
1

Hierarchical Denormalizing: A Possibility to
Optimize the Data Warehouse Design

Morteza Zaker, Somnuk Phon-Amnuaisuk, Su-Cheng Haw
Faculty of Information Technologhy

Multimedia University, Malaysia

Abstract—Two of the most common processes in database de-
sign community include data normalization and denormalization
which play pivotal roles in the underlying performance. Today
data warehouse queries comprise a group of aggregations and
joining operations. As a result, normalization process does not
seem to be an adequate option since several relations must
combine to provide answers for queries that involve aggre-
gation. Further, denormalization process engages a wealth of
administrative tasks, which include the documentation structure
of the denormalization assessments, data validation, and data
migration schedule, among others. It is the objective of the
present paper to investigate the possibility that, under certain
circumstances, the above-mentioned justifications cannot provide
justifiable reasons to ignore the effects of denormalization. To
date, denormalization techniques have been applied in several
database designs one of which is hierarchical denormalization.
The findings provide empirical data that show the query response
time is remarkably minimized once the schema is deployed by
hierarchical denormalization on a large dataset with multi-billion
records. It is, thus, recommended that hierarchical denormaliza-
tion be considered a more preferable method to improve query
processing performance.

Index Terms—Data warehouse, Normalization, Hierarchical
denormalization, Query processing

I. INTRODUCTION

DATA Warehouse (DW) can be regarded as the foundation
for Decision Support Systems (DSS) with their huge

collection of information available in On-line Analytical
Processing (OLAP) application. Current and previous data
from numerous external data sources can be stored in this
large database [1]–[3] . The queries that are created on DW
system commonly have a complicated nature that comprises
a number of join operations incurring high computational
overhead. Usually, they include multi-dimensional grouping
and aggregation operations. By contrast, queries applied in
OLAP are relatively more sophisticated than those that are
employed in traditional applications. Due to the massive
volume of DWs and the complicated quality OLAP queries,
for one thing, the execution cost of the queries have to be
raised and the performance, and for another, the productivity
of DSS are influenced dramatically. [4]–[6]

A large portion of database software solutions for real-
world applications today depend on normalized logical
data models. Even though normalization follows a simpler
implementation process, it imposes several limitations in

supporting business application requirements [7] .

Previous research [8] provides proof for data retrieval
accelerating properties of denormalization; nonetheless, a
demerit of denormalization includes its weak support of
potentially frequent updates. Indeed, data warehouses entail
relatively fewer data updates and data are usually retrieved
only in most transactions [2]. That is to say, an application
of denormalization strategies is most appropriate for data
warehouses systems as long as they experience infrequent
updating.

It is possible to create denormalization relationships for
a database through a number of methods, some of which
include Pre-Joined Tables, Report Tables, Mirror Tables,
Split Tables, Combined Tables, Redundant Data, Repeating
Groups, Derivable Data and Hierarchies [9], [10] .

The study emphasizes the use of Hierarchical
denormalization to raise the efficiency of the performance
in DW. Inasmuch as designing, representing and traversing
hierarchies have complicated processes compared to the
normalized relationship, integrating and summarizing the
data remains as the most commonly utilized approach to
minimize the query response time [11], [12] . Hierarchical
denormalization can especially be advisable when dealing
with the growth of star schemas found in a majority of data
warehouse implementations [7], [12] .

At this point, what remains a problem is that, following
the conventional wisdom, all designs that include a relational
database should be supported by normalized logical data
models [13] . Beyond this, even though the system can be
enhanced by decreasing table joins is not new, denormalization
cannot be advised since it is a highly demanding task of admin-
istrative devotion involving the documentation structure of the
denormalization assessments, data validation, and schedules
for migrating of data, to name but a few.

By contrast, a considerable number of studies in the
related literature contend that denormalization can optimize
performance by creating a more flexible data structure for
users [7], [12] . Data can be arranged into a well-balanced
structure through normalization in order to optimize data
accessability, yet such a procedure entails certain deficiencies
that result in turn in a lower system performance [14],
[16], [17] . The evident point is that IT academicians and

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

143

2

practitioners share great diversities concerning their view
towards database design. Certainly, denormalization is a
process that has not attracted interest in the academic world
but is a reasonable strategy in practical database community.

