
Temporal Data Version Identification

using Signature Hash

Michal Kvet, Karol Matiaško
Department of Informatics, Faculty of Management Science and Informatics

University of Žilina
Žilina, Slovakia

Michal.Kvet@fri.uniza.sk, Karol.Matiasko@fri.uniza.sk

Abstract—Current applications and information systems are data
oriented. Temporal characteristics covers the core principle of
information system intelligence. Validity frames each data state
and the whole evolution is stored allowing complex analytics,
decision making and processing. Management and evaluation can
use various granularity models. This paper deals with uni-
temporal architecture using object, column and hybrid precision.
It proposes new technique for dealing with existing data tuple
updates forming new versions. Whereas historical state versions
could be used, reliability of the whole system can be
compromised. To deal with individual versions, we propose
signature data hashing to identify evaluated data image.

Keywords—temporal signature hash; data version; temporal
granularity model; hybrid synchronization; reliability

I. INTRODUCTION

Intelligence of the current information systems is based on
the data, which are evaluated, managed, stored and analyzed. It
is inevitable, that data are stored during the whole life cycle of
the object, handling data changes in the past, as well as current
and future valid tuples. To get the performance benefit, it is
necessary to optimize database structure, choose relevant
approaches and techniques for data management in the
structure and propose robust access methods for queries.

Data entering the system are heterogeneous with diverse
structure, characteristics and properties. Therefore, database
architecture must be able to handle them in effective manner
with emphasis on the temporal aspect. The first part of the
paper summarizes the temporal evolution and describes models
for dealing with temporal data with emphasis on granularity.
These data are made of objects, which are composed by
individual data tuples bordered by the validity time frame. The
term validity is significant, whereas it is an element for
ordering states and proposes the ability to track evolution. It is
usually not possible to change existing state, to add new object
state replacing already stored in the database or to limit the
validity of existing tuple. Second part of the paper deals with
the techniques of managing data corrections. The aim of that
part is to propose own solution module for storing, evaluating
and managing data versions without necessity to create bi-
temporal solution. Thanks to that, any data tuple can be later
replaced by the newer state based on changed conditions. We
keep not only validity images in the time, but also data
changes, corrections and modifications. Our proposed solution

is based on the data signature hash, which makes it easy to
identify the version of the database used for a particular
analytical operation or aggregation.

II. RELATED WORKS AND TEMPORAL EVOLUTION

Temporality as a core building element has been considered
to be dominant since the first database system attempts. Data
were bulked into the transactions to ensure the consistency of
the data and reliability of the whole system [11]. The basis of
the transaction is the log management secured by the Log
Writer (LGWR). Each data change is registered in the physical
storage log file consisting of date point of the execution, before
and after data image [1] [2]. Whereas transaction ensures no
data can be lost, by using log files, historical data can be
obtained. The necessary condition is to keep all the log files
accessible in the file system. Nowadays, it is not a significant
problem, because disk space prices are low, regardless the
infrastructure – physical hardware or cloud storage. However,
in the past, there were problems with historical data log file
detection. To provide historical data image, all log files had to
be scanned sequentially followed by the identification of the
change of the particular object. If some log file was lost, there
was no evidence in the system, which was later partially solved
by the implementation of the System Change Number (SCN) in
the header of the log file. Each database change incremented
the value of SCN, thus, undefined or missed states could be
detected. Main disadvantage of such approach was the
efficiency of the whole system. Sequential scanning is really
time and resource demanding without any guarantee that any
change was made [10] [18].

More advanced techniques of log file management are
based on the flashback technologies [9] [10] [16], parameters
of which determine the object evolution during the defined
time point or interval. Another aspect is based on obtaining
consistent image in the defined time in the past. On the one
hand, this system is automated, however, still too resource
demanding for the results to be used in real world, to be the
basis of the complex decision making [8]. And the limiting
factor is just the data background – it can deal only with
current and historical images. There is no space to cover also
future valid data, which were processed externally in the first
phase. Thus, to cover the whole time spectrum evolution,
interval log files had to be scanned, followed by current image
and module for dealing with future states, which were stored

INTERNATIONAL JOURNAL OF COMPUTERS Volume 13, 2019

ISSN: 1998-4308 89

externally. It means, that the main structure did not have a
complex information about changes in the future. Also,
external module had to ensure new valid state reflection in
time, which often caused inaccuracies, delays and last but not
least, the inconsistency [17]. Previously defined solutions can
be named as logical, whereas there is no change in the data
structure to provide historical images in comparison with
standard conventional practices.

