

Abstract— This paper presents the necessary steps required for

Object Oriented Implementation of a computer system used in the

study of circle. The modeling of the system is achieved through

specific UML diagrams representing the stages of analysis, design

and implementation, the system thus being described in a clear and

concise manner. The software is very useful to both students and

teachers because the mathematics, especially geometry, is difficult to

understand for most students.

Keywords—Java, UML, Interactive Software, Euclidian

Geometry.

I. INTRODUCTION

THE multimedia technologies transformed the computer

into a valuable interlocutor and allowed the students, without

going out of the class, to assist the lessons of different emeriti

scientists and professors, to communicate with persons

located in different countries, to have access to different

information [1]. By a single click of the mouse, the student

can visit an artistic gallery, read the originals for writing a

history paper or visualize information for a narrow profile,

which couldn’t be found five-ten years ago [2].

One of the main aspects of using computer for lessons is

the development of the student’s creative thinking. An

optimal mean in this case is the introduction in the

computational training means of the interactivity elements [3].

The „interactivity” term means „to interact, to influence one-

to-another”. This property of the computational technologies

is absolutely unique compared with television, lectures,

books, instructive movies etc.

A. Iordan is with the Engineering Faculty of Hunedoara, Polytechnic

University of Timisoara, 331128 Hunedoara, ROMANIA (corresponding

author to provide phone: +040-254-207523; e-mail: anca.iordan@fih.upt.ro).

M. Panoiu is with the Engineering Faculty of Hunedoara, Polytechnic

University of Timisoara, 331128 Hunedoara, ROMANIA (corresponding

author to provide phone: +040-254-207537; e-mail:

manuela.panoiu@fih.upt.ro).

I. Muscalagiu is with the Engineering Faculty of Hunedoara, Polytechnic

University of Timisoara, 331128 Hunedoara, ROMANIA (corresponding

author to provide phone: +040-254-207537; e-mail:

ionel.muscalagiu@fih.upt.ro).

R. Rob is with the Engineering Faculty of Hunedoara, Polytechnic

University of Timisoara, 331128 Hunedoara, ROMANIA (corresponding

author to provide phone: +040-254-207523; e-mail: raluca.rob@fih.upt.ro).

II. DEVELOPMENT STAGES OF INTERACTIVE SOFTWARE

A. Analysis stage

Using UML modeling language, computer system analysis

consists in making use case diagram and activity diagrams. To

achieve diagrams was used the ArgoUML software [4].

The computer system is described in a clear and concise

manner as representing the use cases [5]. Each case describes

the interactions between user and system. Use case diagram

representation is shown in figure 1. Diagram presented defines

the system domain, allowing visualization of the size and

sphere of the action for the entire development process. This

includes:

� an actor - the user who is external entity with which the

system interacts;

� five use cases that describe the functionality of the

system;

� relationships between users and use cases (association

relationships), and relationships between use cases

(dependency and generalization relationships).

For each use case presented in the previous diagram is built

an activity diagram. Each diagram shall specify the processes

or algorithms that are behind use case analysis.

Fig. 1. The use cases diagram

Using UML Diagrams for Object Oriented

Implementation of an Interactive Software for

Studying the Circle

A. Iordan, M. Panoiu, I. Muscalagiu, R. Rob

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

431

Fig. 2. Class diagram

B. Design stage – Class diagram

Conceptual modeling allows identifying the most important

concepts for the computer system [6]. Inheritance was not used

only as a generalization mechanism, which is when derived

classes are specializations of the base class.

In figure 2 are presented inheritance relationships,

realization relationships, composition relationships and

aggregation relationships. We can observe that the

SuprafataDesen2D class inherit attributes and methods of the

JFrame class, but implements the ActionListener interface.

Desen2D class inherit attributes and methods of the JPanel

class, but implements MouseInputListener interface.

Between instances of the classes presented in figure 2 there

are especially composition and aggregation relationships. In

the composition relationship, unlike the aggregation

relationship, the instance can not exist without the party

objects. Analyzing figure we can observe that an instance of

Segment2D type consists in two objects of Punct2D type.

Aggregation relationship is an association where it’s specified

who is integer and who is a party. For example, an object of

Segment2D type represents a part from an object of Cerc2D

type.

