

Abstract— This work attempts to understand some of the basic

properties of Petri nets and their relationships to directed graphs.
Different forms of directed graphs are widely used in computer
science. Normally various names are given to these structures. E.g.
directed acyclical graphs (DAGs), control flow graphs (CFGs), task
graphs, generalized task graphs (GTGs), state transition diagrams
(STDs), state machines, etc. Some structures might exhibit bi-
similarity. The justification for this work is that Petri nets are based
on graphs and have some similarities to them. Transforming Petri
nets into graphs opens up a whole set of new interesting possible
experimentations. Normally this is overlooked. Directed Graphs have
a lot of theory and research associated with them. This work could be
further developed and used for Petri net evaluation. The related
works justifies the reasoning how and why Petri nets are obtained or
supported using graphs. The transformation approach can be formal
or informal. The main problem tackled is how graphs can be obtained
from Petri nets. Possible solutions that use reduction methods to
simplify the Petri net are presented. Different methods to extract
graphs from the basic or fundamental Petri net classes are explained.
Some examples are given and the findings are briefly discussed.

Keywords— Directed Graphs, Graphs, Petri nets,

Transformation, Reduction

I. INTRODUCTION
ETRI nets are expressive graphical formalisms that serve to
model discrete event behavior that takes place in different

systems [12]-[15]. They are designed to model system
behavior like: sequential behavior, concurrency, mutual
exclusion, non-determinism, choice and conflict. Petri nets
are classified into different classes ranging from elementary
nets to higher order nets, colored Petri nets and object oriented
nets. All these classes can be converted to time Petri nets.

Ordinary Petri nets have a ‘dual identity’ they can be
represented graphically or by using equations. These can be
analyzed using mathematical models. Petri nets have at least
three decades of use. Normally speaking, the analysis of Petri
nets is based on i) structural properties and ii) behavioral
properties [6]. The structural properties of Petri nets are
suitable to understand the basic underlying structure. If the
Petri net is viewed, basic structural features can be seen. E.g.
the Petri net can be cycle free (acyclical) [9]. It could have
bounded places, etc. On the other hand behavioral properties
explain the behavior of the Petri net. These properties cannot
be applied to all types of Petri nets especially if the net is
unbounded or improperly designed. Some basic behavioral

Manuscript received Feb 23, 2011. Anthony (Tony) Spiteri Staines, is with

the Department of Information Systems, Faculty of ICT, University of Malta,
(corresponding phone: 00356-21373402,e-mail: toni_staines@yahoo.com)

properties are i) reachability, ii) boundedness, iii) safeness, iv)
conservativeness, v) liveness, vi) reversiblility, vii)
repetitiveness, viii) home states. Sometimes these properties
are also called structural properties by some authors [6], [7].
Other properties like persistence and synchronic distance
could be included. From these main properties others like
partially conservative, structurally bounded, partially
repetitive, etc. can be defined. These properties can be found
using reachability methods such as the marking graph or place
and transition invariants or the analysis of the Petri net
incidence matrix [6],[7]. Other analysis is based on the siphon
and trap method. Most of these forms of analysis are
applicable to structurally bounded Petri net structures with the
exception of reachability which can be solved to provide for
some unbounded states. Simulation is another method by
which the Petri net can be tested and functionally verified.
This should normally be done after the behavioral properties
have been checked and verified. In general for the purpose of
analysis, Petri net structures can be classified into two
categories: i) unsolvable and ii) solvable. The structurally
limited Petri nets are normally solvable whilst those that are
not structurally limited and have state space explosion
problems are not simple to solve. One possible solution is to
reduce the structure.

One of the salient points for using Petri nets is precisely the
ability to transform them or obtain them from other
formalisms or notations. Petri nets are classified as directed
bi-partite graphs, definitely sharing some common properties
with graphs. This means that they could be transformed into
graphs and analyzed from this point of view. This could serve
to generate many new ideas. E.g. the static structure or
topological features are examinable. Structure is easier to
control and understand than behavior. This is because
normally the structure should remain fixed in relation to time,
whist behavior can be modified or applied differently, being
dynamic. Another important aspect is the reduction of the
Petri net model. Even though normally reduction implies
fusion/augmentation of places, transitions etc.; in the wider
sense a higher order net can be reduced to a simple place
transition net by keeping the graphical outline structure and
removing other information.

The work in this paper is restricted to the basic or
fundamental classes of Petri nets.