The paper has the following contentions to make:
1. Hierarchical technique is strongly recommended to
denormalize the data model and structure in a data warehouse
involving several join operations. 2. Query processing time
in the structure provided by hierarchical denormalizing is
significantly shorter than normalized structure even though
data maintenance in a normalized structure is easier in
comparison to a denormalized structure. 3. Query processing
performance is influenced considerably by building Bitmap
Index on columns involved by denormolized implementation.

The paper includes five sections beginning with a
brief review of the related studies followed by an
overview of previous research conducted on normalization,
denormalization and hierarchical denormalization in section
2. A case study and performance methodology on a set of
queries are proposed in the next section in order to compare
the performances of normalized and denormalized table
structures. The discussion of the results of the study comes
in the next part preceding the conclusion, or Section 5.

II. BACKGROUND

A. Normalization

Normalization is a technique, first mentioned by Codd
[18], and has been deployed by Date [8] for determining the
optimal logical design to simplify the relational design of
an integrated database, based on the groupings of entities to
improve performance in storage operations.

While an entirely normalized database design decreases
the inconsistencies, it can cause other difficulties such
as insufficient system response time for data storage and
referential integrity problems due to the disintegration of
natural data objects into relational tables [19] .

B. Denormalization

Some pertinent explanations exist for denormalizing
of a relational design to improve its performance. An
awareness of these explanations will prove helpful to identify
systems and entities as denormalization candidates. These
explanations need to be considered to help designers to
reach the mentioned identification. These explanations are:
(i) critical queries which involve more than one entity.
(ii) Frequent times of queries which must be processed in
on-line environments. (iii) A lot of calculations which need
to be applied to single or many columns upon queries can
be efficiently taken care of; (iv) entities which need to be
extracted in different ways during the same time and (v) to
be aware about relational database which can brings better
performance and enhanced access options that may increase

Fig. 1. Hierarchy (balanced tree)

the possibility for denormalization.

Most OLAP processes within the data warehouse extract
summarized and aggregated data, such as sums, averages,
and trends to access aggregated and time series data with
immediate display. The components which are best suited
for denormalization in a data warehouse include: multidi-
mensional analysis in a complex hierarchy, aggregation, and
complicated calculations [7], [15], [20], [21] .

C. Hierarchies

From a technical point of view, a parent-child relationship
refers to a hierarchy where a child has only one parent. A
hierarchy is a collection of levels which can be drill-down.
Drill-down refers to traversing of a hierarchy from the top
levels of aggregation to the lower levels of detail [11], [12],
[21] .

To illustrate what the structure of hierarchy is, we show an
example by [12] . ” Each member in a hierarchy is known
as a ”node.” The topmost node in a hierarchy is called the
”root node” while the bottommost nodes are known as ”leaf
nodes.” A ”parent node” is a node that has children, and a
”child node” is a node which belongs to a parent. A parent
(except a root node) may be a child, and a child (except a
leaf node) may also be a parent.” Fig 1 shows such a hierarchy.

Hierarchies are essential aspects of DWs. Thus, supporting
different kinds of hierarchies in the dimensional data, and
allowing more flexibility in defining the hierarchies can enable
a wider range of business scenarios to be modeled [22] .
We outline several types of hierarchies in the data warehouse
environment as follows [12] .

1) ” Balanced tree structure: In this structure, hierarchy
has a consistent number of levels and each level can
be named. Each child has one parent at the level
immediately above it.

2) Variable depth tree structure: In this structure, the num-
ber of levels is inconsistent (such as a bill of materials)
and each level cannot be named.

3) Ragged tree structure: This hierarchy has a maximum
number of levels, each of which can be named and each
child can have a parent at any level (not necessarily
immediately above it).

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

144

3

TABLE I
BASIC BITMAP INDEX ADOPTED BY[24]

RowId C B0 B1 B2 B3
0 2 0 0 1 0
1 1 0 1 0 0
2 3 0 0 0 1
3 0 1 0 0 0
4 3 0 0 0 1
5 1 0 1 0 0
6 0 1 0 0 0
7 0 1 0 0 0
8 2 0 0 1 0

4) ”Complex tree structure: In this hierarchy, a child may
have multiple parents.

5) ”Multiple tree structures for the same leaf node [12] .
”

D. Bitmap index

Bitmap index is built to enhance the performance on
various query types including range, aggregation and join
queries. It is used to index the values of a single column
in a table. Bitmap index is derived from a sequence of the
key values which depict the number of distinct values of a
column. Each row in Bitmap index is sequentially numbered
starting from integer 0. If the bit is set to ”1”, it indicates
that the row with the corresponding RowId contains the key
value; otherwise the bit is set to ”0”.

