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Abstract—The determination of the three-dimensional structure The determination of the three-dimensional structure of a
of a protein, the so callegrotein folding problem, using the protein, the so callegrotein foldingproblem, using the linear

linear sequence of amino acids is one of the greatest Cha"engﬁ%]uence of amino acids is one of the greatest challenges
of bioinformatics, being an important research direction due

to its numerous applications in medicine (drug design, disea@fa bioinformatics, being an important research direction due

prediction) and genetic engineering (cell modelling, modificatiof® its numerous applications in medicine (drug design [1],
and improvement of the functions of certain proteins). We adisease prediction) and genetic engineering (cell modelling,

introducing in this paper a distributed reinforcement learning basegodification and improvement of the functions of certain
approach for solving théidimensional protein foldingproblem, an g[oteins).

NP-complete problem that refers to predicting the bidimension
structure of a protein from its amino acid sequence. Our model isMoreover, unlike the structure of other biological macro-
based on a distribute@ — learning approach. The experimental molecules (e.g., DNA), proteins have complex structures that

evaluation of the proposed system has provided encouraging res%% difficult to predict. That is why different computational
indicating the potential of our proposal. The advantages and ’

drawbacks of the proposed approach are also emphasized. intelligence approaches for solving the protein folding problem
have been proposed in the literature, so far.
Keywords — Bioinformatics, Distributed Reinforcement Learning,

Protein Folding. Reinforcement Learnin(RL) [5] is an approach to machine

intelligence in which an agent can learn to behave in a
certain way by receiving punishments or rewards on its chosen
. INTRODUCTION actions.

OTEINS are one of the most important classes of biologi- In this paper we aim at proposing a distributed reinforce-

cal macromolecules, being the carriers of the messagent learning based model for solving tliedimensional
contained in the DNA. They are composed of amino acidgiotein folding problem, which is arNP-complete problem
which are arranged in a linear form and fold to form a thre¢hat refers to predicting the structure of a protein from
dimensional structure. Proteins have very important functioit§ amino acid sequence. Protein structure prediction is one
in the organism, like structural functions in the muscles ard the most important goals pursued by bioinformatics and
bones, catalytic functions for all biochemical reactions th#eoretical chemistry; it is highly important in medicine (for
form the metabolism and they coordinate motion and signéxample, in drug design) and biotechnology (for example, in
transduction. the design of novel enzymes). The model proposed in this

Therefore, proteins may be considered the basic units pper extends the reinforcement learning model that we have

life and a good understanding of their structure and functiopgeviously introduced in [6], [7] for solving the problem.

would lead to a better understanding of the processes thajye are addressing in this paper the bidimensional protein
occur in a living organism. As soon as it is synthesized assgycture prediction, but our model can be easily extended
linear sequence of amino acids, a protein folds, in a matigf he problem of predicting the three-dimensional structure
of seconds, to a stable three-dimensional structure, whigh proteins. To our knowledge, except for the ant [8] based
is called the protein’s native state. It is assumed that ﬂéﬁproaches, the bidimensiomabtein foldingproblem has not

information for the folding process is contained exclusiveljeen addressed in the literature using distributed reinforcement
in the linear sequence of amino acids and that the prote|n|gaming so far.

its native state has a minimum free energy value. Once in ) . .
its stable three-dimensional state, a protein may perform its! N€ rest of the paper is organized as follows. Section II
functions - three-dimensional interactions with other proteingrésents theprotein folding problem and Section III briefly
interactions that mediate the functions of the organism. ~ describes existing approaches in solving pretein folding
problem. The fundamentals of reinforcement learning are
This work was possible with the financial support of the Sectorial Ofgiven in Section IV-B. Section V introduces the distributed

erational Programme for Human Resources Development 2007-2013, g8inforcement |eaming model that we propose for soIving
financed by the European Social Fund, under the project number P(%

DRU/107/1.5/S/76841 with the title “Modern Doctoral Studies: Internationa—ﬁe bidimensional protein fOIdlng prOblem' An eXpe”mental

ization and Interdisciplinarity”. evaluation of the proposed approach is given in Section VI,
Gabriela Czibula, Maria-luliana Bocicor and Istvan-Gergely Czibula argg \well as an analysis of the proposed model, emphasizing
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II. THE PROTEIN FOLDING PROBLEM. THE
HYDROPHOBIG-POLAR MODEL
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An important class of abstract models for proteins are
lattice-based models - composed of a lattice that describes
the possible positions of amino acids in space and an energy
function of the protein, that depends on these positions. The
goal is to find the global minimum of this energy function, as
it is assumed that a protein in its native state has a minimum
free energy and the process of folding is the minimization of
this energy [9].

