
Solving the Protein Folding Problem Using a
Distributed Q-Learning Approach

Gabriela Czibula, Maria-Iuliana Bocicor, and Istvan-Gergely Czibula

Abstract—The determination of the three-dimensional structure
of a protein, the so calledprotein folding problem, using the
linear sequence of amino acids is one of the greatest challenges
of bioinformatics, being an important research direction due
to its numerous applications in medicine (drug design, disease
prediction) and genetic engineering (cell modelling, modification
and improvement of the functions of certain proteins). We are
introducing in this paper a distributed reinforcement learning based
approach for solving thebidimensional protein foldingproblem, an
NP-complete problem that refers to predicting the bidimensional
structure of a protein from its amino acid sequence. Our model is
based on a distributedQ − learning approach. The experimental
evaluation of the proposed system has provided encouraging results,
indicating the potential of our proposal. The advantages and
drawbacks of the proposed approach are also emphasized.

Keywords – Bioinformatics, Distributed Reinforcement Learning,
Protein Folding.

I. I NTRODUCTION

PROTEINS are one of the most important classes of biologi-
cal macromolecules, being the carriers of the message

contained in the DNA. They are composed of amino acids,
which are arranged in a linear form and fold to form a three-
dimensional structure. Proteins have very important functions
in the organism, like structural functions in the muscles and
bones, catalytic functions for all biochemical reactions that
form the metabolism and they coordinate motion and signal
transduction.

Therefore, proteins may be considered the basic units of
life and a good understanding of their structure and functions
would lead to a better understanding of the processes that
occur in a living organism. As soon as it is synthesized as a
linear sequence of amino acids, a protein folds, in a matter
of seconds, to a stable three-dimensional structure, which
is called the protein’s native state. It is assumed that the
information for the folding process is contained exclusively
in the linear sequence of amino acids and that the protein in
its native state has a minimum free energy value. Once in
its stable three-dimensional state, a protein may perform its
functions - three-dimensional interactions with other proteins,
interactions that mediate the functions of the organism.

This work was possible with the financial support of the Sectorial Op-
erational Programme for Human Resources Development 2007-2013, co-
financed by the European Social Fund, under the project number POS-
DRU/107/1.5/S/76841 with the title “Modern Doctoral Studies: International-
ization and Interdisciplinarity”.

Gabriela Czibula, Maria-Iuliana Bocicor and Istvan-Gergely Czibula are
with Department of Computer Science, Babeş-Bolyai University, Cluj-Napoca,
1, M. Kogălniceanu street, 40084, Cluj-Napoca, Romania. Phone: +40-264-
405.327. E-mail:{gabis, iuliana, istvanc}@cs.ubbcluj.ro

The determination of the three-dimensional structure of a
protein, the so calledprotein foldingproblem, using the linear
sequence of amino acids is one of the greatest challenges
of bioinformatics, being an important research direction due
to its numerous applications in medicine (drug design [1],
disease prediction) and genetic engineering (cell modelling,
modification and improvement of the functions of certain
proteins).

Moreover, unlike the structure of other biological macro-
molecules (e.g., DNA), proteins have complex structures that
are difficult to predict. That is why different computational
intelligence approaches for solving the protein folding problem
have been proposed in the literature, so far.

Reinforcement Learning(RL) [5] is an approach to machine
intelligence in which an agent can learn to behave in a
certain way by receiving punishments or rewards on its chosen
actions.

In this paper we aim at proposing a distributed reinforce-
ment learning based model for solving thebidimensional
protein folding problem, which is anNP-complete problem
that refers to predicting the structure of a protein from
its amino acid sequence. Protein structure prediction is one
of the most important goals pursued by bioinformatics and
theoretical chemistry; it is highly important in medicine (for
example, in drug design) and biotechnology (for example, in
the design of novel enzymes). The model proposed in this
paper extends the reinforcement learning model that we have
previously introduced in [6], [7] for solving the problem.

We are addressing in this paper the bidimensional protein
structure prediction, but our model can be easily extended
to the problem of predicting the three-dimensional structure
of proteins. To our knowledge, except for the ant [8] based
approaches, the bidimensionalprotein foldingproblem has not
been addressed in the literature using distributed reinforcement
learning, so far.

The rest of the paper is organized as follows. Section II
presents theprotein folding problem and Section III briefly
describes existing approaches in solving theprotein folding
problem. The fundamentals of reinforcement learning are
given in Section IV-B. Section V introduces the distributed
reinforcement learning model that we propose for solving
the bidimensional protein folding problem. An experimental
evaluation of the proposed approach is given in Section VI,
as well as an analysis of the proposed model, emphasizing
its advantages and drawbacks. Section VII contains some
conclusions of the paper and future development of our work.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

404

II. T HE PROTEIN FOLDING PROBLEM. THE

HYDROPHOBIC-POLAR MODEL

An important class of abstract models for proteins are
lattice-based models - composed of a lattice that describes
the possible positions of amino acids in space and an energy
function of the protein, that depends on these positions. The
goal is to find the global minimum of this energy function, as
it is assumed that a protein in its native state has a minimum
free energy and the process of folding is the minimization of
this energy [9].

One of the most popular lattice-models is Dill’s
Hydrophobic-Polar (HP) model [10].

In the folding process the most important difference between
the amino acids is their hydrophobicity, that is how much they
are repelled from water. By this criterion the amino acids can
be classified in two categories:

• hydrophobicor non-polar (H) - the amino acids belong-
ing to this class are repelled by water;

• hydrophilic or polar (P) - the amino acids that belong to
this class have an affinity for water and tend to absorb it.

The HP model is based on the observation that the hy-
drophobic forces are very important factors in the protein fold-
ing process, guiding the protein to its native three dimensional
structure.

The primary structure of a protein is seen as a sequence of
n amino acids and each amino acid is classified in one of the
two categories: hydrophobic (H) or hydrophilic (P):

P = p1p2...pn, wherepi ∈ {H,P}, ∀1 ≤ i ≤ n

A conformation of the proteinP is a functionC, that maps
the protein sequenceP to the points of a two-dimensional
cartesian lattice.