II. BACKGROUND
A normal Petri net is basically defined as directed bipartite

graph or bipartite digraph that can be basically represented as

Rewriting Petri Nets as Directed Graphs
A. Spiteri Staines

P

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

289

a five tuple (P, T, I,O,M0) where P is a finite set of places, T is
a finite set of transitions, I ⊆ (P x T) Input arcs, and O ⊆ (T
x P) Output arcs, P ∪ T φ≠ and P ∩ T =φ , M0 represents
the initial marking.

Normal Petri nets are very simple and convenient to use for
a variety of purposes. Similar to them are elementary nets and
augmented marked graphs which are a special subclass of
Petri nets. Normal Petri nets have a reduced or limited state
space.

There are problems to find simple ways for understanding
and analyzing Petri nets. Another aspect is that certain Petri
net models that are created are just too complex to analyze and
verify using the traditional approaches. Other fundamental
properties of Petri nets are normally not applicable to certain
classes of Petri nets like higher order nets. An interesting
idea, that is often overlooked, is to analyze the structural
properties of Petri nets by representing the Petri net as a
graph. The graph although static can be used for different
objectives such as visual inspection, etc.

Some works are listed below. These just confirm the
importance of Petri nets for supporting other forms of
graphical structures and the possible transformation or support
of Petri nets using graphs. A vast amount of literature is
available in this respect.

Obviously the transformation or mapping is done
informally or formally or it just happens. In [6] it is shown
how a Petri net having exactly one incoming arc and exactly
one outgoing arc with unit weight can be directly represented
as directed marked graph where directed edges correspond to
places and nodes to transitions. The augmented marked graphs
presented in [4] seem to share similar properties to this. The
same Petri net can also be represented as a state machine.
Augmented Marked Graphs are a special sub-class of Petri
nets [4]. These are structurally bounded Petri nets that
preserve certain properties. In [10] Petri nets are obtained
from transfer resource graphs (TRGs). Here Petri nets are used
to model a system at a higher level of abstraction. In [1] Petri
net elements are defined as TGG rules from project or object
elements. This is a form of formal mapping. In [2] it is
proposed to use controlled time Petri nets (CtlTPNs) for RT
systems dynamic modeling. Control class graphs (CCGs) are
defined to explain CtlTPNs. Systolic Petri net structures [3]
are based on restricted Petri net structures. These structures,
whilst sharing some similarities to graphs, evidence the use of
this type of transformation.

Again, different classes of Petri nets can possibly be
intuitively bi similar. It is possible to use a symbolic
reachability graph for cases where the reachability graph
cannot be normally generated. Other works are the generation
of Petri nets from UML diagrams or vice-versa. UML
diagrams are graphical structures [8].

III. MOTIVATION

The evidence presented shows that Petri nets are strongly

associated with graphs and graph theory. Most of the work
about Petri nets does not usually consider them from the graph
point of view. This opens up a lot of new exciting possibilities
for analyzing Petri nets. If Petri nets are transformed into
graphs, then they can be analysed using graph theory. The
graphs can also serve for visualization. It can be shown that
some notations like control flow graphs (CFGs), state
transition diagrams (STDs), etc. can be obtained directly from
certain Petri net types.

IV. PROBLEM FORMULATION
The main problem that is dealt with in this paper is to try to

examine how Petri nets can be converted into graphs for the
purpose of analysis. It is possible to transform Petri nets into
graphs. There are different ways how to obtain graphs from
Petri nets. To obtain graphs from the Petri net the Petri net
should have a reduced structure and has to be bounded. A
possible solution it to reduce the class and structure of the
Petri net before applying analysis methods and transformation
of the Petri net structure into a graph. Sometimes there can be
various issues, especially if the Petri net is too complex. It has
to be reduced. I.e. it can be reduced structurally to a simpler
model or class reduction could be performed. E.g. a more
complex class can be reduced to a lower class by replacing or
eliminating some properties or information.

V. PROBLEM SOLUTION
There are two aspects of the solution i.e. i) reduction of the

Petri net and ii) explaining the possible transformations that
can be done. Reduction might imply i) class reduction and ii)
structural reduction.

Once the Petri net is reduced it is possible to transform the
Petri net to a graph by simply replacing the nodes and edges in
the Petri net.

Another simple way of obtaining a graph from a Petri net is
by generating the marking graph or the reachability graph.
Other possible methods could include replacing the Petri net
node and edges.