C. Design stage – Sequence diagram

Description of behavior involves two aspects: structural

description of participants and description of models of

communication. The communication model of the instance

witch play one role to fulfill a specific purpose is called

interaction.

The purpose of interaction diagram is to specify how to

carry out an operation or a use case [7], modeling the behavior

of a set of objects in a certain context. Interaction context may

be the system (subsystem), or class operation. Objects can be

concrete things, or prototypes, among them setting the

semantic connections. There are two forms of interaction

diagrams based on the same basic information, but each

focuses on another aspect of interaction: sequence diagrams

and collaboration diagrams.

Sequence diagram emphasizes the temporal aspect, being

suitable for real-time specifications and complex scenarios [8].

These diagrams determine the objects and classes involved in

a scenario and sequence of messages sent between objects

necessary to execute script functionality. Sequence diagrams

are associated with a use case.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

432

Fig. 3 Sequence diagram for drawing the circumcircle of a regular polygon

Diagram presented in figure 3 renders the interactions

between objects that are designed to drawing the circumcircle

of a regular polygon and the centre of this circle.

We can observe that there are interactions between the 7

objects, of which the objects of Desen2D type,

Vector<Element2D> type and Graphics2D type are already

created and the objects of Poligon2D type, Cerc2D type and

Punct2D type will instantiate during interactions.

At first the execution control is taken by the object of

Desen2D type. Following an event that interacts with the

Desen2D object is transmitted the control of the object of

Vector<Element2D> type that creates an instance of

Polygon2D class. Following is created an instance of Cerc2D

class. Control is transmitted to the object of

Vector<Element2D> type to add the object previously

created.

The control will be given to the object of Desen2D type

that will destroy the object of Polygon2D type and the object

of Cerc2D type. Through interaction with Graphics2D object

will redraw the circumcircle of a regular polygon. We can

observe that lifeline of the Cerc2D object is interrupt, by

marking an X, the message appears bearing the stereotype

<<destroy>>. Following an event that interacts with the

Desen2D object is transmitted the control of the object of

Vector<Element2D> type that creates an instance of Cerc2D

class. Following is created an instance of Punct2D class.

Control is transmitted to the object of Vector<Element2D>

type to add the object previously created.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

433

Fig. 4 Sequence diagram for drawing the incircle of a circumscribed quadrilateral and the Newton line

The control will be given to the object of Desen2D type

that will destroy the object of Cerc2D type and the object of

Punct2D type. Through interaction with Graphics2D object

will redraw the centre of circumcircle of a regular polygon.

Diagram presented in figure 4 renders the interactions

between objects that are designed to drawing the incircle of a

circumscribed quadrilaterals and the Newton line.

We can observe that there are interactions between the 7

objects, of which the objects of Desen2D type,

Vector<Element2D> type and Graphics2D type are already

created and the objects of Patrulater2D type, Cerc2D type and

Dreapta2D type will instantiate during interactions. At first the

execution control is taken by the object of Desen2D type.

Following an event that interacts with the Desen2D object is

transmitted the control of the object of Vector<Element2D>

type that creates an instance of Patrulater2D class. Following

is created an instance of Cerc2D class. Control is transmitted

to the object of Vector<Element2D> type to add the object

previously created.

The control will be given to the object of Desen2D type

that will destroy the object of Patrulater2D type and the object

of Cerc2D type. Through interaction with Graphics2D object

will redraw the incircle of a circumscribed quadrilateral. We

can observe that lifeline of the Cerc2D object is interrupt, by

marking an X, the message appears bearing the stereotype

<<destroy>>.

Following an event that interacts with the Desen2D object

is transmitted the control of the object of Vector<Element2D>

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

434

type that creates an instance of Cerc2D class. Following is

created an instance of Dreapta2D class. Control is transmitted

to the object of Vector<Element2D> type to add the object

previously created.

The control will be given to the object of Desen2D type that

will destroy the object of Cerc2D type and the object of

Dreapta2D type. Through interaction with Graphics2D object

will redraw the Newton line of a circumscribed quadrilateral.