To illustrate how Bitmap indexes work, we show an example
which is based on the example illustrated by E.E-O’Neil and
P.P-O’Neil [25] . ” Table I shows a basic Bitmap index on a
table containing 9 rows, where Bitmap index is to be created
on column C with integer values ranging from 0 to 3. We say
that the column cardinality of C is 4 because it has 4 distinct
values. Bitmap index for C contains 4 bitmaps, shown as B0,
B1, B2 and B3 corresponding to the value represented. For
instance, in the first row where RowId =0, column C has the
value 2. Hence, in column B2, the bit is set to ”1”, while the
rest of bitmaps bits are set to ”0” . Similarly, for the second
row, bit of B1 is ”1” because the second row of C has the
value 1, while the corresponding bits of B0, B2 and B3 are
all ”0” . This process repeats for the rest of the rows [25].”

III. RELATED WORKS

Bock and Schrage [19] have indicated that a number
of factors affecting system response time are related
to ineffective use of database management system tuning,
insufficient hardware platforms, poor application programming
techniques, and poor conceptual and physical database design.
In their studies they focused on the effects of multiple table
joins on the system response time. In order to construct
an object view that managers need to extract data for their
trade activities, a business computer application may have to
join several tables. Reducing the number of table joins will
improve system response time.

Hanus [13] has outlined the advantages of normalization
process, such as, easing the designs process and physical
implementation, reducing data redundancy and protects
data from update and deleting anomalies. He/she also has
shown that entities, attributes, and relations can easily be
modified without restructing the entire table. Moreover, since
the tables are smaller with fewer numbers of bytes, less
physical storage is required. Beyond this, however, a join
operation must be accomplished. In such cases, it might be
mandatory to denormalize that data. Nevertheless, he agrees
that denormalization must be used with care by understanding
of how the data will be used. He has also confirmed that
denormalization can be used to improve system response time
without redundant data storage or incurring difficulty of data
maintenance.

Sanders and Shin [20] presented a methodology for the
assessment of denormalization effects, using relational algebra
operations and query trees. They believed that denormalization
is an intermediate step between logical and physical modeling,
which is involved with analyzing the functionality of the
design regarding to the applications requirements criteria.
Nevertheless, their methodology was limited due to the lack
of sufficient comparison of computation costs between the
normalized and denormalized data structures.

Shin and Sanders [23] have discussed the effects of
denormalization on relational database system performance
with using denormalization strategies as a database
design methodology. They have presented four common
denormalization strategies and evaluated their effects by
illustrating the conditions which strategies are most effective.
They have concluded that denormalization methods may
receive positive effects for database performance such as Data
warehouse.

Morteza Zaker and others [24] have discussed that although
creating indexes on database is usually regarded as a common
issue, it plays a key role in the query performance, particularly
in the case of huge databases like a Data Warehouse where
the queries are of complicated and ad hoc nature. Should
an appropriate index structure be selected, the time required
for query response will decrease extensively. Their empirical
results have indicated that how the Bitmap index can be more
expeditious than B-tree index on a large dataset with multi-
billion records.

IV. METHODOLOGY

In order to compare efficiency of denormalization and
normalization processes and analysis the performance of these
data models, we build a series of queries on some columns
for evaluation. In our dataset, there are 4 tables; Fact, D1,
D2 and D1D2. Fact, D1 and D2 tables have approximately
1.7 billion of records and D1D2 table (a combination of
D1 and D2 tables) has approximately 3.36 billion records.
These records are randomly generated using PL/SQL Block
by Oracle11G tools. These tables can be categorized into

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

145

4

Fig. 2. Schema 1 with normalized design

Fig. 3. Schema 2 with denormalized design

two database schemas, Schema 1 and Schema 2 which are
portrayed in Fig 2 and Fig 3 respectively. In Schema 1, the
tables are applied by normalization modeling where D1 table
is connected to the D2 table by one-to-many relationship and
similarly, D2 table is also connected to the Fact table by one-
to-many relationship. In Schema 2, D1D2 table is directly
connected to the Fact table by one to many relationship.
The D1D2 table is implemented by hierarchical technique.
All attributes, except the keys (PK) of the dimensions, are
associated by Bitmap index; Schema 1 contains 5 indexed
columns while Schema 2 includes 3 indexed attributes.