A. Reducing the Petri net
Two possibilities are given. I.e. i) class reduction and ii)

structural reduction. As previously stated, the best Petri nets
used to obtain graphs have to be structurally reduced and
limited.

B. Class Reduction
Class reduction can be defined as transformation of a higher

order Petri net or net into a simpler net or a more basic class
type. There are various ways how this transformation can be
carried out.

Normally class reduction necessitates the loss of
information [11]. The resulting Petri net is simplified and it is
more comprehensible and simple for transforming it into a
directed graph. The basic structural features of the Petri net
should still be retained. This might not always be the case.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

290

C. Basic Structural Reduction
According to well known Petri net theory [5]-[7] it is

possible to classify five or six main rules for Petri net
reduction whilst retaining the main properties. Basically a
subnet or structures of the Petri net are reduced or simplified.
These basic reduction rules obtained in part from [5] are
shown in fig. 1-5. The rules in fig. 1-5 are applicable to
various Petri net classes. Normally applying them results in
the loss of information. One issue is that these rules are
applicable to basic constructs. If there are advanced constructs
like inhibitor arcs, test arcs, conflict, choice, etc. reduction is
not so simple.

Other more complex rules can be specified if required. It is
possible to use ideas from decomposition with Petri nets. I.e. a
place can contain an entire subnet at a lower level.

i) Serial Place Fusion/Reduction:
This rule refers to combining two sequential or serial places
into one single place. Normally the given pattern is that of a
place followed by an output arc to a transition. An outgoing
arc connects to another place. This rule is described as
follows:

,, 21 Ppp ∈∃)1)(()()(221 =∩= pinpinpout

then replace the places and shared output/input transition with
one single place.

ii) Serial Transition Fusion/Reduction:
This rule is similar to the Serial Place Fusion/Reduction but in
this case serial transitions are considered. Here two sequential
transitions are combined into a single transition. Normally the
given pattern is that of a transition connecting to a place
which connects to another transition in series. This rule is
described as follows:

 ,, 21 Ttt ∈∃ () ()1)(1)()()(2121 =∩=∩= tintouttintout

then replace the transitions and shared output/input place with
one single transition.

iii) Parallel Place Fusion/Reduction:
This rule is applied to two places which connect to the same
output transition and the same input transition. I.e. they are
parallel places. This rule can be extended to more than two
places which might be in parallel. This rule is described as
follows:

112121)(2)(),()()(,, tpouttpintinptouttinTtt =∩=∈∀∩=⊆∃

then transform the subgraph by replacing all bounded parallel
places with a single place which is the output place of the first
transition and input place of the second transition.

iv) Parallel Transition Fusion/Reduction:
The idea behind this rule is similar to iii) Parallel Place
Fusion/Reduction. Here instead of parallel places, parallel
transitions are considered. Parallel transitions normally
connect to the same input and output places. This rule can
similarly be extended to more than two transitions in parallel.

Fig. 1 serial place reduction

Fig. 2 serial transition reduction

Fig. 1 serial place reduction

Fig. 3 parallel place reduction

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

291

This rule is described as follows:
)()(,,)()(,,,, 2121 binainpbaboutaoutpbaPpp =∈∀∩=∈∀⊆∃

)()(,, 21 binaoutpbpa =∈∈∃∩ then transform the
subgraph by replacing all transitions bounded by sets of places
with a single transition having one input/output arc from every
place connected to the original transitions.

v) Self Loop Place Removal
This rule is quite simple and refers to reducing the Petri net by
removing a place that is looped onto the same transition. This
place does not really affect the marking graph, so it can be
removed along with its connections. This rule is described as
follows.

)()(, 111 pinpoutPp =∈∃ remove place with self-loop
connections.

vi) Self Loop Transition Removal
This rule is similar to v) Self Loop Place Removal. The
difference is that here we have a transition looped onto a
place. This transition does not really affect the marking of the
Petri net. I.e. the marking is left unchanged if this transition
fires, even though the transition can be shown in the marking
graph. This transition can be removed. This rule is described
as follows:

)()(, 211 tintoutTt =∈∃ remove transition with self-loop
connections.

D. Other Forms of Reduction
Other forms of reduction could be extraction or removal of
subnets from the Petri net, removing loops, cycles, conflict or
choice, etc. Extraction of the main subnet could make sense if
this represents a system’s main functionality. However these
reductions will not necessarily preserve the main properties
of the net.