D. Design stage – Sequence diagram

Collaboration diagrams describe the behavior of a set of

objects in a certain context with an emphasis on organizing the

objects involved in the interaction [9]. These diagrams are

graphs witch has in peaks quality, objects that participate to

the interaction, and the arcs represent links between instances.

Diagram presented in figure 5 renders the interactions

between objects that allow drawing the incircle of a

circumscribed quadrilateral.

Diagram presented in figure 6 renders the interactions

between objects that allow drawing the circumcircle of a

regular polygon.

Fig. 5 Collaboration diagram for drawing the incircle of a

circumscribed quadrilateral

Fig. 6 Collaboration diagram for drawing the circumcircle of a

regular polygon

E. Implementation stage

Component diagram is similar to packages diagram,

allowing visualization of how the system is divided and the

dependencies between modules [10]. Component diagram put

emphasis on software physical elements and not on the logical

elements like in case of packages.

The diagram in figure 7 describes the collection of

components that together provide system functionality.

Fig. 7 Component diagram

Central component of the diagram is

SuprafataDesen2D.class, a component obtained by

transforming by the Java compiler into executable code of the

SuprafataDesen2D.java component. As can be seen that

component interacts directly with components Desen2D.class.

This component interacts with Element2D.class component,

which is obtained by transforming by the Java compiler into

executable code of the Element2D 2D.java component.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

435

III. GRAPHICAL USER INTERFACE

The application was implemented in Java as independent

application [11]. The interactive system allows to drawing

circles in diverse modes, but presents both theoretical results

and certain types of solved problems. Among the most

important operations we mention:

� drawing-up of circles determined by three point;

� drawing-up of circles when is specified the centre and

radius;

� drawing-up of circles which fulfill certain conditions:

• the incircle and the three excircles for a given triangle

(figure 8);

• the circumcircle of a given triangle;

• the Euler circle of a given triangle (figure 9);

• the Lemoine circles for a given triangle (figure 10);

• the Taylor circle of a given triangle (figure 11);

• the incircle of a circumscribed quadrilateral (figure

12);

• the circumcircle of a cyclic quadrilateral (figure 13);

� the circumcircle of a regular polygon.

The implementation of the method which obtains the

incircle for a given triangle is presented forwards:

public Cerc2D cerc_inscris() {

double p=(sg[0].getLungime()+

sg[1].getLungime()+sg[2].getLungime())/2;

double r=arie()/p;

return new Cerc2D(I(),r);

 }

The implementation of the methods which obtains the

centre of the incircle for a given triangle is presented forwards:

public Punct2D I() {

Dreapta2D d1=new Dreapta2D(V[0],

picior_bisectoare(V[0]));

Dreapta2D d2=new Dreapta2D(V[1],

picior_bisectoare(V[1]));

Punct2D i=new Punct2D(d1.intersectie(d2));

return i;

}

public Punct2D picior_bisectoare(Punct2D p) {

int i=0;

if (p.coincid(V[0])) i=1;

if (p.coincid(V[1])) i=2;

if (p.coincid(V[2])) i=0;

double x,y,k;

if (i==1) {

k=V[0].distanta(V[1])/V[0].distanta(V[2]);

x=(V[1].getX()+k*V[2].getX())/(1+k);

y=(V[1].getY()+k*V[2].getY())/(1+k);

}

else if (i==2) {

k=V[1].distanta(V[2])/V[1].distanta(V[0]);

x=(V[2].getX()+k*V[0].getX())/(1+k);

y=(V[2].getY()+k*V[0].getY())/(1+k);

}

else {

k=V[2].distanta(V[0])/V[2].distanta(V[1]);

x=(V[0].getX()+k*V[1].getX())/(1+k);

y=(V[0].getY()+k*V[1].getY())/(1+k);

}

return new Punct2D(x,y);

}

public Punct2D intersectie(Dreapta2D d){

Punct2D p=new Punct2D();

double dx,dy;

dx=-C*d.B+d.C*B;

dy=A*d.B-d.A*B;

p.setX(dx/dy);

if (ind==3) p.setY(d.m*p.getX()+d.n);

 else p.setY(m*p.getX()+n);

 return p;