7
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o . smFig. 1. A protein configuration for the sequenc® =
One of the most popular lattice-models is Dill'S;pypppyyprpprpHEPPHPH, of length 20. Black cir-
Hydrophobic-Polar (HP) model [10]. cles represent hydrophobic amino acids, while white circles represent

In the folding process the most important difference betwe@gdrophilic ones. The configuration may be represented by the
the amino acids is their hydrophobicity, that is how much thesequencer = RUULDLULLDRDRDLDRRU. The value of
are repelled from water. By this criterion the amino acids cdf¢ energy function for this configuration is -9.
be classified in two categories:

+ hydrophobicor non-polar (H) - the amino acids belong- s efinition affirms that the mapped positions of two

Ing to th.|.s class are repelled by. Watef? different amino acids must not be superposed in the lattice.
» hydrophilic or polar (P) - the amino acids that belong to A configuration C isvalid if it is a self avoiding path.

this class have an affinity for water and tend to absorb it. _. ' . .
Figure 1 shows a configuration example for the protein

The HP model is based on the observation that the hyéquencep — HPHPPHHPHPPHPHHPPHPH, of
drophobic forces are very important factors in the protein fo'%ngth 20, where the hydrophobic amino acids are represented
ing process, guiding the protein to its native three dimensiongl pjack and the hydrophilic ones are in white.
structure. o The energy function in the HP model reflects the fact that

The primary structure of a protein is seen as a sequencengfirophobic amino acids have a propensity to form a hy-
n amino acids and each amino acid is classified in one of thg,phopic core. Consequently the energy function adds a value
two categories: hydrophobic (H) or hydrophilic (P): of -1 for each two hydrophobic amino acids that are mapped

P = pipa...pn, Wherep; € {H, P}, V1 <i<n by C on peighboring_positions in the lattice, but that are not
consecutive in the primary structuf2 Such two amino acids

A conformation of the proteirP is a functionC, that maps are called topological neighbors. Any hydrophobic amino acid
the protein sequenc® to the points of a two-dimensionalin a valid conformationC' can have at most 2 such neighbors
cartesian lattice. (except for the first and last aminoacids, that can have at most

If we denote: 3 topological neighbors).

) If we define the function’ as:
B={P =pips..pn| pi € {H,P},V1 <i<n,neN}
_ I:{1,....,n}x{1,....,n} = {-1,0}
o _ whereV1 <i,j <mn, with |i — j| > 2
then a conformatior® is defined as follows:

. -1 ifp,=p;, =Hand|z; — x|+ |yi —y;| =1
C:B—=¢ 16,5) = { 0 otherwise ’ ’
P =pip2...pn = {(x1,91), (T2,42),- -, (Tn,Yn)} then the energy function for a valid conformatian is

o . . efined as follows:
(x;,y;) - represents the position in the two-dimensiona

lattice to which the amino acig; is mapped by the function _ .
C.vi<i<n E(C) = <Z 16 &
The mappingC is called apathif: tsissm2sn
o o The protein folding problem in the HP model is to find the
V1 <i,j <n, with [i —j| =1 = |z; — ;| + |y —y;l =1 conformationC' whose energy functioZ(C) is minimum.
In fact, this definition states that the functigh is a path The energy function for the example configuration presented

if any two consecutive amino acids in the primary structuf8 Figure 1 is -9: for each pair of hydrophobic amino acids that
of the protein are neighbors (horizontally or vertically) in th&'€ Neighbors in the lattice, but not in the primary structure

bidimensional lattice. It is considered that any position of &f the protein a value of -1 is added. These pairs are: (1,6),
amino acid in the lattice may have a maximum number ofg"14)’ (1:20)' (3,6), (7_42)' (7_'14)’ (9,12), (1,5'18)’ ,(15'20)'
neighbors: up, down, left, right. A solution for the bidimensional HP protein folding prob-

A path C' is self-avoidingif the functionC' is an injection: lem, corresponding to an-length sequencé” € B can be
represented by a — 1 length sequence = mms...m,_1,

V1 <i,j <n,withi#j= (z;,4:) # (2,y;) m € {L,R,U,D}, V1 < i < n — 1, where each position
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encodes the direction of the current amino acid relative ¢o tthe same point. To verify the validity of each new conforma-
previous one (L-left, R-right, U-up, D-down). As an examplejon, Metropolis-type criteria are used. This method proved to
the solution configuration corresponding to the sequence pfied better solutions for the protein folding problem in the
sented in Figure 1is = ROUULDLULLDRDRDLDRRU. bidimensional HP lattice model than the traditional Monte
Carlo methods.

A hybrid algorithm, which combines genetic algorithms and
tabu search algorithms is proposed in [16]. The authors intro-

In this section we briefly present several approaches existiigce the tabu search in the crossover and mutation operations,
in the literature for solving therotein fodingproblem. as they believe this strategy can improve the local search
capability. The algorithm adopts a variable population size
A. Protein Folding to ma_intain the diyersity of tr_le population. A new ranki_ng

selection strategy is used, which can accept inferior solutions

The protein structure prediction problem is one of the moglyring the search process, thus having stronger hill-climbing
important problems in computational biology. Many approx:apabilities.
imation and heuristics methods, that use different abstraciChira has introduced in [17] a new evolutionary model with
models tackle it. hill-climbing genetic operators for the HP model of the protein

Berger and Leighton [11] show that the protein foldingolding problem. The crossover operator is defined specifically
problem in the HP model is NP-complete, therefore varioggr this problem and it ensures an efficient exploration of the
approximation and heuristics methods approach this problegaarch space. The hill climbing mutation is based on the pull
including Growth algorithms, Contact Interactions method anflove operation, which is applied within a steepest-ascent hill
general optimization techniques like Monte Carlo methodglimbing procedure. To ensure the diversity of the genetic
Tabu Search, Evolutionary and Genetic algorithms and Agfaterial, the algorithm explicitly reinforces diversity after a
Optimization algorithms. certain number of iterations.