If we denote:

B = {P = p1p2...pn| pi ∈ {H,P},∀1 ≤ i ≤ n, n ∈ N}

G = {G = (xi, yi)| xi, yi ∈ ℜ, 1 ≤ i ≤ n}

then a conformationC is defined as follows:

C : B → G

P = p1p2...pn 7→ {(x1, y1), (x2, y2), . . . , (xn, yn)}

(xi, yi) - represents the position in the two-dimensional
lattice to which the amino acidpi is mapped by the function
C, ∀1 ≤ i ≤ n

The mappingC is called apath if:

∀1 ≤ i, j ≤ n, with |i− j| = 1⇒ |xi − xj |+ |yi − yj | = 1

In fact, this definition states that the functionC is a path
if any two consecutive amino acids in the primary structure
of the protein are neighbors (horizontally or vertically) in the
bidimensional lattice. It is considered that any position of an
amino acid in the lattice may have a maximum number of 4
neighbors: up, down, left, right.

A pathC is self-avoidingif the functionC is an injection:

∀1 ≤ i, j ≤ n, with i 6= j ⇒ (xi, yi) 6= (xj , yj)

Fig. 1. A protein configuration for the sequenceP =

HPHPPHHPHPPHPHHPPHPH , of length 20. Black cir-
cles represent hydrophobic amino acids, while white circles represent
hydrophilic ones. The configuration may be represented by the
sequenceπ = RUULDLULLDRDRDLDRRU . The value of
the energy function for this configuration is -9.

This definition affirms that the mapped positions of two
different amino acids must not be superposed in the lattice.

A configuration C isvalid if it is a self avoiding path.
Figure 1 shows a configuration example for the protein

sequenceP = HPHPPHHPHPPHPHHPPHPH , of
length 20, where the hydrophobic amino acids are represented
in black and the hydrophilic ones are in white.

The energy function in the HP model reflects the fact that
hydrophobic amino acids have a propensity to form a hy-
drophobic core. Consequently the energy function adds a value
of -1 for each two hydrophobic amino acids that are mapped
by C on neighboring positions in the lattice, but that are not
consecutive in the primary structureP. Such two amino acids
are called topological neighbors. Any hydrophobic amino acid
in a valid conformationC can have at most 2 such neighbors
(except for the first and last aminoacids, that can have at most
3 topological neighbors).

If we define the functionI as:

I : {1, . . . , n} × {1, . . . , n} → {−1, 0}

where∀1 ≤ i, j ≤ n, with |i− j| ≥ 2

I(i, j) =

{

−1 if pi = pj = H and |xi − xj |+ |yi − yj | = 1
0 otherwise

then the energy function for a valid conformationC is
defined as follows:

E(C) =
∑

1≤i≤j−2≤n

I(i, j) (1)

The protein folding problem in the HP model is to find the
conformationC whose energy functionE(C) is minimum.
The energy function for the example configuration presented
in Figure 1 is -9: for each pair of hydrophobic amino acids that
are neighbors in the lattice, but not in the primary structure
of the protein a value of -1 is added. These pairs are: (1,6),
(1,14), (1,20), (3,6), (7,12), (7,14), (9,12), (15,18), (15,20).

A solution for the bidimensional HP protein folding prob-
lem, corresponding to ann-length sequenceP ∈ B can be
represented by an − 1 length sequenceπ = π1π2...πn−1,
πi ∈ {L,R,U,D}, ∀1 ≤ i ≤ n − 1, where each position

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

405

encodes the direction of the current amino acid relative to the
previous one (L-left, R-right, U-up, D-down). As an example,
the solution configuration corresponding to the sequence pre-
sented in Figure 1 isπ = RUULDLULLDRDRDLDRRU .

III. R ELATED WORK

In this section we briefly present several approaches existing
in the literature for solving theprotein fodingproblem.

A. Protein Folding

The protein structure prediction problem is one of the most
important problems in computational biology. Many approx-
imation and heuristics methods, that use different abstract
models tackle it.

Berger and Leighton [11] show that the protein folding
problem in the HP model is NP-complete, therefore various
approximation and heuristics methods approach this problem,
including Growth algorithms, Contact Interactions method and
general optimization techniques like Monte Carlo methods,
Tabu Search, Evolutionary and Genetic algorithms and Ant
Optimization algorithms.

Beutler and Dill [12] introduce a chain-growth method - the
Core-directed chain Growth method (CG), that uses a heuristic
bias function in order to assemble a hydrophobic core. This
method begins by counting the total number of hydrophobic
amino acids in the sequence and constructing a core, as square
as possible, that should contain all H amino acids. Then,
the CG method grows a chain conformation by adding one
“segment” at a time - a segment is a string of a few amino
acids, of a predetermined length.

Shmygelska and Hoos [13] present an Ant Colony Opti-
mization Algorithm that iteratively undergoes three phases: the
construction phase - each ant constructs a candidate solution
by sequentially growing a conformation of the given primary
sequence of the protein, starting from a randomly chosen
position in the sequence; the local search phase - the protein
conformations are further optimized by the ants; update phase
- the ants update the pheromone matrix based on values of the
energy function obtained after the first 2 phases.

Another algorithm, based on Ant Colony Optimization was
proposed by Talheim, Merkle and Middendorf [14], who
develop a hybrid population based ACO algorithm. Instead
of keeping and using pheromone information, as in traditional
ACO algorithms, the population based ACO - P-ACO transfers
a population of solutions from one iteration to another. The
hybrid P-ACO algorithm that the authors describe is called
PFold-P-ACO and it consists of a P-ACO part and a branch-
and-bound part. The latter uses the pheromone information
from the P-ACO and it starts when the former has found an
improvement over a certain number of iterations.

Unger and Moult [15] were the first ones to apply genetic
algorithms for the problem of protein structure prediction.
Their technique evolves a population of valid conformations
for a given protein sequence, using operations like mutation -
in the form of conventional Monte Carlo steps and crossover -
selected sequences are cut and rejoined to other sequences, at

the same point. To verify the validity of each new conforma-
tion, Metropolis-type criteria are used. This method proved to
find better solutions for the protein folding problem in the
bidimensional HP lattice model than the traditional Monte
Carlo methods.