}

Fig. 8 The incircle and the three excircles for a given triangle

The implementation of the methods which obtains the

excircle for a given triangle is presented forwards:

public Cerc2D cerc_exinscris(Punct2D p) {

int i;

if (p.apartine(V[0])) i=0;

else if (p.apartine(V[1])) i=1;

else i=2;

Dreapta2D d1,d2,d3;

if (i==0) {

d1=new Dreapta2D(bisectoare_int(V[0]).getSuport());

d2=new Dreapta2D(bisectoare_int(V[1]). getSuport());

d3=new Dreapta2D(d2. perpendiculara(V[1]));

}

else if (i==1) {

d1=new Dreapta2D(bisectoare_int(V[1]).getSuport());

d2=new Dreapta2D(bisectoare_int(V[0]).getSuport());

d3=new Dreapta2D(d2.perpendiculara(V[0]));

 }

 else {

d1=new Dreapta2D(bisectoare_int(V[2]). getSuport());

d2=new Dreapta2D(bisectoare_int(V[1]).getSuport());

d3=new Dreapta2D(d2.perpendiculara(V[1]));

 }

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

436

Punct2D I=new Punct2D(d3.intersectie(d1));

if (i==0) d1.setare(V[0],V[1]);

else if (i==1) d1.setare(V[1],V[0]);

else d1.setare(V[2],V[1]);

d2.setare(d1.perpendiculara(I));

Punct2D M=new Punct2D(

d2.intersectie(d1));

double r=I.distanta(M);

return new Cerc2D(I,r);

}

public Semidreapta2D bisectoare_int(Punct2D p)

{

return new Semidreapta2D(p, picior_bisectoare(p));

}

public Dreapta2D perpendiculara(Punct2D p){

double m1;

if (m==Double.POSITIVE_INFINITY)

 m1=0;

else if (m==0)

 m1=Double.POSITIVE_INFINITY;

else m1=-1/m;

Dreapta2D d=new Dreapta2D(p,m1);

return d;

}

The method of the class Triunghi2D which obtains the

Euler circle (figure 9) for a given triangle is presented

forwards:

public Cerc2D cerc_Euler() {

 double r=sg[0].getLungime()*sg[1].getLungime()*

sg[2].getLungime();

 r=r/(8*arie());

 return new Cerc2D(W(),r);

}

The methods which obtains the centre of the Euler circle

for a given triangle is presented forwards:

public Punct2D W() {

Segment2D s=new Segment2D(O(),H());

return s.mijloc();

 }

public Punct2D O() {

Dreapta2D d1=new Dreapta2D(sg[0]. mediatoare());

Dreapta2D d2=new Dreapta2D(sg[1].mediatoare());

Punct2D o=new Punct2D(d1.intersectie(d2));

return o;

}

public Punct2D H() {

return new Punct2D(inaltime(V[0]).intersectie

(inaltime(V[1])));

}

public Punct2D mijloc() {

double x,y;

x=(A1.getX()+A2.getX())/2;

y=(A1.getY()+A2.getY())/2;

Punct2D M=new Punct2D(x,y);

return M;

}

public Dreapta2D mediatoare() {

Punct2D M=new Punct2D(mijloc());

 Dreapta2D med=new Dreapta2D(d.perpendiculara(M));

return med;

}

public Dreapta2D inaltime(Punct2D p) {

int i=0;

if (p.coincid(V[0])) i=1;

if (p.coincid(V[1])) i=2;

if (p.coincid(V[2])) i=0;

 return new Dreapta2D(sg[i].getSuport().perpendiculara(p));

}

Fig. 9 The Euler circle of a given triangle

The method of the class Triunghi2D which obtains the first

Lemoine circle (figure 10) for a given triangle is presented

forwards:

public Cerc2D cerc_Lemoine() {

double r=sg[0].getLungime()*sg[1]. getLungime()

*sg[2].getLungime();

r=r/(8*arie());

return new Cerc2D(K(),r);

}

The methods of the class Triunghi2D which obtains the

centre of the first Lemoine circle for a given triangle is

presented forwards:

public Punct2D K() {

 return new Punct2D(simediana(V[0]).getSuport().

intersectie(simediana(V[1]).getSuport())); }

public Segment2D simediana(Punct2D p) {

return new Segment2D(p, piciorsimediana(p));