Beutler and Dill [12] introduce a chain-growth method - the There are also approaches in the literature in the direction of
Core-directed chain Growth method (CG), that uses a heurisgi§ing supervised machine learning techniques for protein fold
bias function in order to assemble a hydrophobic core. Thigediction. Support Vector Machine and the Neural Network
method begins by counting the total number of hydrophobigarning methods are used by Ding and Dubchak in [18] as
amino acids in the sequence and constructing a core, as sq§ie classifiers for the protein fold recognition problem.
as possible, that should contain all H amino acids. Then,Researchers have also been focused on solving problems
the CG method grows a chain conformation by adding ofgat help solving the protein folding problem, such as the
‘segment” at a time - a segment is a string of a few amingediction of the location of disulfide bridges [2].
acids, of a predetermined length. We have previously introduced in [6], [7] a reinforcement

Shmygelska and Hoos [13] present an Ant Colony Opfearning based model for solving the problem of predicting the

mization Algorithm that iteratively undergoes three phases: thgilimensional structure of proteins in the hydrophobic-polar
construction phase - each ant constructs a candidate solutigggel.

by sequentially growing a conformation of the given primary
sequence of the protein, starting from a randomly chosen = ) )
position in the sequence; the local search phase - the protginDistributed Protein Folding
conformations are further optimized by the ants; update phaseThe literature offers few approaches that make use of multi-
- the ants update the pheromone matrix based on values of dlgent systems to the purpose of proposing solutions to this
energy function obtained after the first 2 phases. problem. We will briefly present some of these approaches.
Another algorithm, based on Ant Colony Optimization was Bortolussi, Dovier and Fogolari present in [19] a high-
proposed by Talheim, Merkle and Middendorf [14], whdevel agent-based framework for protein structure prediction.
develop a hybrid population based ACO algorithm. Insteathe agents are separated on three layers, according to their
of keeping and using pheromone information, as in traditionkhowledge and power. The first layer contains agents that
ACO algorithms, the population based ACO - P-ACO transfeexplore the configuration space. At this level each amino acid
a population of solutions from one iteration to another. The modeled as an independent agent, that moves in the state
hybrid P-ACO algorithm that the authors describe is callespace (using a simulated annealing scheme), interacts and
PFold-P-ACO and it consists of a P-ACO part and a brancbemmunicates with its spatial neighbors in order to minimize
and-bound part. The latter uses the pheromone informatithe energy function. As each agent in the first layer can
from the P-ACO and it starts when the former has found axplore a relatively small neighborhood and the search space
improvement over a certain number of iterations. is very complex, a good coordination between these agents
Unger and Moult [15] were the first ones to apply genetis considered to be necessary. This is achieved by some
algorithms for the problem of protein structure predictiorhigher-level agents - the strategic agents, who have a global
Their technique evolves a population of valid conformationehowledge of the current configuration and whose role is to
for a given protein sequence, using operations like mutatiorteordinate the search agents (according to a global strategy),
in the form of conventional Monte Carlo steps and crossoverns well as to control the cooling strategy for the temperature in
selected sequences are cut and rejoined to other sequenceabgeatimulated annealing technique. Last, but not least, the third

Ill. RELATED WORK

406



INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

layer is composed of cooperative agents, which implementetions (i.e., output values) on its environment, then, it is
basic form of cooperation, based on secondary structure neinforced by receiving a scalar evaluation (the reward) of
formation, between lower-level agents. The cooperative ageitssactions. The reinforcement learning algorithms selectively
control the activity of the search and the strategic agents amdain the outputs that maximize the received reward over time.
are also responsible for the termination of the simulation. Reinforcement learning tasks are generally treated in discrete
In [20], the authors present a bioinformatics frameworkime steps. In RL, the computer is simply given a goal to
called Evolution, which is based on a multi-agent system aagdhieve. The computer then learns how to achieve that goal
uses a blackboard architecture. There are three types of agebystrial-and-error interactions with its environment.
model agents, algorithm agents and interface agents and thReinforcement learningg learning what to do - how to map
communication and coordination among them is achieved bijfuations to actions - so as to maximize a numeriealard
a blackboard mechanism, which also allows data sharing. Téignal. The learner is not told which actions to take, as in
blackboard is composed of several levels, each one recordingst forms of machine learning, but instead must discover
the solution elements needed for the resolution of the problewhich actions yield the highest reward by trying them. In a
the amino acid sequence level - deals with the input aminginforcement learning problem, the agent receives from the
acids sequences; the HP sequence level - contains the éfidironment a feedback, known emward or reinforcement;
translations (of the input sequences), generated by the moghel reward is received at the end, in a terminal state, or in any
generator agent; the initial conformational space level - coother state, where the agent has correct information about what
tains the initial bidimensional or tridimensional conformationsie did well or wrong. The agent will learn to select actions
generated by the conformation generator agent (that is conslitht maximize the receivegward.

ered a model agent); the algorithm workspace level - recordsThe agent’s goal, in a RL task is to maximize the sum of
all the conformations that were generated in the processesi¥ reinforcements received when starting from some initial
heuristic search and optimization, which are achieved by tBgte and proceeding to a terminal state.

genetic agents (algorithm agents); the plausible conformationa reinforcement learning problem has three fundamental
level - contains the optimal conformations found by the genetigy s [5):

agents as a result of the heuristic search and the optimization.
Finally, there are also the interface agents, that are used
for the implementation of numerous graphic user interfaces
and graphic tools that Evolution provides for the user-system
interaction.

