reduced version of this net and finally the directed graph 
obtained as follows.  Transitions are replaced with nodes. 
Places, input/output arcs as replaced with edges. This shown 
on the right hand side of the diagram. 

Fig. 14 shows another example where a Petri net is 
transformed into a directed graph. The method of replacing 
transitions with nodes and places, input/output connections as 
edges is used. 

VIII. RESULTS 
For the marking graph in fig. 6 the adjacency matrix can be 

constructed. It is assumed that edges represent transitions. The 
adjacency matrix is shown in fig 6. The given directed graph 
can be analyzed using the usual graph analysis techniques. 

 Fig. 7 and 8 show that the graphs are reduced versions of 
the actual Petri net and are actually simpler. 

The graph for the transformation (see fig. 9), where places 
are represented as nodes and transitions with connecting 
input/output arcs as represented edges, can be classified as a 
multi digraph. I.e. it is a directed graph that has multiple 
edges/arcs having the same source and target nodes. This is 
because some places are shared by more than one transition. If 
places are connected to single transitions the resulting graph 
will be different. Actually this graph is quite interesting 
because it represents the possible individual states of the 
system. The resultant graph in fig. 9 is similar to a state 
transition diagram, where nodes represent states and the edges 
represent transitions. Again the graph is actually simpler than 
the Petri net. 

Fig. 10 shows a graph which is similar to the Petri net. This 
approach can be used for Petri nets that are structurally more 
complex. 

Fig. 11 shows a normal Petri net and Fig. 12 shows its 
marking graph. The marking graph is a directed graph. The 
marking graph can be considered to be a directed graph of the 
possible system states when transitions or events take place. 

Fig. 13 shows a Petri net having a self loop place. The 
reduced version of this net is more compact than the original 
one. Obviously reducing the net, implies that some 
information is lost.  The final directed graph is quite simple 
having just two nodes and edges.  

Fig. 14 again confirms that using the method where 
transitions are replaced as nodes gives a more compact 
structure. 

The graphs can be further transformed, interpreted using 
basic graph theory concepts like loops, cycles, etc. It may be 
possible to construct adjacency matrices for the graphs. The 
graphs could be used for visualization purposes. In short, from 
the graphs it is possible to get many new interpretations, 
analysis and ideas. 

 

IX. CONCLUSION AND FURTHER WORK 
The limitations of this work are that here only basic or 

simple Petri nets have been considered for conversion into 
graphs. In reality only Petri nets that have a limited number of 
states or limited in structure can be easily converted.  

 The Petri nets have to be structurally limited or bounded to 
make them convertible. Reducing complex Petri nets can be 
carried out, but information and detail will be lost. The 
marking graph option has less restrictions for the conversion 
process. Unfortunately the bigger the Petri net the more 
possible states which can lead to a state explosion problem. It 
is possible to postulate various theorems in relation to the 
directed or marked graph and even a diluted circuit. The 
marking graph can be used to check for invariants, cyclical 
behavior, safeness, connectedness, etc. 

The approach presented here shows only one way of 
looking at the Petri nets. The approach is applicable to certain 
classes of Petri nets like elementary nets, cause event nets (CE 
nets), state machine nets, augmented marked graph Petri nets 
and others, where the net has limited structure and 
deterministic behavior. It is possible to find that some 
structures are isomorphic to other structures derived from 
different conversion methods of the Petri net to directed 
graphs. 

If we relax our deterministic or net behavioral properties, 
then this conversion process can be extended to other general 
classes of Petri nets. 

The approach presented here can be inverted. E.g. instead 
of transforming a Petri net into a directed graph, a given 
directed graph is transformed into a Petri net. 

This work opens up the possibility to find other ways to 
describe and analyze Petri net structures. This is from a 
graphical perspective. The rules for reducing the Petri net 
structures can be useful for reducing complex Petri nets a 
priori to obtaining graph structures from them. Other forms of 
graphical representation can be used. 
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