These limitations led the developers and researchers to
create new temporal paradigm by extension of the database
structure. In 90ties of 20th century, new temporal paradigm was
created. It was mostly based on the object primary key
definition extension by the validity frame. Thus, primary key
of the object was composed from the object identification itself
and validity time frame modelled by the time interval (BD, ED)
or just one attribute characterizing start point of the validity
(BD). In that case, each newer object value (state)
automatically ends validity of the previous state. Interval and
time point transformations can be found in [9] [10]. Fig. 1
shows the architectural models – conventional model without
time definition, uni-temporal solution characterized by the time
interval (BD, ED) or compressed uni-temporal solution with
only BD time value. Such defined models are object oriented,
thus any data change automatically creates new complex object
image tuple. As a consequence, it can generate huge amount of
the same values (duplicates), if the attribute value is not stored
at each change (update). Although it is partially possible to
remove such impact, it is not markedly optimal.

Figure 1. Uni-temporal validity model using oject granularity

Attribute (column) oriented approach has been proposed in
2015 and is based on column granularity. Each data change is
divided to the individual attributes, which are managed
separately. Thanks to that, there are no duplicate values. If the
data value is the same as direct predecessor, particular value of
the validity is not changed and original value is kept [15].

Architecture of attribute oriented approach is shown in the
fig. 2. It consists of three layers, one of them, managing
historical and future valid images is internal, thus, it cannot be
queried and processed directly. Current valid data are located
in the first layer. Core part of the system architecture is in the
second layer forming temporality. Each change is registered in
the temporal module. It ensures the automatization of data
changes – if the future valid state becomes current, reloading is
done immediatelly. In comparison with other systems, this
solution is based on database layers, thus there are no delays
between planned begin time point of the validity and real
change of the execution. Therefore, there is no reliability risk
based on storing and evaluating non-actual data [11].

Moreover, whereas current valid data are stored separately, if
the existing application deals with conventional approach by
managing only current valid data, they can continue to work
without changes, without necessity to rewrite code, to
recompile solution. Just the database connection string is
changed, if ever.

Figure 2. Attribute oriented approach

Attribute oriented granularity is effective regarding
duplicate values. It forms the opposite of the object granularity,
where each data change creates complete new data tuple. On
the other hand, if some data changes are synchronized, it
requires new Insert statement to the temporal module for each
attribute, which is performance limitation, as well. Therefore,
in 2017, hybrid solution has been proposed, which extends
attribute oriented granularity approach by the definition of
synchronized attribute groups, which can be created and
managed manually or automatic identification can be used.
Such solution consists of six layers, added layers are
monitoring changes, register new synchronized groups, alter
them, if necessary or remove them, if the balance is not
suitable. The aim of such module is to minimize disk storage
space, to optimize performance and reduce system resources of
the processing. Fig. 3 shows the architecture of hybrid
temporal solution [13]. If the group is detected, first layer
(detector) sends the message to the second layer (manager) and
asks for creating the group. Manager creates the group and
notifies the detector. Afterwards, individual attributes are
added to the group forming extension. Consequently, particular
data are formed and rerouted from the database layer itself to
the synchronization layer, which has these tasks:

 Synchronize input data values and form the batch.
 Load the batch into the database.
 If data are coming asynchronously, it must notify

group manager to evaluate the situation.
Some attributes cannot be grouped at all due to the data

value structure or due to data character. Such information can
be explicitly defined in group manager layer, which ensures
such functionality by notifying detectors.

Data group synchronization module can be located either
on the server directly connected to the database or externally
on the client of intermediate site. The main advantage of server
location is direct database access supported by new background
processes (Synchronization Manager). Remote synchronization

INTERNATIONAL JOURNAL OF COMPUTERS Volume 13, 2019

ISSN: 1998-4308 90

module queries the database and evaluates the impact of the
new or existing group. Connection is ensured by new Remote
Synchronization Manager protecting server process and session
itself. Fig. 3 shows the architecture of server site solution, fig. 4
shows external group detection module.