In Artificial Intelligence, an agent is an autonomous entity
that receives perceptions and performs actions upon an en-
vironment in order to achieve a certain goal. Therefore, an
Ant Colony Optimization (ACO) method can be regarded as a
multi-agent system, where ants are simple agents which indi-
rectly communicate through interaction with the environment,
by depositing pheromone on the paths they follow. Conse-
qguently, the ACO algorithm introduced in [13] by Shmygelska
and Hoos for the Protein Folding Problem can be viewed as
a multi-agent based approach.

The environment represented by “states”. Every RL
system learns a mapping from situations to actions by
trial-and-error interactions with the environment.

« The reinforcement functionthe “goal” of the RL system

is defined using the concept of a reinforcement function,

which is the exact function of future reinforcements the

agent seeks to maximize. In other words, there exists a

mapping from state/action pairs to reinforcements. After

performing an action in a given state, the RL agent will

receive some reinforcement (reward) in the form of a

scalar value. The RL agent learns to perform actions that

will maximize the sum of the reinforcements received
when starting from some initial state and proceeding to

a terminal state.

o The value (utility) function- explains how the agent
learns to choose “good” actions, or even how we might
measure the utility of an action. Two terms are defined:
The goal of building systems that can adapt to their en- a policy determines which action should be performed

vironments and learn from their experiences has attracted in each state. The value of a state is defined as the sum

researchers from many fields including computer science, of the reinforcements received when starting in that state
mathematics, cognitive sciences [3], [4]. and following some fixed policy to a terminal state. The
Reinforcement LearningRL) [21] is an approach to ma- value (utility) function would therefore be the mapping
chine intelligence that combines two disciplines to solve from states to actions that maximizes the sum of the
successfully problems that neither discipline can address indi- reinforcements when starting in an arbitrary state and
vidually: performing actions until a terminal state is reached.

« Dynamic programming a field of mathematics that has At each time stepf, the learning system receives some
traditionally been used to solve problems of optimizatiofepresentation of the environment’s staté takes an action,
and control. and one step later it receives a scalar reway@nd finds itself

« Supervised learning a general method for training ajn a new state’. The two basic concepts behind reinforcement
parametrized function approximator to represent fungsaring are trial and error search and delayed reward [23].
tions. The agent’s task is to learn a control poliey; S — A, that

Reinforcement learnings a synonym of learning by inter- maximizes the expected sul of the received rewards, with

action [22]. During learning, the adaptive system tries sonfieture rewards discounted exponentially by their delay, where

IV. REINFORCEMENT LEARNING
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E is defined asg +v -7 +9%-ro+... (0 <y < 1is the sS— s
discount factor for the future rewards). until s is terminal
One key aspect of reinforcement learning is a trade-off Until the maximum number of episodes reached or

betweerexploitationandexploration[24]. To accumulate a lot the Q-values do not change
of reward, the learning system must prefer the best experiencedhe method for updating th€-values estimates given in
actions, however, it has to try (to experience) new actions fguation (2) can be modified in order to consider a learning
order to discover better action selections for the future. Thenate o« € [0,1] [26], and consequently thé&)-values are
are two basic RL designs to consider: adjusted according to (3):
« The agent learns atility function (U) on states (or states
histories) and uses it to select actions that maximize th@(s’a) = (1-a)-Q(s, a)+a-(r(s, a)+ymax Q(s', a')) (3)
expected utility of their outcomes. o
o The agent learns aaction-value functio(Q) giving the

expected utility of taking a given action in a given statcelz.5 - Distributed Reinforcement Learning
This is calledQ-learning. Reinforcement learning (RL) is an approach to machine

intelligence, in which an autonomous agent learns to behave
in an environment, by receiving rewards - for its successes or
punishments - for its failures. By trial and error, the agent must

Q-learning [5] is another extension to traditional dynamidind an optimal policy, that selects the most appropriate action,
programming (value iteration) and solves the problem @f each state, in order to achieve the goal. In recent years there
the non-deterministicMarkov decision processes, in whichhas been great interest in distributed reinforcement learning
a probability distribution function defines a set of potentiahulti-agent systems (MASs) consisting of agents that work
successor states for a given action in a given state. together in order to optimize a joint performance measure.