A hybrid algorithm, which combines genetic algorithms and
tabu search algorithms is proposed in [16]. The authors intro-
duce the tabu search in the crossover and mutation operations,
as they believe this strategy can improve the local search
capability. The algorithm adopts a variable population size
to maintain the diversity of the population. A new ranking
selection strategy is used, which can accept inferior solutions
during the search process, thus having stronger hill-climbing
capabilities.

Chira has introduced in [17] a new evolutionary model with
hill-climbing genetic operators for the HP model of the protein
folding problem. The crossover operator is defined specifically
for this problem and it ensures an efficient exploration of the
search space. The hill climbing mutation is based on the pull
move operation, which is applied within a steepest-ascent hill
climbing procedure. To ensure the diversity of the genetic
material, the algorithm explicitly reinforces diversity after a
certain number of iterations.

There are also approaches in the literature in the direction of
using supervised machine learning techniques for protein fold
prediction. Support Vector Machine and the Neural Network
learning methods are used by Ding and Dubchak in [18] as
base classifiers for the protein fold recognition problem.

Researchers have also been focused on solving problems
that help solving the protein folding problem, such as the
prediction of the location of disulfide bridges [2].

We have previously introduced in [6], [7] a reinforcement
learning based model for solving the problem of predicting the
bidimensional structure of proteins in the hydrophobic-polar
model.

B. Distributed Protein Folding

The literature offers few approaches that make use of multi-
agent systems to the purpose of proposing solutions to this
problem. We will briefly present some of these approaches.

Bortolussi, Dovier and Fogolari present in [19] a high-
level agent-based framework for protein structure prediction.
The agents are separated on three layers, according to their
knowledge and power. The first layer contains agents that
explore the configuration space. At this level each amino acid
is modeled as an independent agent, that moves in the state
space (using a simulated annealing scheme), interacts and
communicates with its spatial neighbors in order to minimize
the energy function. As each agent in the first layer can
explore a relatively small neighborhood and the search space
is very complex, a good coordination between these agents
is considered to be necessary. This is achieved by some
higher-level agents - the strategic agents, who have a global
knowledge of the current configuration and whose role is to
coordinate the search agents (according to a global strategy),
as well as to control the cooling strategy for the temperature in
the simulated annealing technique. Last, but not least, the third

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

406

layer is composed of cooperative agents, which implement a
basic form of cooperation, based on secondary structure in-
formation, between lower-level agents. The cooperative agents
control the activity of the search and the strategic agents and
are also responsible for the termination of the simulation.

In [20], the authors present a bioinformatics framework,
called Evolution, which is based on a multi-agent system and
uses a blackboard architecture. There are three types of agents:
model agents, algorithm agents and interface agents and the
communication and coordination among them is achieved by
a blackboard mechanism, which also allows data sharing. The
blackboard is composed of several levels, each one recording
the solution elements needed for the resolution of the problem:
the amino acid sequence level - deals with the input amino
acids sequences; the HP sequence level - contains the HP
translations (of the input sequences), generated by the model
generator agent; the initial conformational space level - con-
tains the initial bidimensional or tridimensional conformations,
generated by the conformation generator agent (that is consid-
ered a model agent); the algorithm workspace level - records
all the conformations that were generated in the processes of
heuristic search and optimization, which are achieved by the
genetic agents (algorithm agents); the plausible conformation
level - contains the optimal conformations found by the genetic
agents as a result of the heuristic search and the optimization.
Finally, there are also the interface agents, that are used
for the implementation of numerous graphic user interfaces
and graphic tools that Evolution provides for the user-system
interaction.

In Artificial Intelligence, an agent is an autonomous entity
that receives perceptions and performs actions upon an en-
vironment in order to achieve a certain goal. Therefore, an
Ant Colony Optimization (ACO) method can be regarded as a
multi-agent system, where ants are simple agents which indi-
rectly communicate through interaction with the environment,
by depositing pheromone on the paths they follow. Conse-
quently, the ACO algorithm introduced in [13] by Shmygelska
and Hoos for the Protein Folding Problem can be viewed as
a multi-agent based approach.

IV. REINFORCEMENT LEARNING

The goal of building systems that can adapt to their en-
vironments and learn from their experiences has attracted
researchers from many fields including computer science,
mathematics, cognitive sciences [3], [4].

Reinforcement Learning(RL) [21] is an approach to ma-
chine intelligence that combines two disciplines to solve
successfully problems that neither discipline can address indi-
vidually:

• Dynamic programming- a field of mathematics that has
traditionally been used to solve problems of optimization
and control.

• Supervised learning- a general method for training a
parametrized function approximator to represent func-
tions.

Reinforcement learningis a synonym of learning by inter-
action [22]. During learning, the adaptive system tries some

actions (i.e., output values) on its environment, then, it is
reinforced by receiving a scalar evaluation (the reward) of
its actions. The reinforcement learning algorithms selectively
retain the outputs that maximize the received reward over time.
Reinforcement learning tasks are generally treated in discrete
time steps. In RL, the computer is simply given a goal to
achieve. The computer then learns how to achieve that goal
by trial-and-error interactions with its environment.

Reinforcement learningis learning what to do - how to map
situations to actions - so as to maximize a numericalreward
signal. The learner is not told which actions to take, as in
most forms of machine learning, but instead must discover
which actions yield the highest reward by trying them. In a
reinforcement learning problem, the agent receives from the
environment a feedback, known asreward or reinforcement;
the reward is received at the end, in a terminal state, or in any
other state, where the agent has correct information about what
he did well or wrong. The agent will learn to select actions
that maximize the receivedreward.

The agent’s goal, in a RL task is to maximize the sum of
the reinforcements received when starting from some initial
state and proceeding to a terminal state.

A reinforcement learning problem has three fundamental
parts [5]:

• The environment- represented by “states”. Every RL
system learns a mapping from situations to actions by
trial-and-error interactions with the environment.