VI. CONVERSION TO DIRECTED GRAPHS
Four different ways to convert a Petri net to a directed

graph are listed and explained below.

A. Transitions as nodes. Places, Input/Output Arcs as
Edges

Here the Petri net is converted into a graph and the
transitions are replaced using nodes, whilst the places are
their connecting input and output arcs are replaced with a
single graph edge. The transformation of places into nodes
and connecting transitions to edges works well only if places
have single input points and single output (exit) points. For
this type of conversion, it must be clearly explained that
every place in the Petri net should have exactly one input arc
and one output arc. If these conditions do not exist it is not
possible to create a proper directed graph.

B. Places as nodes. Transitions, Input/Output Arcs as
Edges

Here the Petri net is converted into a graph. The transitions
and their connecting arcs are replaced using a single edge,
places are replaced with nodes. For this type of conversion it
must be clearly stated that a transition must have exactly one
input arc and one output arc. If these conditions do not exist it
is not possible to create a proper directed graph.

The transformation of places into nodes and connecting
transitions to edges works well only if places have single
input points and single output (exit) points. Thus augmented
marked graph Petri nets (AMG) or state-machine like Petri
nets, etc. can easily be converted. Other more complex Petri
net classes have to be reduced for conversion to be possible.
Reduction methods presented should simplify the structure of
the net.

C. Places and Transitions as Nodes , Input/Output Arcs
as Edges
In this approach, when converting the Petri net the input and
output arcs are replaced as graph edges and the places and

Fig. 4 parallel place reduction

Fig. 5 removal of self loops

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

292

transitions are replaced as nodes. It can be important to
properly label the nodes.
 I.e. in this case, there is not really any complex structural
change in the Petri net. It is just that the places and transitions
are represented as similar nodes. This implies that there is not
any real change to the Petri net, it is only the structural
representational notations of the net that have been modified.

D. Marking Graph
 If the Petri net is structurally limited and its state space is

limited (i.e its markings are finite) it is possible to construct
the marking graph for the net [6],[7]. Different algorithms can
be used to construct the marking graph. In simple terms the
marking graph represents all the possible states of the Petri
net. The reachability tree or better known coverability tree for
a restricted Petri net is easily constructed.

The directed graph obtained from the Petri net can be used
for different forms of analysis, which is often overlooked.
This type of graph can become quite large if the Petri net has
over one hundred states. A possible solution is to reduce the
Petri net model and eliminate ambiguity.

The marking graph or reachability tree is a simple directed
graph or digraph where the nodes or vertices represent a
marking whilst the directed edges represent the transitions
used to reach a particular marking. The reachability tree can
be drawn as a marked directed graph of the form G=(V,E),
where E = edges representing transitions and V= States or
markings. There are various forms of the marking graph
having different names but in essence they are similar. The
delay of a transition can be represented on the edges.

For the marking graph an adjacency matrix can be
constructed.

VII. EXAMPLES
Some simple examples illustrating the four conversion

methods are given. A specific Petri net is taken and a
corresponding directed graph is constructed using each one of
the four methods.

 It can be assumed that the structural reduction rules
previously defined, have been applied as required. These are
quite simple to comprehend and are self explanatory. Note
that the resulting graph can obviously be drawn as required,
i.e. the node or edge layout could be drawn aesthetically in
different ways for visualization e.g. using rounded or flat
edges, circles for nodes, etc.

Fig. 6 shows a Petri net, complete with its marking graph
below and a compacted or reduced form of marking graph.
Below the reduced marking graph the adjacency matrix for the
marking graph has been given. For the marking graph in fig. 6
the adjacency matrix is easily constructed. It is assumed that
edges represent transitions. The adjacency matrix is shown in
fig 14.

Fig. 7 and 8 show two examples where transitions are
treated as nodes and places and input/output arcs are treated as
edges.

Fig. 9 shows an example where places are treated as nodes

and transitions and their connecting input and output arcs are
treated as edges.

Fig. 10 shows an example where places and transitions are
shown as nodes and input/output arcs are treated as edges.
This is not much different from a typical Petri net except for
representation of nodes.