Figure 3. Hybrid temporal architecture [13]

Figure 4. External synchronization

Other approaches dealing with time definition are based on
locality extension of the temporality forming spatio-temporal

databases [3] [4]. Significant research stream is formed by the
non-relational paradigm [6] [7]. In that case, however, data are
in raw form with almost none transaction control.

III. DATA CORRECTIONS AND ANTIDATING

The main limitation of the previously mentioned
approaches is just the modelled time spectrum. It deals only
with the validity temporal aspect. Thus, each data state (tuple)
is bordered by the validity time frame, which can be modelled
using various models. It can be defined as opened or closed for
the left and right site of the interval, as well. Thus, in principle,
validity interval can be modelled using the following types:

 Closed – closed representation

 Closed – opened representation

 Opened – opened representation

 Opened – closed representation

Based on complex modelling and representation, begin
validity point is almost always represented by the closed
characteristics to simplify change identification. The main
reason arises from the future valid data management, where
timepoint of the transformation must be precisely specified. If
not, delays or inaccuracy can be identified. Individual
transformation of closed and open characteristics can be found
in [10].

Individual states can be sorted or treated positionally in the
time spectrum. For the evaluation, Allen relationships can be
used [10]. Fig. 5 shows the potential of the relationship
description.

Figure 5. Allen relationships [10]

In temporal databases, three situations are mostly
highlighted:

 Intersects ensuring any data image is not modelled
by more than one valid state. Simply, one object
can be modelled by no more than one valid state
anytime. It covers the alternatives of the interval
overlapping or filling (intervals are the same, have

INTERNATIONAL JOURNAL OF COMPUTERS Volume 13, 2019

ISSN: 1998-4308 91

the same begin or end validity point or one of
them completely covers the second one)

 During relationship is used for the referential
integrity.

 Exludes relationship (covering Before and Meets),
which is used for the evolution management and
sorting. Meets relationship express, no other state
can be located between such states.

As already mentioned, such models deal only with the
validity. If the already existing state is to be updated, original
state is removed, respectively updated. As a consequence,
database stores only data currently considered to be true – as
they were, are or will be, without any evidence of correnctions
and changes. Objects are characterized by the evolving states,
however, individual data state versions are not managed at all.
Fig. 6 shows the problem of data update. Let have the object
O1 identified by two states S1 (valid from T1 up to timepoint
T2) and S2 (valid from T2 up to timepoint T3). If the state
already stored in the database is to be updated, several
approaches and situations can be used. The simplest and,
unfortunately, most often used principle is based on prohibiting
data modification. This principle is called antidating
prohibition. As a consequence, whereas data cannot be
versioned and corrected, database stores non-reliable data and
analytics can be corrupted, with no evidence to the client site.
In contrant, another principle is based on allowing any change.
If it reflects future valid state, there is no problem, whereas it
has not been valid, yet. Current and historical data are are
important, because they could have been used and processed in
analytics, decision making support or simply copied to archive
destinations [12].

Figure 6. Possible data changes

Fig. 6 shows two existing states (S1, S2) of the object O1. If
new version is loaded into the system, three possibilities can
occur:

 validity is not changed (blue part),

 validity is extended (green part),

 validity influences more than one existing state (red
part).

Transaction management of state modification can be
covered by transaction rules described in [14]. In general,
existing object state cannot be directly modified.

IV. VERSIONING

Solutions based on uni-temporal systems cannot manage
data versions and do not store all data flow with emphasis on
data corrections. One of the possible solution is based on
extending uni-temporality by storing also transaction time,
which characterize period, during which object was considered
to be true. Such solution si called bi-temporal (third model,
fig. 7). As a consequence, referential integrity is far more
complicated to ensure complete covering of reliable data [5].

Let point out also to the one important aspect forming
reliability of the whole system. How would you recognize,
which data version of the particular state has been used for the
processing and evaluation. In principle, it should be the latest
one based on date of the loading execution and date of the
analytical process start. In the distributed environment, it is far
more complicated to determine it. It is therefore necessary to
store no only transaction date period for the main transaction,
but also processing time for the particular database node. Thus,
three-temporal architecture is used – validity (BD1, ED1),
transaction validity of the global transaction (BD2, ED2) and
transaction validity for the particular web node (BD3, ED3).
In general, multi-temporal solution can be used (the forth
model, fig. 7).