• The reinforcement function- the “goal” of the RL system
is defined using the concept of a reinforcement function,
which is the exact function of future reinforcements the
agent seeks to maximize. In other words, there exists a
mapping from state/action pairs to reinforcements. After
performing an action in a given state, the RL agent will
receive some reinforcement (reward) in the form of a
scalar value. The RL agent learns to perform actions that
will maximize the sum of the reinforcements received
when starting from some initial state and proceeding to
a terminal state.

• The value (utility) function- explains how the agent
learns to choose “good” actions, or even how we might
measure the utility of an action. Two terms are defined:
a policy determines which action should be performed
in each state. The value of a state is defined as the sum
of the reinforcements received when starting in that state
and following some fixed policy to a terminal state. The
value (utility) function would therefore be the mapping
from states to actions that maximizes the sum of the
reinforcements when starting in an arbitrary state and
performing actions until a terminal state is reached.

At each time step,t, the learning system receives some
representation of the environment’s states, it takes an actiona,
and one step later it receives a scalar rewardrt, and finds itself
in a new states′. The two basic concepts behind reinforcement
learning are trial and error search and delayed reward [23].
The agent’s task is to learn a control policy,π : S → A, that
maximizes the expected sumE of the received rewards, with
future rewards discounted exponentially by their delay, where

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

407

E is defined asr0 + γ · r1 + γ2 · r2 + ... (0 ≤ γ < 1 is the
discount factor for the future rewards).

One key aspect of reinforcement learning is a trade-off
betweenexploitationandexploration[24]. To accumulate a lot
of reward, the learning system must prefer the best experienced
actions, however, it has to try (to experience) new actions in
order to discover better action selections for the future. There
are two basic RL designs to consider:

• The agent learns autility function (U) on states (or states
histories) and uses it to select actions that maximize the
expected utility of their outcomes.

• The agent learns anaction-value function(Q) giving the
expected utility of taking a given action in a given state.
This is calledQ-learning.

A. Q-learning

Q-learning [5] is another extension to traditional dynamic
programming (value iteration) and solves the problem of
the non-deterministicMarkov decision processes, in which
a probability distribution function defines a set of potential
successor states for a given action in a given state.

Rather then finding a mapping from states to state values,
Q-learning finds a mapping from state/action pairs to values
(calledQ-values). Instead of having an associated value func-
tion, Q-learning makes use of the Q-function. In each state,
there is a Q-value associated with each action. The definition
of a Q-value is the sum of the (possibly discounted) reinforce-
ments received when performing the associated action and
then following the given policy thereafter. Anoptimal Q-value
is the sum of the reinforcements received when performing
the associated action and then following the optimal policy
thereafter.

If Q(s, a) denotes the value of doing the actiona in states,
r(s, a) denotes the reward received in states after performing
actiona ands′ represents the state of the environment reached
by the agent after performing actiona in states, the Bell-
man equation for Q-learning (which represents the constraint
equation that must hold at equilibrium when the Q-values are
correct) is the following [25]:

Q(s, a) = r(s, a) + γ ·max
a′

Q(s′, a′) (2)

whereγ is the discount factor for the future rewards.
The general form of theQ − learning algorithm is given

below.

For each pair(s, a) initialize Q(s, a) to 0.
Repeat (for each episode)

Select the initial states.
Choosea from s using policy derived fromQ.

(ǫ-Greedy, SoftMax [5])
Repeat (for each step of the episode)

Take actiona, observer, s′.
Update the table entryQ(s, a) as follows
Q(s, a)← r(s, a) + γmaxa′ Q(s′, a′).

s→ s’
until s is terminal

Until the maximum number of episodes reached or
theQ-values do not change

The method for updating theQ-values estimates given in
Equation (2) can be modified in order to consider a learning
rate α ∈ [0, 1] [26], and consequently theQ-values are
adjusted according to (3):

Q(s, a) = (1−α)·Q(s, a)+α·(r(s, a)+γ·max
a′

Q(s′, a′)) (3)

B. Distributed Reinforcement Learning

Reinforcement learning (RL) is an approach to machine
intelligence, in which an autonomous agent learns to behave
in an environment, by receiving rewards - for its successes or
punishments - for its failures. By trial and error, the agent must
find an optimal policy, that selects the most appropriate action,
in each state, in order to achieve the goal. In recent years there
has been great interest in distributed reinforcement learning
multi-agent systems (MASs) consisting of agents that work
together in order to optimize a joint performance measure.

Distributed reinforcement learning problems may be mod-
eled in different ways, one of the most frequently used being
the Multi-Agent Markov Decision Process (MAMDP), which
is an extension of the single-agent Markov Decision Process
[25]. In an MAMDP each agent has a finite state space and
a finite action space and thus the joint state space will be the
Cartesian product of all state spaces of all the agents, while the
joint action space will be, similarly, the Cartesian product of
all action spaces, corresponding to all the agents. Therefore, an
MAMDP can be modeled as a 5-tuple(N,S,A, δ,R), where
N is the set of agents,S is the joint state space,A is the
joint action space,δ is the transition probability andR is the
reward. These last two functions -δ and R are similar to
those in the standard MDP, except that they are defined over
the joint state and joint action spaces, being independent of
the time step. Consequently, the Markov property still holds
within this model.

One of the most frequently used single agent RL algorithms
is Q-Learning [25], which finds a mapping from state/action
pairs to values (calledQ-values). An optimal Q-value is
the sum of reinforcements received when performing the
associated action and following the optimal policy thereafter.
Q-values were proven to converge to their optimal values
within the Q-Learning algorithm if all the state/action pairs
are visited an infinite number of times. Still, in MASs, the
convergence of Q-values cannot be guaranteed, as each agent
is simultaneously learning its own actions and the environment
becomes non-stationary.

In the literature, there are several approaches to the problem
of applying Q-Learning in MASs. Claus and Boutilier present
in [27] two ways in which Q-Learning could be used in MASs:
the Independent Learners (IL) Algorithm- agents ignore other
agents’ actions and each one learns its Q-values independently;
the Joint Action Learners (JAL)- agents that learn Q-values
for the joint state/action space, rather than the individual
state/action space. Each JAL maintains information about the

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

408

strategies of the other agents and chooses its actions according
to the expected value based on this information.