Fig. 6 Petri net, marking graph and simplified/concise
marking graph and adjacency matrix

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

293

P1

P2

P3

T1

T2

T3

A

B

C

Fig. 7 conversion example 1

SOURCE

SINK

SOURCE

SINK

E1

E2

E3

E4 E5 E6

E7 E9

E13E10 E11

E8

A

B C D

E F G

H I J

K

P1 P2 P3

P4 P5 P6

P7 P8 P10

P11 P12 P13

T1 T2 T3

T4 T5 T6

T7 T8 T10

T11

T12

fig. 8 conversion example 2

A

B

T1 T2

C

D

E

F

T3 T4

T6

T7

T8

A T7

T1 T2 E

B T8

T3 T4

C

F

T6

D

Fig. 10 conversion example 4

P1

P2 P3

P4

P5

T1 T2

T3 T4

T5

Fig. 11 Petri net example

Mo= 10001

T1 T2

01000 00100

00011

T4T3

T5

Fig. 12 marking graph for fig.10

A

B

C D

E

A

B

C
D

E

T1 T2

T3 T4

T5
T6 T7

fig. 9 conversion example 3

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

294

Fig. 13 reducing a Petri net, self loop place removal and generating its directed graph

Fig. 14 transforming a Petri net into a directed graph

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

295

Fig. 11 shows a normal Petri net that is used for obtaining
its marking graph. This Petri net contains a loop and is quite
simple to obtain a small marking graph.

Fig. 12 shows the marking graph for fig. 11.
Fig. 13 shows a Petri net having a self loop place, the

reduced version of this net and finally the directed graph
obtained as follows. Transitions are replaced with nodes.
Places, input/output arcs as replaced with edges. This shown
on the right hand side of the diagram.

Fig. 14 shows another example where a Petri net is
transformed into a directed graph. The method of replacing
transitions with nodes and places, input/output connections as
edges is used.

VIII. RESULTS
For the marking graph in fig. 6 the adjacency matrix can be

constructed. It is assumed that edges represent transitions. The
adjacency matrix is shown in fig 6. The given directed graph
can be analyzed using the usual graph analysis techniques.

 Fig. 7 and 8 show that the graphs are reduced versions of
the actual Petri net and are actually simpler.

The graph for the transformation (see fig. 9), where places
are represented as nodes and transitions with connecting
input/output arcs as represented edges, can be classified as a
multi digraph. I.e. it is a directed graph that has multiple
edges/arcs having the same source and target nodes. This is
because some places are shared by more than one transition. If
places are connected to single transitions the resulting graph
will be different. Actually this graph is quite interesting
because it represents the possible individual states of the
system. The resultant graph in fig. 9 is similar to a state
transition diagram, where nodes represent states and the edges
represent transitions. Again the graph is actually simpler than
the Petri net.

Fig. 10 shows a graph which is similar to the Petri net. This
approach can be used for Petri nets that are structurally more
complex.

Fig. 11 shows a normal Petri net and Fig. 12 shows its
marking graph. The marking graph is a directed graph. The
marking graph can be considered to be a directed graph of the
possible system states when transitions or events take place.

Fig. 13 shows a Petri net having a self loop place. The
reduced version of this net is more compact than the original
one. Obviously reducing the net, implies that some
information is lost. The final directed graph is quite simple
having just two nodes and edges.

Fig. 14 again confirms that using the method where
transitions are replaced as nodes gives a more compact
structure.

The graphs can be further transformed, interpreted using
basic graph theory concepts like loops, cycles, etc. It may be
possible to construct adjacency matrices for the graphs. The
graphs could be used for visualization purposes. In short, from
the graphs it is possible to get many new interpretations,
analysis and ideas.

IX. CONCLUSION AND FURTHER WORK
The limitations of this work are that here only basic or

simple Petri nets have been considered for conversion into
graphs. In reality only Petri nets that have a limited number of
states or limited in structure can be easily converted.

 The Petri nets have to be structurally limited or bounded to
make them convertible. Reducing complex Petri nets can be
carried out, but information and detail will be lost. The
marking graph option has less restrictions for the conversion
process. Unfortunately the bigger the Petri net the more
possible states which can lead to a state explosion problem. It
is possible to postulate various theorems in relation to the
directed or marked graph and even a diluted circuit. The
marking graph can be used to check for invariants, cyclical
behavior, safeness, connectedness, etc.

The approach presented here shows only one way of
looking at the Petri nets. The approach is applicable to certain
classes of Petri nets like elementary nets, cause event nets (CE
nets), state machine nets, augmented marked graph Petri nets
and others, where the net has limited structure and
deterministic behavior. It is possible to find that some
structures are isomorphic to other structures derived from
different conversion methods of the Petri net to directed
graphs.