Figure 7. Bi-temporal and multi-temporal model

V. OWN VERSIONING SOLUTIONS

Data versioning management is inevitable part forming
reliable solution. The ability to cover all the state versions
shifts the solution to be the robust, however, it is only one part
of the problem complexity. Generally, data stored in the
database are monitored, evaluated and analyzed based on
current data in the reliability manner. Thus, if some result is
provided, it must be clear, which data image was used, if
multiple versions are available. Our environment was created
using Oracle database system, thus no data phantoms can
occur. On the other hand, it is useful to keep in mind processed
data versions, whether the query deals with the data accessible
at the begin time point of the transaction or only query itself.
To have the relevant answer pointing to the data image
evaluated, we propose solution based on the signature hash
described in the section 6. However, before the evaluation
itself, our proposed architectures and research streams must be
described.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 13, 2019

ISSN: 1998-4308 92

The first proposed solution of this paper is based on the
versioning extension of the uni-temporal solution. Index
pointers are always routed to the newest version, thanks to that,
each new analysis uses current version image at particular
execution moment. Historical versions are stored in the nested
tables of the same temporal structure. Fig. 8 shows the
architecture of the solution using object granularity. In
principle, any granularity can be used. Relevant data state is
encapsulated by the validity time frame (BD, ED) and insertion
date (IND). These data reflect the newest version of the state.
Insertion date is recorded automatically using sysdate (date and
time in the second granularity) or systimestamp (date, time, up
to 1ns precision) function, or any analogous function for the
used database system. If there is no previous version for the
state, particular nested table is empty. If the new version for the
particular state is inserted, original is transferred to such nested
table and main structure continuously stores only top version.
Therefore, it is necessary to distinguish between empty nested
table (in that case, before the transfer, constructor function
must be called) and existing nested table with previous state
versions.

Figure 8. Nested table storing versions

Versioning storage in this defined solution can, however,
form several state collisions, which is demonstrated in the
fig. 9. Let have one existing state (S1) consisting of only one
version. After the processing, state S1 is modified. In that case,
new version for the state S1 is created. In principle, two
situations can occur. In the positive change scenario, new
version does not change the validity time frame (fig. 9, part A).
More complicated situations occur, if the validity frame is
changed. In that case, it is not sufficient to create only new
state version, original state must be divided into two or three
ones. Let assume, that the state S1 is validity bordered by the
attributes BD1 and ED1. Afterwards, new version is created
with the validity time frame delimited by the BD2 and ED2.
Three situations can be identified:

 BD2 < BD1 and BD1 < ED2 and ED2 < ED1 (fig. 9,
part B). In this case, original state must be splitted
into two parts and one new version is added:

o State framed by the BD2 and BD1 is
delimited by new version.

o State framed by the BD1 and ED2 is formed
by the original version, which is also
replaced by the new version.

o State framed by the ED2 and ED1 remains
original (version is not changed, only
validity interval is shortened from the left
site)

 BD1 < BD2 and ED2 < ED1 (fig. 9, part C). In this
case, original state must be splitted into three parts:

o State framed by the BD1 and BD2 remains
original (version is not changed, only
validity is shortened from the rigth site).

o State framed by the BD2 and ED2 is formed
by the original version, which is also
replaced by the new version.

o State framed by the ED2 and ED1 remains
original (version is not changed, only
validity interval is shortened from the left
site)

 BD1 < BD2 and BD2 < ED1 and ED2 > ED1 (fig. 9,
part D). In this case, original state must be splitted
into two parts and one new version is added:

o State framed by the BD1 and BD2 remains
original (version is not changed, only
validity interval is shortened from the
right site)

o State framed by the BD2 and ED1 is formed
by the original version, which is also
replaced by the new version.

o State framed by the ED1 and ED2 remains
original (version is not changed, only
validity interval is shortened from the left
site)

Figure 9. New version

INTERNATIONAL JOURNAL OF COMPUTERS Volume 13, 2019

ISSN: 1998-4308 93

Generally, new version can influence many states, however,
only interval marginal parts (the top left and right) are splitted
into two parts.