Schema 1 has fact data which is chained with huge amounts
of data stored in D2 and D1 dimensions (shown in Fig 2)
while Schema 2 contains the fact table and one dimension
table implemented by hierarchy technique (shown in Fig 3).

TABLE II
DESCRIPTIONS FOR SET QUERIES

Query Description Set-Query 1
Schema 1 Q1A:

One-Dimensional query which involve SELECT count (*) FROM D2
only one column at a WHERE D2-Name = ’abcdefgh’

time in the WHERE clause. [25]

Q1B:
Schema 2 SELECT count (*) FROM D1D2

WHERE D1D2-name = ’abcdefgh’;

Query Description Set-Query 2

Q2A:
SELECT D2-name FROM D2 WHERE

(D2-agg between 100000 and 1000000

Schema 1 or D2-agg between 1000000 and 10000000

or D2-agg between 10000000 and 30000000

or D2-agg between 30000000 and 60000000

or D2-agg between 60000000 and 100000000)

Q2B:
SELECT D1D2-name FROM D1D2 WHERE

(D2-agg between 100000 and 1000000

Schema 2 or D1D2-agg between 1000000 and 10000000

or D1D2-agg between 10000000 and 30000000

or D1D2-agg between 30000000 and 60000000

or D1D2-agg between 60000000 and 100000000)

Query Description Set-Query 3

Q3A:
Schema 1 SELECT D2-name, count (*) FROM D2 GROUP

by D2-name.

Q3B:
Schema 2 SELECT D1D2-name, count (*) FROM D2

GROUP BY D1D2-name.

Query Description Set-Query 4

Q4A:
Schema 1 SELECT * FROM D1, D2 WHERE

D1.D1-name=’abcefgh’and D1.D1-id=D2.D1-id

Q4B:
Schema 2 SELECT * FROM D1D2 WHERE

D1D2-name=’abcefgh’

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

146

5

Query Description Set-Query 5

Q5A:
SELECT D1.’D1.Name’, sum(

Schema 1 fact1.f1*D2.’D2-Agg) FROM D1,D2,

fact WHERE D1.’D1.id’= D2.’D2-Id’

and D2.’D2-Id’= Fact.’D2-Id’

Group by D1.’D1-name’

Q5B:
SELECT D1D2.”D1D2-NAME”,sum(T.jam)

FROM(SELECT D1D2.”D1D2-ID” Id,(

Schema 2 D1D2.”D1-PARENT-ID” pid,fact.f1 *

D1D2.”D1D2-AGG”) as jam FROM D1D2,

fact WHERE D1D2.”D1D2-ID”= fact.”D2-ID”)

T,D1D2 WHERE D1D2.”D1D2-ID”= T.pid

GROUP BY D1D2.”D1D2-NAME”

Query Description Set-Query 6

Q6A:
SELECT D1.”D1-NAME”,D2.”D2-NAME”,

Schema 1 D2.”D2-AGG” FROM D1,D2

WHERE D1.”D1-ID” = D2.”D1-ID”

Q6B:
SELECT D1D2.”D1D2-NAME” D1,

Schema 2 connect by root D1D2.”D1D2-NAME”,

D1D2.”D1D2-AGG” D2 FROM D1D2

WHERE level > connect by prior

D1D2.”D1D2-ID” = D1D2.”D1-PARENT - ID”

A. Query Set

The Set Query Benchmark has been used for frequent-query
application much like a Star-Schema in the data warehouse
design [26], [27] . The queries of the Set Query Benchmark
have been designed on based business analysis missions. In
order to evaluate the time required for answering different
query types including range, aggregation and join queries; we
implemented the three (out of six) queries adopted from Set
Query Benchmark [26], [27] . Briefly, we describe all of our
selected SQL queries used for our performance measurements
as indicated in Table II. Basically, for each query, we used
suffix ’A’ to represent query on Schema 1 and suffix ’B’ to
represent query on Schema 2.

B. Experimental Setup

We performed our tests on the Microsoft Windows Server
2003 machine with Oracle11G database systems. Table III
shows some basic information about the test machines and
the disk system. To make sure the full disk access time was
accounted for we disabled all unnecessary services in the
system and kept the same condition for each query. To avoid
inaccuracy, all queries were run 4 consecutive times to give
an average elapsed time.