}

public Punct2D piciorsimediana(Punct2D p)

{

int i=0;

if (p.apartine(V[0])) i=1;

if (p.apartine(V[1])) i=2;

if (p.apartine(V[2])) i=0;

Punct2D M=new Punct2D(sg[i].mijloc());

double x,y,k;

if (i==1) {

k=V[0].distanta(V[1])/V[0].distanta(V[2]);

x=(V[1].getX()+k*V[2].getX())/(1+k);

y=(V[1].getY()+k*V[2].getY())/(1+k);

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

437

 }

 else if (i==2) {

 k=V[1].distanta(V[2])/V[1].distanta(V[0]);

x=(V[2].getX()+k*V[0].getX())/(1+k);

y=(V[2].getY()+k*V[0].getY())/(1+k);

 }

 else {

k=V[2].distanta(V[0])/V[2].distanta(V[1]);

x=(V[0].getX()+k*V[1].getX())/(1+k);

y=(V[0].getY()+k*V[1].getY())/(1+k);

 }

Punct2D D=new Punct2D(x,y);

Simetrie2D s=new Simetrie2D(D);

return new Punct2D(s.izometrie(M));

}

Fig. 10 The Lemoine circles for a given triangle

The implementation of the methods which obtains the

Taylor circle (figure 11) for a given triangle is presented

forwards:

public Cerc2D cerc_Taylor() {

Punct2D A1=new Punct2D(picior_inaltime(V[0]));

Dreapta2D d1=new Dreapta2D((sg[0].

getSuport()).perpendiculara(A1));

Punct2D A2=new Punct2D(d1.intersectie

(sg[0].getSuport()));

d1=new Dreapta2D((sg[2].getSuport()).

perpendiculara(A1));

Punct2D A3=new Punct2D(d1.intersectie

(sg[2]. getSuport()));

Punct2D B1=new Punct2D(picior_inaltime(V[1]));

d1=new Dreapta2D((sg[0].getSuport()).

perpendiculara(B1));

Punct2D B2=new Punct2D(d1.intersectie

(sg[0].getSuport()));

return new Cerc2D(A2,A3,B2);

}

The methods which obtains the incircle of a circumscribed

quadrilateral (figure 12) is presented forwards:

Fig.11 The Taylor circle of a given triangle

public Cerc2D cerc_inscris() {

Cerc2D C;

Triunghi2D t;

if (!sg[0].getSuport().paralele (sg[2].getSuport()))

{

t=new Triunghi2D(V[0],V[3],

sg[0].getSuport().intersectie(sg[2].getSuport()));

C=new Cerc2D(t.cerc_inscris());

}

else if (!sg[1].getSuport().paralele(sg[3]. getSuport()))

{

t=new Triunghi2D(V[1],V[0],sg[1].getSuport()

.intersectie(sg[3].getSuport()));

C=new Cerc2D(t.cerc_inscris());

 }

else

{

Punct2D O=new Punct2D(new Dreapta2D(V[0],

V[2]).intersectie(new Dreapta2D(V[1],V[3])));

double raza=(sg[0].getSuport()).distanta(V[2])/2;

C=new Cerc2D(O,raza);

 }

return C;

}

The method of the class Patrulater2D which verifying if

the quadrilateral is circumscribed is presented forwards:

public boolean circumscriptibil() {

return sg[0].lungime()+sg[2].lungime()==sg[1].

lungime()+sg[3].lungime();

}

The method of the class Patrulater2D which obtains the

circumcircle of a cyclic quadrilateral (figure 13) is presented

forwards:

public Cerc2D cerc_circumscris() {

 return new Cerc2D(V[0],V[1],V[2]);

}

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

438

Fig. 12 The incircle of a circumscribed quadrilateral

Fig. 13 The circumcircle of a cyclic quadrilateral

The method of the class Patrulater2D which verifying if

the quadrilateral is cyclic is presented forwards:

public boolean inscriptibil() {

 double s=U[0].getMasura()+ U[2].getMasura();

 return Math.floor(s)==180;

}

IV. CONCLUSION

Through the diagram representation all three phases:

analysis, design and implementation, the educational

informatics system has been described in a clear and concise

manner. The use of the UML modeling language for the

creation of the diagrams is characterized by rigorous

syntactic, rich semantic and visual modeling support.