Second our proposed architecture divides current vesioning
from the historical ones by forming separate database storage.
In that case, main structure is uni-temporal, the rest versions
are stored in the historical database, which consists of the
validity time frame (BD, ED) and insertion date (IND), as well.
Versioning itself is covered by the triggers, which shift original
version to the historical database reposity. Consecutively, it is
replaced in the main structure by the new version. Previously
mentioned situations changing validity of the original state can
occur in this architecture, as well. On the other hand, it is not
necessary to deal with constructors and specific storage for
nested tables. Triggers are associated with the destructive
operations – Update (modification of the object by adding new
state or version) and Delete (removing object from the system,
either by the direct delete operation or by moving historical
data to another repository, like data warehouse). Insert
operation expressing adding new object in the system is not
necessary to be triggered, whereas it always loads the first and
only one version for each statement.

The third architectural solution is similar to the second one,
but the trigger management module is replaced by the new
background processes (DBVern, n expresses the number of
such processes in the system) of the instance. They have direct
database access, thus it removes the slight impact of the trigger
firing. Moreover, performance benefits, because these
processes are always accessible in the memory (information
about their existence is written in the spfile and are created
during the mounting process of the instance). In distributed
environment, version processes are present on each node.
Several Database version processes can be present in the
instance, they can be either general (in that case, if new version
is to be loaded, random free Database version process
(DBVern) is selected to process the request. In practice, we
select the process to ensure performance balance. Number (n)
of version processes is dynamic, if there is no enough
processes, versions are too much queued, system (using SMON
background process) automatically creates new processes
based on predicted future workload (evaluated based on the
version statistics collected periodically). Another principle is
based on the process association to the precisely defined object
group.

The last forth model proposed in this paper is the
generalization and simplification of the bi-temporal
architecture and deals only with validity and database insertion
date. It does not cover the whole interval. In principle, each
new version delimits the validity of the previous one. In
comparison with previous solution described in this chapter,
there is no necessity to split existing states into parts, only
during the image reflection to the user, individual positional
time intervals must be evaluated. As you can see in the
performance evaluation, it can be the bottleneck of the system.
It is based on the assumption, that the state version correlates
the insertion date (IND). For the evaluation and sorting,
analytical function RANK is used:

RANK() over (PARTITION BY state_id
 ORDER BY insert_date DESC).

Function RANK is analytical and for these purposes, it gets
the serial number for each version. Each current version of the
state gets the value 1, historical versions are then covered
chronologically using insertion date to the database. There
should be no gaps of the obtained values from the RANK
function. If there is some gap present, it means, that data are
not consistent – object state is covered during some defined
interval by more than one valid version, which is not allowed.

VI. USED DATA VERSION IDENTIFICATION

Functions, analytics and aggregations are based on current
image of the database, which is evaluated. When result set is
stored or provided to the user, it is not clear, which specific
versions were available at the time, and which are were not
present. Thus, although the data result set is provided, it is not
transparent, whether the results are still usable, since it was
possible, that some other versions were loaded later giving
previously images non-reliable. Typical example can be
prediction on the one site and real data processing on the
second site replacing calculated (predicted) values by effective
ones. Therefore, to determine input image of the processing,
data signature hash is stored with each processed data result.
From such value, it is easy to determine validity and usability
of the results. Moreover, there can be automatized
functionality executed either automatically or based on
specific conditions to remove old function results. In our
approach, each new data shifts the signature hash to another
value.

 Each change, regardless of whether it changes the state or
affects the version of the existing state, is stored in the
database. Evidence of a given event is in the temporal layer of
a particular model with respect to granularity (object, column,
or hybrid design). The change itself can, but does not need to
change already processed data in analytical tools. It depends on
the images entering the analytical module, whether they are
also modified. Therefore, each object changes the signature of
the entire system, it creates own and unique fingerprint of the
change. It works like following. Let have the complete image
of the database covered by the actual signature SIGNact. New
state is added (Snew). Fingerprint hash is added to the actual
signature SIGNact and the whole unit is signature hashed. Such
value is then accessible in the system, therefore each function
dealing with data gets the actual hash as the parameter, which
is directly copied to the result set.

Whereas signature hashes are based on SIGNact value, used
image is trivial to determine – individual executed operations
are consecutively subtracted from the hash. Principles are
shown in the following figure. Current data are covered by the
SIGNact value, each new states replaces it. It is sufficient to
store only actual value, the rest ones can be dynamically
calculated based on provided data (which are stored in the
temporal architecture, so there is always possibility to get
historical data image).