TABLE III
INFORMATION ABOUT THE TEST SYSTEM

CPU Pentium 4 (2.6 GHZ)
Disk 7200 RPM,

500 GB
Memory 1 GB
Database Oracle11G

V. RESULTS AND DISCUSSIONS

A. Query Response Time

In this section, we show and discuss the time required to
answer the queries. These timing measurements directly reflect
the performance of normalizing or denormalizing methods. A
summary of all the timing measurements on several kinds of
queries is shown in Table IV.

TABLE IV
QUERY RESPONSE TIME (PER SECONDS)

First Schema(QXA) Second Schema(QXB)
(Normalized) (Denormalized)

Set-Query1 0.020 0.031
One-dimensional Set-Query2 21.20 30.43

Set-Query3 1646.98 2949.98
Set-Query4 830.39 0.16

Multi-dimensional Set-Query5 108000.34 10000.29
Set-Query6 976.87 102.32

B. One-Dimension Queries

Firstly, we examine the performance on count queries (Set-
Query 1). When the Schema is deployed by denormalizaion,
it takes slightly more time to execute the queries. The
time needed to answer higher amount of count queries is
dominated by the time needed to answer the number of
rows in the dimension. For example, Q1B was applied on
dimension with 3.6 billion records and Q1A was applied
on dimension with 1.7 billion records; we expect Q1B to
take about twice as much time as Q1A. However, from the
results in Table IV, this estimation is not accurate, presumably
because the initialization of the tablespace for Q1B and Q1A
is easily associated with the Bitmap index techniques. This
observation is accessed because the average time used by
normalized schema to read in the data blocks is nearly 0.020s
(20 ms) and in denormalized schema is about 31 ms.

Next, we focus on Set-Query 2. As it can be observed,
the time required by both of the schemas rises significantly.
It is necessary to understand the retrieval time to compute
how many pages or how many disk sectors are accessed for
the retrieval operation. The query response time required
to fetch data for Q2A and Q2B has the same doing as
each other. The number of records by these queries that has
to be selected is uniformly scattered among rows 100,000
and 100,000,000. Here, we also expect Q2B to take about
twice as much time as Q2A. However, this estimation is not
accurate. Consequently, the elapsed time of both schemas that
is needed to answer the queries which are executed within a
range of predicates is affected by the distribution of data; not

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

147

6

by the normalization or denormalization conditions.

Another query that can be a main way to promise the
indexing effects is Set-Query 3. In Q3A and Q3B, we see
that the response time of Q3B is almost twice as much time
as Q3A. On the other hand, the required time to answer these
queries is extremely more than the other one-dimensional
queries (Set-Query1). This is because to execute this type
of query, the optimizer will not make use of any indexes.
Rather, it will prefer to do a full table scan. Since there is
an abnormal growth of data, table scan will be needed to
increase physical disk reads to avoid insufficient memory
allocation. As a result, this does not scale very well as data
volumes increase. Even though, there is one implementation
of Bitmap index (FastBit) which can support these queries
directly [16], [17], [25], but Oracle 11G has not utilized this
method of implementation.

In summary, Fig 4 shows the query elapse time for one-
dimensional queries which were applied on the two schemas.
This figure shows that although the query retrieval time on
the Schema 1 (which has been designed by normalization
method) is faster than Schema 2 (denormalized schema),
query performance can be enormously enhanced by using
index techniques especially Bitmap index technique.

C. Multi-Dimension Queries

In Set-Query 4, the denormalized solution is impressive
since no table joins are required. We see that the denormalized
schema query remains unchanged, but the normalized schema
structure results in a query that joins the D1 and D2 tables.
This results in slower system response time and performance
will degrade as the table size increases. This query shows
that if the First Normal Form tables is transformed by
denormalization method, the query response time can be
extraordinary decreased as the number of join operations is
reduced.

Data aggregation is a frequent operation in data warehouse
and OLAP environments. Data are either aggregated on the fly
or pre-computed and stored as materialized views [21] . Since,
data aggregation and data computation can really grow to be
a complex process through time, having a good and well-
defined architecture support dynamic business environments
has more long-term benefits with data aggregation and
computation. In Set-Query 5, we see that the query response
time of Q5B (denormolized schema) is excessively less than
that of Q5A. Thus, we claim that two of the components in a
data warehouse that are good candidates for denormalization
are aggregation, and complicated calculations.