In [28] the author studies cooperative agents and inde-
pendent agents for the purpose of concluding whether the
former outperform the latter. The author states that several
independent RL agents will surely outperform one single RL
agent, due to the fact that they have more resources and better
chances of receiving rewards and then he proposes to study
the results obtained by several agents that cooperate. Three
ways of cooperation are identified: agents can communicate
instantaneous information such as perceptions, actions or re-
wards; they can communicate experienced episodes (sequences
of perceptions, actions and rewards); or they can communicate
learnt decision policies. The conclusion of the paper is that co-
operative RL agents that share episodes or policies learn faster
and converge sooner than independent agents, but coordination
also has some drawbacks, as sharing knowledge comes with a
communication cost and cooperative behavior for joint tasks
automatically implies a larger state space.

In [29], Lauer and Riedmiller propose an algorithm which
finds optimal policies for distributed Q-learning in determin-
istic environments. As it is considered impossible for each
agent to distinguish between different joint action vectors that
contain the same individual action for an agent, the individual
agents are not capable of computing Q-functions defined on
the current state of the whole environment and the joint vector
of actions. Therefore, the authors propose projecting the large
Q-table in smaller Q-tables that compress the information of
the large one, specific for each agent. A projection based on
the optimistic assumptionis introduced: each agent assumes
that the other agents will behave optimally, i.e. the joint action
vector composed of all the individual actions of the agents
represents an optimal action for the system. In this case, the
Q-values of each agent are chosen as the optimal values of
the large Q-table. Still, the optimal assumption can be violated
in the case of several optimal joint actions in a single state,
when the optimal behavior of each agent is not guaranteed. For
this reason, an additional mechanism for coordination between
the agents is introduced: the learning algorithm of each agent
updates the current policy only if there was an improvement
in its own Q-value.

Marino and Morales describe in [30] a new distributed Q-
Learning algorithm - DQL: the agents find a common policy
in a distributed environment by transmitting information about
how optimal each action is using traces (of all the other agents)
generated from transition between states. The final policy is
based on the most frequently selected actions.

V. OUR DISTRIBUTED REINFORCEMENTLEARNING

MODEL PROPOSAL

A. Background

In this section we present the reinforcement learning model
that we have previously introduced in [6] for solving the
bidimensionalprotein foldingproblem. More exactly, we are
focusing on predicting the bidimensional structure of a protein
sequence. The RL model introduced in [6] will be extended
in this section towards a distributed architecture.

Fig. 2. The states space.

Let us consider, in the following, thatP = p1p2...pn is
a protein HP sequence consisting ofn amino acids, where
pi ∈ {H,P}, ∀1 ≤ i ≤ n. As we have indicated in Subsection
II, the bidimensional structure ofP will be represented as an
n − 1-dimensional sequenceπ = π1π2...πn−1, where each
elementπk (1 ≤ k ≤ n) encodes the direction (L,U , R or
D) of the current amino acid location relative to the previous
one.

The RL task associated to theBPFP is defined as follows
[6]:

• The state spaceS (the agent’s environment) will consist
of 4

n−1

3
states, i.eS = {s1, s2, ..., s 4n−1

3

}. The initial
stateof the agent in the environment iss1. A statesik ∈
S(ik ∈ [1, 4

n−1

3
]) reached by the agent at a given moment

after it has visited statess1, si1 , si2 , ...sik−1
is a terminal

(final or goal) state if the number of states visited by the
agent in the current sequence isn − 1, i.e. k = n − 2.
A path from the initial to a final state will represent a
possible bidimensional structure of the protein sequence
P.

• The action spaceA consists of4 actions available to the
problem solving agent and corresponding to the4 pos-
sible directionsL(Left), U(Up), R(Right), D(Down)
used to encode a solution, i.eA = {a1, a2,
a3, a4}, wherea1 = L, a2 = U , a3 = R anda4 = D.

• The transition functionδ : S → P(S) between the states
is defined as in Formula 4.

δ(sj , ak) = s4·j−3+k ∀k ∈ [1, 4], ∀j, 1 ≤ j ≤
4n−1 − 1

3
(4)

This means that, at a given moment, from a states ∈ S
the agent can move in4 successor states, by executing
one of the4 possible actions. We say that a states′ ∈ S
that is accessible from states, i.e s′ ∈

⋃

a∈A δ(s, a), is
the neighbor(successor) state ofs.
The transitions between the states are equiprobable, the
transition probabilityP (s, s′) between a states and each
neighbor states′ of s is equal to0.25 .

• The reward function will be defined below (Formula (5)).

A graphical representation of the states space forBPFP

associated to ann-dimensional HP protein sequence is given
in Figure 2. The circles represent states and the transitions
between states are indicated by arrows labeled with the action
that leads the agent from a state to another.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

409

Let us consider a pathπ in the above defined evironment
from the initial to a final state,π = (π0π1π2 · · ·πn−1),
where π0 = s1 and ∀0 ≤ k ≤ n − 2 the stateπk+1 is
a neighbor of state πk. The sequence of actions obtained
following the transitions between the successive states from
pathπ will be denoted byaπ = (aπ0

aπ1
aπ2
· · · aπn−2

), where
πk+1 = δ(πk, aπk

), ∀0 ≤ k ≤ n−2. The sequenceaπ will be
refered as theconfigurationassociated to the pathπ and it can
be viewed as a possible bidimensional structure of the protein
sequenceP. Consequently we can associate to a pathπ a value
denoted byEπ representing the energy of the bidimensional
configurationaπ of proteinP(Subsection II).

The BPFP formulated as a RL problem will consist in
training the agent to find a pathπ from the initial to a final state
that will corespond to the bidimensional structure of protein
P given by the coresponding configurationaπ and having the
minimum associated energy.

It is known that the estimated utility of a state [25] in a
reinforcement learning process is the estimatedreward-to-go
of the state (the sum of rewards received from the given state
to a final state). So, after a reinforcement learning process,
the agent learns to execute those transitions that maximize the
sum of rewards received on a path from the initial to a final
state.