INTERNATIONAL JOURNAL OF COMPUTERS Volume 13, 2019

ISSN: 1998-4308 94

The data management is sophistical, on the other hand, if
new data are loaded, but they do not influence already
processed results (as the output of analytics, functions, etc.),
new function result set are not created, whereas it would
provide the same values.

Figure 10. Signature hash calculation

VII. PERFORMANCE

Experiment results were provided using Oracle Database
11g Enterprise Edition Release 11.2.0.1.0 - 64bit Production;
PL/SQL Release 11.2.0.1.0 – Production. Parameters of used
computer are:

 Processor: Intel Xeon E5620; 2,4GHz (8 cores),
 Operation memory: 16GB,
 HDD: 500GB.

Environment characteristics are based on real environment
consisting of 1000 sensors producing data ten times for one
minute. 10 percent of the provided data are consecutively
replaced by newer ones using versions.

Five models have been used for the evaluation. The first
one (M1) is based on original uni-temporal solution, individual
versions are not processed, at all. Thus, approximately 10
percent of the processed data are unreliable. The second model
(M2) deals with versions stored in the nested table for the
particular state. Model 3 (M3) uses separate data structure
(physical table) for dealing with historical versions. Model 4
(M4) is characterized by the background processes managing
and accessing data versions. The last, fifth model (M5) uses bi-
temporal architecture. Each state is delimited by the validity
and reliability expressed by the time frame.

Tab. 1 shows the performance results with emphasis on the
size for the whole structure and processing time - getting
current image of the database with the latest versions of the
individual states. As you can see, bi-temporal architecture
reaches the worst results, for the size, as well as processing
time. The reason is based on storing all data versions in the
same table, thus the data amount is significantly rising.
Although there are indexes to optimize data access, individual
versions, as well as number of processed data, complicates the
situation and huge data amount causing it widespread. Looking
to the results, it can be concluded, that although size is
increased using 9 percent, costs, CPU and processing time are
increased by approximately 30 percent.

On the first sight, the best solution provides original uni-
temporal solution (M1), however, it does not manage versions
at all. As we can see from the experiment results, module for
dealing with versions (M4) requires less than 7% increase of

the processing time, however, it provides robust architecture
and can cover all data changes during the object lifecycle.

Comparing the results of the model M4 ensuring version
management by background processes with other solutions,
slowdown of the model M3 is 5,82% for the costs, 9,26% for
the CPU and 8,56% for processing time (reference model is M4
– 100%). Model M2 reached the following slowdown
(reference model is M4 – 100%): 9,50% for the costs, 11,11%
for the CPU and 10,17% for the processing time.

TABLE I. RESULTS

M1 M2 M3 M4 M5

Costs 17 011 19 990 19 232 18 174 22 110

CPU
(%)

52 60 59 53 67

Proc.
time (s)

257,5 301,1 296,7 273,3 334,8

Size (%) 100 106 106 106 109

Query processing time is the main performance limitation
of the whole system. Results are expressed in the fig. 11.

VIII. CONCLUSIONS

Conventional database systems are based on storing only
current valid data. Historical images are not the goal of the
management and are not reflected. Individual data corrections
are versions are targeted to deal with only the most recent ones,
as well. Temporal evolution has brought the possibility to
cover all the states of the object in the time spectrum. Thanks
to that, image of the object or the whole ecosystem at defined
time point or interval can be reached. Principle of the uni-
temporality is based on the term validity, thus each data tuple is
time bordered. In this paper, we extend the paradigm of the
temporal database approaches by adding sophisticated module
for dealing with data versions. Thanks to that, data can be
evaluated anytime with the reflection to the database image
used as the input. Each data version is secured by the unique
signature hash delimiting data image. Theoretical part of the
paper deals with the temporal architectures with emphasis on
processed granularity and antidating problem. Own proposed
solution architecture is based on version management using

INTERNATIONAL JOURNAL OF COMPUTERS Volume 13, 2019

ISSN: 1998-4308 95

several models, which are experimentally compared. Most
important parameters are just used resources and processing
time. The best solution is based on the background process
extension, by which data versions are covered.

Based on the used environment, proposed solution requires
less than 7 percent addition for the processing time and CPU.
On the other hand, proposed solution significantly improves
performance of the bi-temporal architecture, which deals with
the validity and transaction time for versioning. Proposed
solution lowers the costs up to 18 percent. Processing time
saving is more than 18 percent, as well.