A flexible architecture leads to potential growth and
flexibility lean towards exponential growth. The database
software which supports the flexible architecture such as
hierarchical methods in data warehouses need to use in
state-of-the-arts components to reply complex aggregation

Fig. 4. Query elapse times for one dimension queries

needs. It should also be able to support all kinds of reports by
using modern operators. These operators should extend the
flexibility of hierarchical queries. Oracle does show promises
in hyper-computational abilities to process more complex
structures by up-to-date operators which other database
software might not be able to. To the best of our knowledge
and experience there are many operators in oracle11g which
can promise the high flexibility in query writing. Provably,
we see in Set-Query6 that using oracle operators can enhance
speed of data extraction from hierarchical table. Query elapsed
time in Q6B has been enormously decreased compared to
Q6A. Despite the complexity of query scripting, Oracle
has long provided specific support for querying hierarchical
data. This support comes in the form of the START
WITH, CONNECT BY ISCYCLE pseudocolumn and so
on which assist the designers to easily query hierarchical data.

Fig 5 shows the query elapse time for multi-dimensional
hierarchical queries which have been applied on first and
second schemas. This Fig shows that using hierarchical de-
normalization method can improve system response time when
the queries are unanticipated ad hoc queries.

VI. CONCLUSION

The present experimental study was an evaluation of denor-
malization following necessary guidelines in a data warehouse
design. The researchers demonstrated how set queries for the
measurement of denormalization can affect using hierarchi-
cal implementation. With the objective of elucidation of the
effects of hierarchical denormalization in further detail, we
attempted to prepare a real test environment to measure query
retrieval times, system performance, ease of utilization and
bitmap index effects. The tests made a comparison between
normalized and hierarchical denormalized data structures in
terms of aggregation and computation costs. The findings
confirm that most probably hierarchical denormalization have
the capability of improving query performance since they can

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

148

7

Fig. 5. Query elapse times for multi dimension queries which are involved
by join operations

reduce the query response times when the data structure in
Data warehouse is engaged in several joins operations. The
results can help researcher in the future to develop general
guidelines which can be applicable to a majority of database
designs. Finally, hierarchical denormalization can be regarded
as a fundamental phase in a data warehouse data modeling
which is rarely dependant on applications requirements in
which data warehouse does not frequently have to be updated.

REFERENCES

[1] S. Chaudhuri and U. Dayal, An Overview of Data Warehousing and
OLAP Technology. ACM SIGMOD RECORD, 1997

[2] R. Kimball and L. Reeves and M. Ross, The Data Warehouse Toolkit.
John Wiley and Sons, NEW YORK, 2002

[3] J. Mamcenko and I. Sileikiene, Intelligent Data Analysis of E-Learning
System Based on Data Warehouse, OLAP and Data Mining Technologies.
Proceedings of the 5th WSEAS International Conference on Education
and Educational Technology, Tenerife, Canary Islands, Spain, December
16-18, 2006 pp. 171

[4] W. H. Inmon, Building the Data Warehouse. John Wiley and Sons, 2005

[5] C. DELLAQUILA and E. LEFONS and F. TANGORRA, Design and
Implementation of a National Data Warehouse. Proceedings of the 5th
WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering
and Data Bases, Madrid, Spain, February 15-17, 2006 pp. 342-347

[6] C. S. Park and M. H. Kim and Y. J. Lee , Rewriting olap queries using
materialized views and dimension hierarchies in data warehouses. In
Data Engineering, 2001. Proceedings. 17th International Conference on.

[7] S. K. Shin and G. L. Sanders, Denormalization strategies for data
retrieval from data warehouses. Decis. Support Syst. Oct. 2006, pp.
267-282. DOI= http://dx.doi.org/10.1016/j.dss.2004.12.004

[8] C. J. Date, An Introduction to Database Systems, Addison-Wesley
Longman Publishing Co., Inc, 2003

[9] C. S. Mullins, Database Administration: The Complete Guide to
Practices and Procedures. Addison-Wesley, Paperback, June 2002, 736
pages, ISBN 0201741296.