As we aim at obtaining a pathπ having the minimum
associated energyEπ, we define the reinforcement function
as follows (Formula (5)):

• if the transition generates a configuration that is notvalid
(i.e self-avoiding) (see Section II) the received reward is
0.01.

• the reward received after a transition to a non terminal
state isτ , whereτ > 0.01 is a small positive constant
(e.q 0.1);

• the reward received after a transition to a final state
πn−1 after statess1, π1, π2, ...πn−2 were visited is minus
the energy of the bidimensional structure of proteinP
corresponding to the configurationaπ.

r(πk|s1, π1, π2, ...πk−1) =







0.01 if aπ is not valid

−Eπ if k = n− 1
0.1 otherwise

,

(5)
where byr(πk|s1, π1, π2, ...πk−1) we denote the reward re-
ceived by the agent in stateπk, after it has visited states
π1, π2, ...πk−1.

Considering the reward defined in Formula (5), as the
learning goal is to maximize the total amount of rewards
received on a path from the initial to a final state, it can be
easily shown that the agent is trained to find a self avoiding
pathπ that minimizes the associated energyEπ.

During the training step of the learning process, the agent
will determine itsoptimal policy in the environment, i.e the
policy that maximizes the sum of the received rewards.

For training theBPF (Bidimensional Protein Folding)
agent, aQ-learning approach was proposed. We have proven in
[6] that, during the training process, theQ-values estimations
converge to their exact values, thus, at the end of the training

process, the estimations will be in the vicinity of the exact
values.

After the training step of the agent has been completed, the
solution learned by the agent is constructed by starting from
the initial state and following theGreedy mechanism until a
solution is reached. From a given statei, using theGreedy

policy, the agent transitions to a neighborj of i having the
maximumQ-value. Consequently, the solution of theBPFP
reported by the RL agent is a pathπ = (s1π1π2 · · ·πn−2)
from the initial to a final state, obtained following the policy
described above. We mention that there may be more than one
optimal policy in the environment determined following the
Greedy mechanism described above. In this case, the agent
may report a single optimal policy of all optimal policies,
according to the way it was designed. Considering the general
goal of a RL agent, it can be proved that the configuration
aπ corresponding to the pathπ learned by theBPF agent
converges, in the limit, to the sequence that corresponds to
the bidimensional structure of proteinP having the minimum
associated energy.

B. The proposed Distributed Approach

As we have shown in [6], a very large number of training
episodes is required in order to obtain an accurate solution
using theQ-learning approach presented in Subsection V-A.
That is why, in order to speed up the training process, we
extend the proposed approach towards a distributed one, in
which multiple cooperative agents learn to coordinate in order
to find the optimal policy in their environment. The approach
proposed in the section is a kind of concurrentQ-learning
approach.Q-learning is an approach toreinforcement learning
that finds a mapping from state/action pairs to values (called
Q-values), rather then finding a mapping from states to state
values. Instead of having an associated value function, Q-
learning makes use of the Q-function. In each state, there is
a Q-value associated with each action. The definition of a Q-
value is the sum of the (possibly discounted) reinforcements
received when performing the associated action and then
following the given policy thereafter. Anoptimal Q-value
is the sum of the reinforcements received when performing
the associated action and then following the optimal policy
thereafter.

We have two types of agents in our architecture:

• BPFA (Bidimensional Protein Folding Agents). Each
BPFA agent runs in a separate process or thread and
is trained using theQ-learning algorithm [6]. Each local
agent performs localQ-values estimations updates from
its own point of view.

• a BPFS (Bidimensional Protein Folding Supervisor)
agent wich supervises the learning process and synchro-
nizes the computations of the individualBPFA agents.
It keeps a blackboard [31] which stores the globalQ-
values estimations. The localBPFA agents use the
globalQ-values estimations stored in the blackboard and
comunicate to theBPFS agent their intention to update
a Q-value estimation. If a local agent tries to update
a certainQ-value, theBPFS agent will update the

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

410

global Q-value estimation only if the new estimation
received from the local agent is greater than theQ-values
estimations existing in the blackboard. This updating
strategy is based on our previous result from [6] in which
we have proven that in a non-distributed RL scenario
theQ-values estimates for each state-action pair increase
during the training process and are upper bounded by the
exact values.

We have two possible architectures for the proposed multi-
agent system:

1) The BPFA agents are running in the same process
with the supervisor agentBPFS. In this case each
BPFA agent has an instance of the supervisorBPFS

agent, and this will reduce the cost of communication
(messages exchanges) between the agents. The black-
board stored byBPFS allows a kind of indirect data
communication between the local agents and the global
supervising agent.

2) TheBPFA agents are distributed across multiple pro-
cesses/machines. In this case network communication
is involved when theBPFA agents ask the supervisor
for Q-values or request aQ-value update. In order
to reduce the number of messages exchanged between
BPFA agents and the supervisorBPFS, the frequency
for updating theQ-values in the blackboard can be
decreased if theBPFA agents will synchronize their
Q-values with the supervisor only after several training
epochs.

The training process consists of three phases and will be
briefly described in the following.

Phase 1. Initial phase

TheBPFS supervisor agent initializes with0 theQ-values
from the blackboard.

Phase 2. Training phase of eachBPFA agent

During some training episodes, the individualBPFA

agents will experiment (using theǫ-Greedy action selection
mechanism) some (possible optimal) paths from the initial to
a final state, updating theQ-values estimations according to
theQ− learning algorithm [32].

The general form of theQ − learning algorithm is given
in Figure 3. We denote in the following byQ(s, a) the
Q-value estimate associated to the states anda, as stored by
the blackboard of theBPFS agent.

Repeat (for each episode)
Select the initial states.
Choose actiona from s using policy derived fromQ.

(ǫ-Greedy, SoftMax [5])
Repeat (for each step of the episode)

Take actiona, observe the rewardr(s, a) and the next
states′.

BPFA agent asksBPFS agent for Q(s, a).
BPFS agent retrievesQ(s, a) from the blackboard.