During the future research, we will extend the solution to
cover distributed environment complexly. We will deal with
automation of the version and error detection in ad-hoc
networks to ensure processed data to be always reliable.
Solution could be used in any field. One of the strongest sphere
is intelligent transport and GPS navigation systems, where
particular node can obtain either raw data, if the
communication channel is fast, or pre-processed package with
emphasis on the security aspect.

ACKNOWLEDGMENT

This publication is the result of the project implementation:
Centre of excellence for systems and services of intelligent

transport II., ITMS 26220120050 supported by the Research
& Development Operational Programme funded by the ERDF.

This paper is also supported by the following project:
"Creating a new diagnostic algorithm for selected cancers,"
ITMS project code: 26220220022 co-financed by the EU and
the European Regional Development Fund.

"PODPORUJEME VÝSKUMNÉ AKTIVITY NA SLOVENSKU

PROJEKT JE SPOLUFINANCOVANÝ ZO ZDROJOV EÚ

REFERENCES
[1] K. Ahsan, P. Vijay. “Temporal Databases: Information Systems”,

Booktango, 2014.

[2] L. Ashdown. T. Kyte “Oracle database concepts”, Oracle Press, 2015.

[3] G. Avilés et all. “Spatio-temporal modeling of financial maps from a
joint multidimensional scaling-geostatistical perspective”, 2016. In
Expert Systems with Applications. Vol. 60, pp. 280-293.

[4] R. Behling et all., “Derivation of long-term spatiotemporal lanslide
activity – a multisensor time species approach”, 2016. In Remote
Sensing of Environment, Vol. 136, pp. 88-104.

[5] C. J. Date, N. Lorentzos, H. Darwen. “Time and Relational Theory :
Temporal Databases in the Relational Model and SQL”, Morgan
Kaufmann, 2015.

[6] M. Doroudian, et all: "Multilayered database intrusion detection system
for detecting malicious behaviours in big data transaction" IEEE
International Conference on Industrial Engineering and Engineering
Management (IEEM), 2016

[7] M. Erlandsson et all., “Spatial and temporal variations of base cation
release from chemical weathering a hisscope scale”. 2016. In Chemical
Geology, Vol. 441, pp. 1-13

[8] J. Jánošíková, P. Jankovič, M. Kvet, "Improving Emergency System
Using Simulation and Optimization", In SOR 17: Proceedings of the
14th International Symposium on Operational Research, 2017, ISBN
978-961-6165-50-1, pp. 269-274

[9] T. Johnston. “Bi-temporal data – Theory and Practice”, Morgan
Kaufmann, 2014.

[10] T. Johnston and R. Weis, “Managing Time in Relational Databases”,
Morgan Kaufmann, 2010.

[11] M. Kvassay, E. Zaitseva, J. Kostolny, and V. Levashenko, “Importance
analysis of multi-state systems based on integrated direct partial logic
derivatives”, In 2015 International Conference on Information and
Digital Technologies, 2015, pp. 183–195.

[12] M. Kvet, J. Janáček, "Fair emergency system design under uncertaintyL.
In Central European Journal of Operations Research, ISSN 1435-246X,
Vol. 26, no. 3, 2018, pp. 599-609

[13] M. Kvet, K. Matiaško, “Temporal Data Group Management”, IEEE
conference IDT 2017, 5.7. – 7.7.2017, pp. 218-226

[14] M. Kvet, K. Matiaško, “Transaction Management in Temporal System”,
2014. IEEE conference CISTI 2014, 18.6. – 21.6.2014, pp. 868-873

[15] M. Kvet and K. Matiaško, “Uni-temporal modelling extension at the
object vs. attribute level”, IEEE conference UKSim, 20.11 – 22.
11.2014, , pp. 6-11, 2013.

[16] D. Kuhn, S. Alapati, B. Padfield, “Expert Oracle Indexing Access
Paths”, Apress, 2016.

[17] S. Li, Z. Qin, H. Song. “A Temporal-Spatial Method for Group
Detection, Locating and Tracking”, In IEEE Access, volume 4, 2016.

[18] Y. Li et all., “Spatial and temporal distribution of novel species in
China”, 2016. In Chinese Journal of Ecology, Vol. 35, No. 7, pp. 1684-
1690.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 13, 2019

ISSN: 1998-4308 96