Rather then finding a mapping from states to state valuesDistributed reinforcement learning problems may be mod-
Q-learning finds a mapping from state/action pairs to valuesed in different ways, one of the most frequently used being
(calledQ-values). Instead of having an associated value funéte Multi-Agent Markov Decision Process (MAMDP), which
tion, Q-learning makes use of the Q-function. In each staig,an extension of the single-agent Markov Decision Process
there is a Q-value associated with each action. The definitifg®]. In an MAMDP each agent has a finite state space and
of a Q-value is the sum of the (possibly discounted) reinforca-finite action space and thus the joint state space will be the
ments received when performing the associated action abdrtesian product of all state spaces of all the agents, while the
then following the given policy thereafter. Aoptimal Q-value joint action space will be, similarly, the Cartesian product of
is the sum of the reinforcements received when performingl action spaces, corresponding to all the agents. Therefore, an
the associated action and then following the optimal poligy AMDP can be modeled as a 5-tupléV, S, A, 6, R), where
thereatfter. N is the set of agentsS is the joint state spaced is the

If Q(s,a) denotes the value of doing the actiarin states, joint action spaced is the transition probability and is the
r(s,a) denotes the reward received in statafter performing reward. These last two functionsd- and R are similar to
actiona ands’ represents the state of the environment reachgétbse in the standard MDP, except that they are defined over
by the agent after performing actiamin states, the Bell- the joint state and joint action spaces, being independent of
man equation for Q-learning (which represents the constraihe time step. Consequently, the Markov property still holds
equation that must hold at equilibrium when the Q-values angthin this model.

A. Q-learning

correct) is the following [25]: One of the most frequently used single agent RL algorithms
is Q-Learning [25], which finds a mapping from state/action
Q(s,a) =r(s,a) +v -maxQ(s',a’) (2) pairs to values (calledQ-values). An optimal Q-value is
o the sum of reinforcements received when performing the
where~ is the discount factor for the future rewards.  associated action and following the optimal policy thereafter.
The general form of th€) — learning algorithm is given Q-values were proven to converge to their optimal values
below. within the Q-Learning algorithm if all the state/action pairs

are visited an infinite number of times. Still, in MASSs, the
convergence of Q-values cannot be guaranteed, as each agent
is simultaneously learning its own actions and the environment

For each pail(s, a) initialize Q(s,a) to 0. becomes non-stationary.

Repeat (for each episode) In the literature, there are several approaches to the problem
Select the initial state. of applying Q-Learning in MASs. Claus and Boutilier present
Chooseua from s using policy derived frond). in [27] two ways in which Q-Learning could be used in MASs:

(e-Greedy, SoftMax [5]) the Independent Learners (IL) Algorithmagents ignore other
Repeat (for each step of the episode) agents’ actions and each one learns its Q-values independently;
Take actiona, observer, s'. the Joint Action Learners (JAL) agents that learn Q-values
Update the table entr§)(s, a) as follows for the joint state/action space, rather than the individual
Q(s,a) < r(s,a) +ymaxy Q(s',d’). state/action space. Each JAL maintains information about the
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strategies of the other agents and chooses its actions augord
to the expected value based on this information.

In [28] the author studies cooperative agents and inde:
pendent agents for the purpose of concluding whether the
former outperform the latter. The author states that severa?!
independent RL agents will surely outperform one single RL
agent, due to the fact that they have more resources and bett
chances of receiving rewards and then he proposes to stuc
the results obtained by several agents that cooperate. Three
ways of cooperation are identified: agents can communicate
instantaneous information such as perceptions, actions or f: 2~ The states space.
wards; they can communicate experienced episodes (sequences
of perceptllo.ns, act.|0.ns and rewards).; or they can commumcat(iet us consider, in the following, tha? — pips...p, i
learnt decision policies. The conclusion of the paper is that co- . s . '

. . o rotein HP sequence consisting :ofamino acids, where
operative RL agents that share episodes or policies learn fadte? . _ . .
. . pie {H, P}, V1 <i < n.Aswe have indicated in Subsection
and converge sooner than independent agents, but coordin bﬂ1 - . )
: : e bidimensional structure d? will be represented as an
also has some drawbacks, as sharing knowledge comes with a

S . ) . , — 1-dimensional sequence = mims...m,—1, Where each
communication cost and cooperative behavior for joint tas . .

. o elementr;, (1 < k < n) encodes the direction (I/, R or
automatically implies a larger state space.

In [29], Lauer and Riedmiller propose an algorithm whickp) of the current amino acid location relative to the previous

finds optimal policies for distributed Q-learning in determin-"p o) oo acsociated to tRPFP is defined as follows

istic environments. As it is considered impossible for each..

agent to distinguish between different joint action vectors trja ' ] ) )

contain the same individual action for an agent, the individual ® Thift?te spacé (the agent's environment) will consist

agents are not capable of computing Q-functions defined on Of ~5— states, i.eS = {s1, s, mvS%}- The initial

the current state of the whole environment and the joint vector Stateof the agent in the environment is. A states;, <

of actions. Therefore, the authors propose projecting the large S(ik € [1, : 3:1.]) reached by the agent at a given moment