If we relax our deterministic or net behavioral properties,
then this conversion process can be extended to other general
classes of Petri nets.

The approach presented here can be inverted. E.g. instead
of transforming a Petri net into a directed graph, a given
directed graph is transformed into a Petri net.

This work opens up the possibility to find other ways to
describe and analyze Petri net structures. This is from a
graphical perspective. The rules for reducing the Petri net
structures can be useful for reducing complex Petri nets a
priori to obtaining graph structures from them. Other forms of
graphical representation can be used.

REFERENCES
[1] E. Kindler, R. Wagner, Triple Graph Grammers: Concepts, Extensions,

Implementations and Application Scenarios, Technical Report TR-RI-
284, University of Paderborn, Paderborn, 2007, Available:
http://www2.cs.uni-paderborn.de/cs/ag-
schaefer/Veroeffentlichungen/Quellen/Papers/2007/tr-ri-07-284.pdf

[2] A. Sathaye, B. Krogh, “Supervisor Synthesis for Real-Time Discrete
Event Systems”, Discrete Event Dynamic Systems, vol. 8 , issue 1,
Springer, 1998, pp. 5 – 35.

[3] A. Abellard, P. Abellard, Systolic Petri Nets, Petri Nets Applications,
Pawel Pawlewski (Ed.), ISBN: 978-953-307-047-6, INTECH(2010),
http://www.intechopen.com/articles/show/title/systolic-petri-nets

[4] K.S. Cheung, K.O. Chow, “Compositional Synthesis of Augmented
Marked Graphs”, Control and Automation, ICCA, IEEE, 2007, pp. 2810-
2814.

[5] M.B. Dwyer, L.A. Clarke, “A compact Petri net representation and its
implications for analysis”, IEEE Transactions on Software Engineering,
vol. 22, issue 11, 1996, pp. 794 – 811.

[6] T. Murata, “Petri nets: Properties, analysis and applications”, Proc. of
IEEE, vol.: 77, issue:4, 1989, pp. 541-580.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

296

[7] M. Zhou, K. Venkatesh, Modeling, Simulation, and Control of Flexible
Manufacturing Systems A Petri Net Approach, Series in Intelligent
Control and Intelligent Automation vol. 6 World Scientific, MA USA,
1999.

[8] T. Gehrke, U.Goltz, H. Wehrheim, The Dynamic Models of UML:
Towards a Semantics and its Application in the Development Process,
TR. 11/98, University of Hildesheim, Germany, 1998.

[9] G. Stemersch, R.K. Boel, “Structuring acyclical Petri Nets for
Reachability Analysis and Control”, International Journal of Intelligent
Control and Systems, vol. 10, no. 2, 2005, pp. 175-187.

[10] X. Xiaoxi, L. Cheng-Chew Lim, Transfer-Resource Graph and Petri-net
for System-on-Chip Verification, Petri Nets Applications, Pawel
Pawlewski (Ed.), ISBN: 978-953-307-047-6, InTech, Available from:
http://www.intechopen.com/articles/show/title/transfer-resource-graph-
and-petri-net-for-system-on-chip-verification

[11] A. Spiteri Staines, “Supporting Requirements Engineering with
Different Petri Net Classes”,International Journal of Computers, NAUN,
issue 4 vol 4, 2010, pp. 215-222.

[12] V.Vlad, C.Ciufudean, A.Graur, C.Filote, “An example of modeling
manufacturing systems using Petri nets and the IEC 61499 standard”,
13th WSEAS Int. Conf. on Systems, Greece, 2009, pp. 357-363.

[13] H.A. Ozkan, A. Aybar, “A Reversibility Enforcement Approach for Petri
Nets Using Invariants, WSEAS Transactions on Systems, vol. 7, issue 6,
2008, pp.672-681.

[14] K. Mun Ng, Z. Alam Haron, “Visual Microcontroller Programming
Using Extended S-System Petri Nets”, WSEAS Transactions on
Computers, issue 6, vol. 9, 2010, pp. 573-582.

[15] P. Strbac, M. Tuba, D. Simian, “Hierarchical model of a systolic array
for solving differential equations implemented as an upgraded Petri net”,
WSEAS Transactions on Systems, vol. 8, issue 1, 2009, pp. 13-21.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 2, Volume 5, 2011

297