BPFS sends the retrievedQ(s, a) to BPFA.
BPFA agent updates the table entryQ(s, a) as follows

Q(s, a) = (1− α) ·Q(s, a) + α · (r(s, a) + γ ·max
a′

Q(s′, a′))

whereα ∈ [0, 1] is a learning rate [26].
BPFA sends the newQ(s, a) to BPFS.
BPFS updatesQ(s, a) in the blackboard if needed
s→ s’

until s is terminal
Until the maximum number of episodes is reached or the

Q-values do not change

Fig. 3. The Q-learning algorithm.

Phase 3. Final phase

After the training of the multiagent system has been com-
pleted, the solution learned by theBPFS supervisor agent is
constructed by starting from the initial state and following the
Greedy mechanism until a solution is reached.

The architecture that we propose for the distributedQ −
learning system for solving thebidimensional protein folding
problem is presented in Figure 4. The message exchanges
between the agents, as highlighted in Figure 3, are illustrated
in Figure 4 by the labeled arrows.

VI. COMPUTATIONAL EXPERIMENT

In this section we aim at providing the reader with an easy
to follow example illustrating how our approach works.

Let us consider a HP protein sequenceP = HHPH,
consisting of four amino acids, i.en = 4. As we have
presented in Section V-A, the states space will consist of85
states, i.eS = {s1, s2, ..., s85}.

We have applied the distributed RL approach introduced in
Subsection V-B with the following settings:

Fig. 4. The distributedQ− learning architecture.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

411

State Action Action Action Action
a1 = L a2 = U a3 = R a4 = D

1 0.01532343 0.01286043 0.00835149 0.01531066
2 0.00394219 0.00412038 0.00066135 0.00411950
3 0.00420771 0.00394307 0.00420771 0.00039671
4 0.00039671 0.00039671 0.00394040 0.00394130
5 0.00403129 0.00057402 0.00403040 0.00394130
6 0.00000000 0.00000000 0.00010000 0.00000000
7 0.00000000 0.00000000 0.01000000 0.00010000
8 0.00010000 0.01000000 0.01000000 0.01000000
9 0.00000000 0.00010000 0.01000000 0.00000000
10 0.00000000 0.00000000 0.00010000 0.01000000
11 0.00000000 0.00000000 0.00000000 0.00010000
12 0.00010000 0.00000000 0.00000000 0.01000000
13 0.01000000 0.00010000 0.00010000 0.00010000
14 0.00010000 0.00010000 0.00010000 0.00010000
15 0.00010000 0.00010000 0.00010000 0.00010000
16 0.00010000 0.00000000 0.00000000 0.00000000
17 0.01000000 0.00010000 0.00000000 0.00000000
18 0.00000000 0.01000000 0.00010000 0.00000000
19 0.01000000 0.01000000 0.01000000 0.00010000
20 0.00010000 0.01000000 0.00000000 0.00000000
21 0.00000000 0.00010000 0.00000000 0.00000000
22 0.00000000 0.00000000 0.00000000 0.00000000

.......
85 0.00000000 0.00000000 0.00000000 0.00000000

TABLE I
THE Q-VALUES STORED IN THE BLACKBOARD.

• two localBPFA agents were used;
• the number of training episodes for each localBPFA

agent is40;
• both localBPFA agents have the same behaviour in the

Q − learning scenario: they use theǫ-Greeedy action
selection mechanism, a learning rateα = 0.01 in order
to assure the convergence of the algorithm and a discount
factor for the future rewardsγ = 0.9.

Using the above defined settings and under the assumptions
that the state action pairs are equally visited during the training
and that each localBPFA agent explores its search space (the
ǫ parameter is set to1), theQ-values indicated in Table I were
obtained by the supervisorBPFS agent.

After the training of theBPFA agents was completed,
the solution reported by theBPFS agent is the pathπ =
(s1s2s7s28) having the associatedconfigurationaπ = (LUR),
determined starting from states1, following the Greedy

policy.
The solution learned by theBPFS agent is represented in

Figure 5 and has an energy of−1.

Fig. 5. The learned solution isLUR. The value of the energy function
for this configuration is−1.

Consequently, theBPFS agent learns the optimal solution
of the bidimensional protein folding problem, i.e the bidimen-

sional structure of the proteinP that has a minimum associated
energy (−1).

Regarding the RL approach previously introduced in [6],
[7] for solving the bidimensional protein folding problem,
approach that has been extended in this paper towards a
distributed one, we remark the following:

• The training process during an episode has a time com-
plexity of θ(n), wheren is the length of the HP protein
sequence. Consequently, assuming that the number of
training episodes isk, the overall complexity of the
algorithm for training aBPFA agent isθ(k · n).

• If the dimensionn of the HP protein sequence is large
and consequently the state space becomes very large
(consisting of4

n−1

3
states), in order to store theQ values

estimates, a neural network should be used.

The main drawback of the non-distributed learning approach
is that a very large number of training episodes has to be
considered in order to obtain accurate results and this leads to
a slow convergence.

It is obvious that the distributed RL approach presented in
this paper, by using multiple agents during the training step
reduces the overall computational time. The problem that has
to be further investigated is how to preserve the accuracy of
the results in the distributed approach.

VII. C ONCLUSIONS ANDFURTHER WORK

We have proposed in this paper a distributed reinforcement
learning based model for solving the bidimensional protein
folding problem. To our knowledge, except for the ant based
approaches, the bidimensionalprotein foldingproblem has not
been addressed in the literature using distributed reinforcement
learning, so far.

We plan to extend the evaluation of the proposed distributed
RL model for some large HP protein sequences, to further test
its performance. We will also investigate possible improve-
ments of the distributed RL model by improving the behavior
of the localBPFA agents, by using different reinforcement
functions and by adding different local search mechanisms in
order to increase the agents’ performance.

REFERENCES

[1] T. F. Gharib, “A hybrid approach for indexing and searching protein
structures,”WSEAS TRANSACTIONS on COMPUTERS, vol. 8, pp. 966–
975, 2009.