Q-table in smaller Q-tables that compress the information of after it has visited states, s;, , si,, ...s;, _, is aterminal

the large one, specific for each agent. A projection based on (final or goal) state if the number of states visited by the

the optimistic assumptions introduced: each agent assumes @gent in the current sequenceris- 1, i.e. k = n — 2.

that the other agents will behave optimally, i.e. the joint action A path from the initial to a final state will represent a

vector composed of all the individual actions of the agents POssible bidimensional structure of the protein sequence

represents an optimal action for the system. In this case, the /-

Q-values of each agent are chosen as the optimal values of The action spacel consists of4 actions available to the

the large Q-table. Still, the optimal assumption can be violated Problem solving agent and corresponding to thgos-

in the case of several optimal joint actions in a single state, Sible directionsL(Left), U(Up), R(Right), D(Down)

when the optimal behavior of each agent is not guaranteed. For Used to encode a solution, &= {a;, az,

this reason, an additional mechanism for coordination between @3,d4}, wherea; = L, ay = U, a3 = R anday = D.

the agents is introduced: the learning algorithm of each agene The transition functior§ : S — P(S) between the states

updates the current policy only if there was an improvement IS defined as in Formula 4.

in its own Q-value.

Marino and Morales describe in [30] a new distributed Q- ) B Lk |

Learning algorithm - DQL: the agents find a common policy 0(sjs ar) = saj—s+k Yk € [L4], Vj,1 < j <

in a distributed environment by transmitting information about ) _ (4)

how optimal each action is using traces (of all the other agents) This means that, at a given moment, from a stateS

generated from transition between states. The final policy is the agent can move in successor states, by executing

based on the most frequently selected actions. one of the4 possible actions. We say that a statec S
that is accessible from statg i.e s € (J,c 4 0(s,a), is

the neighbor(successor) state of.

The transitions between the states are equiprobable, the
transition probabilityP(s, s") between a state and each

A. Background neighbor state’ of s is equal t00.25 .

In this section we present the reinforcement learning modele The reward function will be defined below (Formula (5)).
that we have previously introduced in [6] for solving the A graphical representation of the states spaceHétF P
bidimensionalprotein folding problem. More exactly, we are associated to an-dimensional HP protein sequence is given
focusing on predicting the bidimensional structure of a protein Figure 2. The circles represent states and the transitions
sequence. The RL model introduced in [6] will be extenddoketween states are indicated by arrows labeled with the action
in this section towards a distributed architecture. that leads the agent from a state to another.

V. OUR DISTRIBUTED REINFORCEMENTLEARNING
MODEL PROPOSAL
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Let us consider a path in the above defined evironmentprocess, the estimations will be in the vicinity of the exact
from the initial to a final statexr = (momme---m,—1), Vvalues.
wheremg = s andV0 < k < n — 2 the stater,,; is After the training step of the agent has been completed, the
a neighbor of state 7. The sequence of actions obtainedolution learned by the agent is constructed by starting from
following the transitions between the successive states frahe initial state and following thé&'reedy mechanism until a
pathz will be denoted bya, = (ar,ax,ax, - - ar, ,), Where solution is reached. From a given stateusing theGreedy
Tr+1 = 0(m, ar,, ), Y0 < k < n—2. The sequence, will be policy, the agent transitions to a neighbpof : having the
refered as theonfigurationassociated to the pathand it can maximum @Q-value. Consequently, the solution of tB®PFP
be viewed as a possible bidimensional structure of the protegported by the RL agent is a path= (symme - mp_2)
sequencé. Consequently we can associate to a pathvalue from the initial to a final state, obtained following the policy
denoted byFE, representing the energy of the bidimensionalescribed above. We mention that there may be more than one
configurationa, of proteinP(Subsection II). optimal policy in the environment determined following the

The BPFP formulated as a RL problem will consist inGreedy mechanism described above. In this case, the agent
training the agent to find a pathfrom the initial to a final state may report a single optimal policy of all optimal policies,
that will corespond to the bidimensional structure of proteiaccording to the way it was designed. Considering the general
P given by the coresponding configuration and having the goal of a RL agent, it can be proved that the configuration
minimum associated energy. a, corresponding to the path learned by theBPF agent

It is known that the estimated utility of a state [25] in aonverges, in the limit, to the sequence that corresponds to
reinforcement learning process is the estimatslard-to-go the bidimensional structure of protefn having the minimum
of the state (the sum of rewards received from the given stagsociated energy.
to a final state). So, after a reinforcement learning process,
the agent learns to execute those transitions that maximize %].eThe proposed Distributed Approach

sum of rewards received on a path from the initial to a fina ] o
state. As we have shown in [6], a very large number of training

As we aim at obtaining a path having the minimum episodes is required in order to obtain an accurate solution
associated energfZ,., we define the reinforcement functionUSing theQ-leaming approach presented in Subsection V-A.
as follows (Formula (5)): That is why, in order to speed up the training process, we

« if the transition generates a configuration that is vedid extend the proposed approach towards a distributed one, in

. i idi Section I th ved q which multiple cooperative agents learn to coordinate in order
(()l.glse -avoiding) (see Section Il) the received rewar 1 find the optimal policy in their environment. The approach

the reward received after a transition to a non term'ng oposed in the section is a kind of concurré&piearning
° W v . - . ' LproachQ—Iearning is an approach teinforcement learning
state is7, wherer > 0.01 is a small positive constant