The diagrams were made using a new approach,

multidisciplinary of the informatics application, encompassing

both modern pedagogy methods and discipline-specific

components.

The link between teaching activities and scientific goals

and objectives was established through the development of the

new methods and the assimilation of new ways, capable of

enhancing school performance, enabling students to acquire

the knowledge and techniques required and apply them in

optimum conditions.

REFERENCES

[1] G. Gallitano, K. Jackson, The Content and Format of a Professional

Development Program and Its Attitudinal Effect on Teachers of

Mathematics, INTERNATIONAL JOURNAL OF EDUCATION AND

INFORMATION TECHNOLOGIES (Naun), Issue 3, Volume 5, 2011,

pp. 336-343

[2] Dimitrios Rigas, Khaled Ayad, Using edutainment in e-learning

application: an empirical study, INTERNATIONAL JOURNAL OF

COMPUTERS (Naun), Issue 1, Volume 4, 2010, pp. 36-43

[3] R. Pereira, I. Brito, G. Machado, T. Malheiro, E. Vaz, M. Flores, J.

Figueiredo, P. Pereira, A. Jesus, New e-learning objects for the

Mathematics courses from Engineering degrees: Design and

Implementation of Question Banks in Maple T.A. using LaTeX,

INTERNATIONAL JOURNAL OF EDUCATION AND

INFORMATION TECHNOLOGIES (Naun), Issue 1, Volume 4, 2010,

pp. 7-14

[4] http://argouml.tigris.org

[5] M. Fowler, K. Scott, “UML Distilled: A Brief Guide to the Standard

Object Modelling Language”, Addison Wesley, Readings MA, USA,

2000

[6] J. Odell, “Advanced Object Oriented Analysis& Design using UML”,

Cambrige University Press, 1998

[7] J. Rumbaugh, I. Jacobson, G. Booch, “The Unified Modelling

Language Reference Manual”, Addison Wesley, 1999

[8] S. Bennet, S. McRobb, R. Farmer, “Object Oriented Systems Analysis

and Design”, McGraw Hill, 1999

[9] G. Booch, J. Rumbaugh, I. Jacobson, “The Unified Modelling

Language User Guide”, Addison Wesley, 1999

[10] J. Cheesman, J. Daniels, UML Components: A Simple Process for

Specifying Component-Based Software, Addison- Wesley, Mass, USA,

2000

[11] S. Tănasă, C. Olaru, S. Andrei, “Java”, Polirom Press, Iasi, 2007

A. Iordan, born in 1979, graduated from the Computer Science Faculty,

Babes-Bolyai University of Cluj-Napoca in 2002. She received her PhD

degree in Computer Science in 2009 at Polytechnic University of Timisoara

and is currently assistant at the Electrical Engineering and Industrial

Informatics Department of Engineering Faculty of Hunedoara, Polytechnic

University of Timisoara, Romania. Her research interests include Data

Structures and Algorithms, Software Engineering and Educational Software.

She has until now published over 50 research papers in journals and

conferences.

M. Panoiu, born in 1965, graduated from the Computer Science Faculty,

Polytechnic University of Timisoara in 1989. She received her PhD degree in

Electrical Engineering in 2001 and is currently Assistant Professor at the

Electrical Engineering and Industrial Informatics Department of Engineering

Faculty of Hunedoara, Polytechnic University of Timisoara, Romania. Her

research interests focus on advanced computer programming, modeling and

simulating systems, and artificial intelligence. She has until now published

over 80 research papers in journals and conferences and participated in 9

research projects.

I. Muscalagiu is a university lecturer with a PhD in Computer Science from

the Polytechnic University of Timisoara. His research interests include

constraint programming and multi-agent system, distributed programming,

educational software.

R. Rob, born in 1977, graduated from the Engineering Faculty of Hunedoara,

Polytechnic University of Timisoara in 2000. She is currently assistant at the

Electrical Engineering and Industrial Informatics Department of Engineering

Faculty of Hunedoara, Polytechnic University of Timisoara, Romania.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 3, Volume 5, 2011

439