[10] C. Zaniolo and S. Ceri and C. Faloutsos and R. T. Snodgrass and V.
S. Subrahmanian and R. Zicari,Advanced Database Systems. Morgan
Kaufmann Publishers Inc. 1997

[11] W. T. Joy Mundy, The Microsoft Data Warehouse Toolkit: With SQL
Server 2005 and the Microsoft Business Intelligence Toolset. John Wiley
and Sons, NEW YORK, 2006.

[12] I. Claudia and N. Galemmo Mastering Data Warehouse Design
-Relational And Dimensional. John Wiley and Sons, 2003, ISBN:
978-0-471-32421-8.

[13] M. Hanus, To normalize or denormalize, that is the. question. In
Proceedings of Computer Measurement Group’s 1993 International
Conference, pp. 413-423.

[14] C. J. Date, The normal is so...interesting. Database Programming and
Design. 1997, pp.23-25

[15] M. Klimavicius, Data warehouse development with EPC. Proceedings
of the 5th WSEAS International Conference on Data netwrks,
Communications and Computers, Romaina 2006

[16] J. C. Westland, Economic incentives for database normalization.
Inf. Process. Manage. Jan. 1992, pp. 647-662. DOI=
http://dx.doi.org/10.1016/0306-4573(92)90034-W

[17] D. Menninger, Breaking all the rules: an insider’s guide to practical
normalization. Data Based Advis. (Jan. 1995), pp. 116-121

[18] E. F Codd, The Relational Model for Database Management. In: R.
Rustin (ed.): Database Systems, Prentice Hall and IBM Research Report
RJ 987, 1972, pp. 65-98.

[19] D. B. Bock and J. F. Schrage, Denormalization guidelines for base
and transaction tables. SIGCSE Bull.(Dec. 2002), pp. 129-133. DOI=
http://doi.acm.org/10.1145/820127.820184

[20] G. Sanders and S. Shin, Denormalization Effects on Performance
of RDBMS. In Proceedings of the 34th Annual Hawaii international
Conference on System Sciences (Hicss-34)-Volume 3 - Volume 3
(January 03 - 06, 2001). HICSS. IEEE Computer Society, Washington,
DC, 3013.

[21] C. Adamson, Mastering Data Warehouse Aggregates: Solutions for Star
Schema Performance. John Wiley and Sons, 2006, ISBN: 978-0-471-
77709-0.

[22] R. Strohm.Oracle Database Concepts 11g. Oracle, Redwood City,CA
94065. 2007

[23] S. K. Shin and G. L. Sanders, Denormalization strategies for data
retrieval from data warehouses. Decis. Support Syst.(Oct. 2006), PP.
267-282. DOI= http://dx.doi.org/10.1016/j.dss.2004.12.004

[24] M. Zaker and S. Phon-Amnuaisuk and S. Haw, Investigating Design
Choices between Bitmap index and B-tree index for a Large Data
Warehouse System. Proceedings of the 8th WSEAS International
Conference on APPLIED COMPUTER SCIENCE (ACS’08) Venice,
Italy, November 21-23, 2008, pp.123

[25] E. E-O’Neil and P. P-O’Neil, Bitmap index design choices and their
performance implications. Database Engineering and Applications
Symposium. IDEAS 2007. 11th International, pp. 72-84.

[26] P. O’Neil, The Set Query Benchmark. In The Benchmark Handbook
For Database and Transaction Processing Benchmarks. Jim Gray, Editor,
Morgan Kaufmann, 1993.

[27] P. ONeil and E. ONeil, Database Principles, Programming, and
Performance. 2nd Ed. Morgan Kaufmann Publishers. 2001.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

149

8

Morteza Zaker is a research student in Advanced
Databases and Data Warehouse area. He is a system
analyst and skilled in database with more than one
decade.

Somnuk Phon-Amnuaisuk received his B.Eng.
from King Mongkut Institute of Technology (Thai-
land) and Ph.D. in Artificial Intelligence from the
University of Edinburgh (Scotland). He is currently
an associate Dean for the faculty of Information
Technology, Multimedia University, Malaysia where
he also leads the Music Informatics Research group.
His current research works span over multimedia in-
formation retrieval, polyphonic music transcription,
algorithmic composition, Bayesian networks, data
mining and machine learning.

Dr.Su-Cheng Haw’s research interests are in XML
Databases and instance storage, Query processing
and optimization, Data Modeling and Design, Data
Management, Data Semantic, Constraints and De-
pendencies, Data Warehouse, E-Commerce and Web
services

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 3, 2009

150