(e.q0.1): that finds a mapping from state/action pairs to values (called
. théq réw’ard received after a transition to a final Sta@-values), rather then finding a mapping from states FO state
L alues. Instead of having an associated value function, Q-

1 after states, m, s, ...Ty 2 Were visited is minus learning makes use of the Q-function. In each state, there is
the energy-of the b'd'mer.‘s'o”"’." structure of protéin a Q-value associated with each action. The definition of a Q-
corresponding to the configuratiar. value is the sum of the (possibly discounted) reinforcements
received when performing the associated action and then

0.01 if a, is not valid following the given policy thereafter. Aroptimal Q-value
r(mg|s1, 1, T2, o mh_1) = & —Fx if k=n—1 ., Is the sum of the reinforcements received when performing
0.1 otherwise the associated action and then following the optimal policy

(5) thereafter.

where byr(my|s1, T, 7o, ...mx_1) We denote the reward re- We have two types of agents in our architecture:
ceived by the agent in state,, after it has visited states o+ BPFA (Bidimensional Protein Folding Agents). Each
My, T2, o TTh—1- BPFA agent runs in a separate process or thread and

Considering the reward defined in Formula (5), as the s trained using th&)-learning algorithm [6]. Each local
learning goal is to maximize the total amount of rewards agent performs local)-values estimations updates from
received on a path from the initial to a final state, it can be its own point of view.
easily shown that the agent is trained to find a self avoidinge a BPFS (Bidimensional Protein Folding Supervigor

path 7 that minimizes the associated enetgy. agent wich supervises the learning process and synchro-
During the training step of the learning process, the agent nizes the computations of the individuBIPF'A agents.

will determine itsoptimal policyin the environment, i.e the It keeps a blackboard [31] which stores the glolgal

policy that maximizes the sum of the received rewards. values estimations. The locaBPF'A agents use the
For training the BPF (Bidimensional Protein Folding) global @-values estimations stored in the blackboard and

agent, a)-learning approach was proposed. We have proven in comunicate to the3 PF'S agent their intention to update

[6] that, during the training process, tligvalues estimations a (Q-value estimation. If a local agent tries to update

converge to their exact values, thus, at the end of the training a certain Q-value, the BPFS agent will update the
410
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global @-value estimation only if the new estimation BPFS sends the retrievedQ(s,a) to BPFA.
received from the local agent is greater thandhealues BPF A agent updates the table entys, a) as follows
estimations existing in the blackboard. This updating

strategy is based on our previous result from [6] in whic% 1 . . ;o
we have proven that in a non-distributed RL scenari (s,0) = (1-a)- Qs a) +a(r(s,a) + Hf}XQ(S @)
the Q-values estimates for each state-action pair increase  \yhereq € [0,1] is a learning rate [26].

during the training process and are upper bounded by the  ppr A4 sends the newQ(s,a) to BPFS.

exact values. BPFS updates Q(s,a) in the blackboard if needed
We have two possible architectures for the proposed multi- s — s’
agent system: until s is terminal

1) The BPFA agents are running in the same process Until the maximum number of episodes is reached or the
with the supervisor agenBPFS. In this case each @-values do not change
BPF A agent has an instance of the superviS# F'S
agent, and this will reduce the cost of communication
(messages exchanges) between the agents. The bld&k
board stored byBPFE'S allows a kind of indirect data
communication between the local agents and the global
supervising agent. .

2) The BPF A agents are distributed across multiple pro'—Dhase 3. Final phase
cesses/machines. In this case network communicatiorAfter the training of the multiagent system has been com-
is involved when theBPF A agents ask the supervisormleted, the solution learned by tli¢P F'S supervisor agent is
for Q-values or request &)-value update. In order constructed by starting from the initial state and following the
to reduce the number of messages exchanged betwésredy mechanism until a solution is reached.

BPF A agents and the supervisBIPF' S, the frequency  The architecture that we propose for the distributgd-

for updating the@-values in the blackboard can beearning system for solving théidimensional protein folding
decreased if theBPF A agents will synchronize their problem is presented in Figure 4. The message exchanges
(Q-values with the supervisor only after several trainingetween the agents, as highlighted in Figure 3, are illustrated
epochs. in Figure 4 by the labeled arrows.

The training process consists of three phases and will be
briefly described in the following.

3. The Q-learning algorithm.

VI. COMPUTATIONAL EXPERIMENT

In this section we aim at providing the reader with an easy
to follow example illustrating how our approach works.

The BPF'S supervisor agent initializes with the Q-values Let us consider a HP protein sequenPe= HHPH,
from the blackboard. consisting of four amino acids, i.e = 4. As we have
presented in Section V-A, the states space will consist5of
states, i.eS = {s1, s2, ..., Sg5 }

During some training episodes, the individudlPF A We have applied the distributed RL approach introduced in
agents will experiment (using theGreedy action selection Subsection V-B with the following settings:
mechanism) some (possible optimal) paths from the initial to
a final state, updating th@-values estimations according to
the Q — learning algorithm [32]. BLACKBOARD

The general form of th&) — learning algorithm is given
in Figure 3. We denote in the following b¥)(s,a) the
Q-value estimate associated to the statnda, as stored by
the blackboard of thés PF'S agent.