[2] H.-H. Lin and L.-Y. Tseng, “Prediction of disulfide bonding pattern
based on support vector machine with parameters tuned by multiple
trajectory search,”WSEAS TRANSACTIONS on COMPUTERS, vol. 8,
pp. 1429–1439, 2009.

[3] J. Wu, “An advanced hybrid machine learning approach for assessment
of the change of gait symmetry,”WSEAS TRANSACTIONS on COM-
PUTERS, vol. 8, pp. 1522–1532, 2009.

[4] Y. C. Alicia Tang, S. M. Zain, and N. A. Rahman, “Design and
development of a qualitative simulator for learning organic reactions,”
INTERNATIONAL JOURNAL OF COMPUTERS, vol. 3, pp. 96–103,
2009.

[5] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduction.
MIT Press, 1998.

[6] G. Czibula, M. Bocicor, and I. Czibula, “A reinforcement learning model
for solving the folding problem,”International Journal of Computer
Technology and Applications, vol. 2, pp. 171–182, 2011.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

412

[7] G. Czibula, M. Bocicor, and I. G. Czibula, “An experiment onprotein
structure prediction using reinforcement learning,”Studia Babes-Bolyai
Informatica, vol. LVI, p. to appear, 2011.

[8] M. Dorigo and T. Sẗutzle, Ant Colony Optimization. Scituate, MA,
USA: Bradford Company, 2004.

[9] C. B. Anfinsen, “Principles that govern the folding of protein chains,”
Science, vol. 181, pp. 223–230, 1973.

[10] K. Dill and K. Lau, “A lattice statistical mechanics model of the
conformational sequence spaces of proteins,”Macromolecules, vol. 22,
pp. 3986–3997, 1989.

[11] B. Berger and T. Leighton, “Protein folding in HP model is NP-
complete,”Journal of Computational Biology, vol. 5, pp. 27–40, 1998.

[12] T. Beutler and K. Dill, “A fast conformational search strategy for finding
low energy structures of model proteins,”Protein Science, vol. 5, pp.
2037–2043, 1996.

[13] A. Shmygelska and H. Hoos, “An ant colony optimisation algorithm
for the 2D and 3D hydrophobic polar protein folding problem,”BMC
Bioinformatics, vol. 6, 2005.

[14] T. Thalheim, D. Merkle, and M. Middendorf, “Protein folding in the HP-
model solved with a hybrid population based ACO algorithm,”IAENG
International Jurnal of Computer Science, vol. 35, 2008.

[15] R. Unger and J. Moult, “Genetic algorithms for protein folding simula-
tions,” Mol. Biol., vol. 231, pp. 75–81, 1993.

[16] W. Zhang and T. G. Dietterich, “Solving combinatorial optimization
tasks by reinforcement learning: A general methodology applied to
resource-constrained scheduling,”Journal of Artificial Intelligence Re-
seach, vol. 1, pp. 1–38, 2000.

[17] C. Chira, “Hill-climbing search in evolutionary models for protein
folding simulations,”Studia Informatica, vol. LV, pp. 29–40, 2010.

[18] C. H. Q. Ding and I. Dubchak, “Multi-class protein fold recognition
using support vector machines and neural networks,”Bioinformatics,
vol. 17, pp. 349–358, 2001.

[19] L. Bortolussi, A. Dovier, and F. Fogolari, “Agent-based protein structure
prediction,” Multiagent and Grid Systems, pp. 183–197, 2007.

[20] P. P. G. Perez, H. I. Beltran, and A. Rojo-Dominguez, “Multi-agent
systems applied in the modeling and simulation of biological problems:
A case study in protein folding,”World Academy of Science, Engineering
and Technology, pp. 128–138, 2009.

[21] L. J. Lin, “Self-improving reactive agents based on reinforcement
learning, planning and teaching,”Machine Learning, vol. 8, pp. 293–
321, 1992.

[22] A. Perez-Uribe, “Introduction to reinforcement learning,” 1998,
http://lslwww.epfl.ch/∼anperez/RL/RL.html.

[23] D. Chapman and L. P. Kaelbling, “Input generalization in delayed
reinforcement learning: an algorithm and performance comparisons,”
in Proceedings of the 12th International Joint Conference on Artificial
intelligence - Volume 2. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1991, pp. 726–731.

[24] S. Thrun, “The role of exploration in learning control,” inHandbook for
Intelligent Control: Neural, Fuzzy and Adaptive Approaches. Florence,
Kentucky: Van Nostrand Reinhold, 1992.

[25] S. Russell and P. Norvig,Artificial Intelligence - A Modern Approach,
ser. Prentice Hall International Series in Artificial Intelligence. Prentice
Hall, 2003.

[26] C. J. C. H. Watkins and P. Dayan, “Q-learning,”Machine Learning,
vol. 8, no. 3-4, pp. 279–292, 1992.

[27] C. Claus and C. Boutilier, “The dynamics of reinforcement learning
in cooperative multiagent systems,”In Proceedings of the Fifteenth
National Conference on Artificial Intelligence, pp. 746–752, 1998.

[28] M. Tan, “Multi-agent reinforcement learning: Independent vs. coopera-
tive agents,” pp. 487–494, 1997.

[29] M. Lauer and M. Riedmiller, “An algorithm for distributed reinforcement
learning in cooperative multi-agent systems,”Proceedings of Interna-
tional Conference on Machine Learning (ICML), pp. 535–542, 2000.

[30] C. E. Mariano and E. Morales, “A new distributed reinforcement learning
algorithm for multiple objective optimization problems,”Lecture Notes
In Artificial Intelligence, pp. 290–299, November 2000.

[31] T. Gonzaga, C. Bentes, R. Farias, M. C. Castro, and A. C. Garcia, “Using
distributed-shared memory mechanisms for agents communication in a
distributed system,” inProceedings of the Seventh International Con-
ference on Intelligent Systems Design and Applications. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 39–46.

[32] P. Dayan and T. Sejnowski, “TD(Lambda) converges with probability
1,” Mach. Learn., vol. 14, pp. 295–301, 1994.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

413