Phase 1. Initial phase

Phase 2. Training phase of eaclBPF A agent

Shared Q-values

S

BLACKBOARD
gives Q-value
S updates

7f needed

Q-value
e,

BPFS retrieye
3.

5. BPF
Q-valy

2.

Repeat (for each episode)
Select the initial states.
Choose actior from s using policy derived front).
(e-Greedy, SoftMax [5])
Repeat (for each step of the episode) >,

Take actiona, observe the reward(s,a) and the next -
Local agent
BPFA

states’.
BPF A agent asksBPF'S agent for Q(s,a).
BPFS agent retrievesQ(s, a) from the blackboard. Fig. 4. The distributed? — learning architecture.
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THE Q-VALUES STORED IN THE BLACKBOARD.

« two local BPF' A agents were used;

o the number of training episodes for each loéaPF A

agent is40;

« both llocaIBPFA age_nt§ mave the Sﬁmg behzwour n the We have proposed in this paper a distributed reinforcement
Q — learning scenario: they use theGreeedy action 1o, ing hased model for solving the bidimensional protein

selection mechanism, a learning rate= 0.01 in order
to assure the convergence of the algorithm and a disco

factor for the future rewards = 0.9.
Using the above defined settings and under the assumptipigning, so far.

State aAC“_Og ACtLO?J ACtLO?% ACt_'onD sional structure of the proteiR that has a minimum associated
1= az = a3 = a4 =

1 | 0.01532343| 0.01286043| 0.00835149| 0.01531066 energy ().

g 8-882%‘%? 8-88%‘2@3? g-ggggggi 8-383232?2 Regarding the RL approach previously introduced in [6],
2 | 0.00039671| 0.00039671| 0.00394040| 0.00394130 [7] for solving the bidimensional prqteln.foldmg problem,

5 0.00403129| 0.00057402| 0.00403040| 0.00394130 approach that has been extended in this paper towards a
6 0.00000000| 0.00000000| 0.00010000| 0.00000000 distributed one, we remark the fo”owing:

7 0.00000000| 0.00000000| 0.01000000| 0.00010000 o ) ; )

8 0.00010000| 0.01000000| 0.01000000| 0.01000000 o The training process during an episode has a time com-
190 8-888888g8 8-888(1)8888 8-88828888 8-82888888 plexity of 6(n), wheren is the length of the HP protein

11 | 0.00000000| 0.00000000| 0.00000000| 0.00010000 sequence. Consequently, assuming that the number of
12 | 0.00010000| 0.00000000| 0.00000000| 0.01000000 training episodes ist, the overall complexity of the

13 0.01000000| 0.00010000| 0.00010000| 0.00010000 a|gorithm for training aBPF A agent |S(9(k . n)

14 | 0.00010000| 0.00010000| 0.00010000| 0.00010000 . . ; .

15 | 000010000/ 000010000 000010000 000010000 « If the dimensionn of the HP protein sequence is large
16 | 0.00010000| 0.00000000| 0.00000000| 0.00000000 and consequently the state space becomes very large
T6 | 0.00000000| 0.02000000| 0.00020000] 0.00000000 (consisting of*5=" states), in order to store thg values

19 | 0.01000000| 0.01000000| 0.01000000| 0.00010000 estimates, a neural network should be used.

gg 8-88888%8 8-8(1)828888 8-88888888 8-88888888 The main drawback of the non-distributed learning approach
22 | 0.00000000| 0.00000000| 0.00000000| 0.00000000 is that a very large number of training episodes has to be
............................ considered in order to obtain accurate results and this leads to
85 | 0.00000000| 0.00000000| 0.00000000| 0.00000000 a slow convergence.

TABLE | It is obvious that the distributed RL approach presented in

this paper, by using multiple agents during the training step
reduces the overall computational time. The problem that has
to be further investigated is how to preserve the accuracy of
the results in the distributed approach.

VIl. CONCLUSIONS ANDFURTHER WORK

folding problem. To our knowledge, except for the ant based
lét'btproaches, the bidimensiorabtein foldingproblem has not

been addressed in the literature using distributed reinforcement

that the state action pairs are equally visiFed during the trainingyye plan to extend the evaluation of the proposed distributed
and that each loca$ P1"A agent explores its search space (thR| model for some large HP protein sequences, to further test
¢ parameter is set th), the@-values indicated in Table | werejts performance. We will also investigate possible improve-
obtained by the supervisd@# P1"S agent. ments of the distributed RL model by improving the behavior
After the training of theBPF'A agents was completed,sf the |ocal BPFA agents, by using different reinforcement
the solution reported by th&PF'S agent is the pathr = ynctions and by adding different local search mechanisms in
(s15257525) having the associatazbnfigurationa. = (LUR),  order to increase the agents’ performance.
determined starting from state;, following the Greedy
policy.
The solution learned by thBPF'S agent is represented in
Figure 5 and has an energy efl.
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