



Abstract—Typically, the traditional ways of exploring any

artifacts relate to the source code through software systems is useless

and considered as error prone and time consuming. Software systems

are often comprised of many lines of code scattered across many

different files, all located within a complex hierarchical file system.

This hierarchical distribution of the code fragments makes the

process of changing the source code complex task and need to be

done from an expert developer to avoid affecting or changing

unrelated fragments. Due to this complexity, developers can easily

become disoriented and lost within software systems, moreover the

developers cannot also extract data about the code. Because of these

problems, in this paper, a tool called Source Code Explorer

(SCodeEx) is presented. The proposed tool has been developed using

C#. SCodeEx can solve the problem of the use of paper-based

solutions. SCodeEx is solving the problem of categorizing and

extracting data from the code in professional way. The proposed

system is successfully passed and the users notice the credibility of

the system to explore the classes with its functions and names,

number of callee, call, variables, return data type and access modifier

to each function. Compared to existing tools, SCodeEx is more

professional and the way to solve the problem is faster and easier

than others.

Keywords—Software testing, Software development, Quality

system, Software complexity, Code visualization, Code navigation

I. INTRODUCTION

N the last few decades, a lot of researches has been directed

to enhance the programming skills, this is due to the fact that

the style of source code implementation affect the whole life

cycle of the application and therefore it effect the time of

developers and users [1]. Moreover, writing and implementing

any system in a professional way will positively appear on the

usage of the program as well as on the process of evolution

and maintenance of the undertaken system. There are

M. S. Al-Batah is with the Faculty of Sciences and Information

Technology, Jadara University, Irbid, Jordan (e-mail: albatah@jadara.edu.jo)

N. Alhindawi is with the Faculty of Sciences and Information Technology,

Jadara University, Irbid, Jordan (e-mail: hindawi@jadara.edu.jo)

S. Oqeili is with the Computer Engineering Department, Jadara

University, Jordan, on leave from the Al Balqa Applied University, Jordan (e-

mail: saleh@bau.edu.jo)

O. M. Al-Hazaimeh is with Computer Science & Information Technology

Departments at Al Balqa Applied University, Jordan (e-mail:

dr_obaida@bau.edu.jo

noticeable disagreements in the environment of software

development that may arise between the developers and their

team leaders or between developers and testers [2]. The

accusation is that the developer who created code is not

efficient, the question that arises: "How the evaluation process

was conducted without relying on a fixed mechanism?” Since

there is no reference to the rule of permission may potentially

this provision not right, or rather would not be fair, even for

the tester can be performed to give information about the

functions in the code that it is efficient and is not so, and when

it is delivered to the organization that bought the system will

discover that it really inefficient, and this damaging large [3].

There are a lot of tools that were built in order to help in

program understanding, and to simplify the comprehension

task for a maintainer [4]. For instance, SNiFF is one of the

best well-known commercial tools, and it was produced to

assist in source code understanding and to facilitate

maintenance tasks. Ghinsu [5] is a program understanding

framework described, and SeeSoft [6] is a tool for visualizing

software statistics from a variety of sources. Such tools are

helping drastically in improving and accelerating a developer’s

overview of complex system software [7]. Moreover, those

tools have practical benefits in terms of generating fewer bugs

or an easier time comprehending a new piece of source code.

In addition, researchers with the goal of improving the

comprehension process and saving developer’s time and effort

have presented a set of recommended tools to guide system

software navigation while exploring and understanding a

system. Mylar [8] used a degree-of-interest model to

distinguish and mark the non-relevant files from the file

explorer in Eclipse. NavTracks [9] supported a tool that

recommends which files are related to the currently chosen

files. Deline et al. [10] presented a framework to improve the

software navigation process. On the other hand, Robillard

[11], presented a FEAT tool that is capable of providing

suggestions using graphs manually created by users, to

enhance navigation effectiveness and improve the

comprehension process. RedHat Source-Navigator is another

tool that is being developed to assist in understanding the

complex system software.

Source Code Explorer System to Enhance the

Software Maintainability and Scalability

Mohammad Subhi Al-Batah, Nouh Alhindawi, Saleh Oqeili, and Obaida M. Al-Hazaimeh

I

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 13, 2019

ISSN: 2074-1316 94

mailto:albatah@jadara.edu.jo
mailto:hindawi@jadara.edu.jo
https://scholar.google.com/citations?view_op=view_org&hl=ar&org=13863361630535275571
mailto:saleh@bau.edu.jo
https://scholar.google.com/citations?view_op=view_org&hl=ar&org=13863361630535275571
mailto:dr_obaida@bau.edu.jo

The Searchable Bookshelf [12] designed to help in

producing and navigating software structure diagrams. It

enables the users to visualize different aspects of a software

system (sub-system, files…etc.) using diagrams shapes, and it

also shows interactions between the different system

components. SHriMP [13], employs the hyperlinks in order to

navigate the source code, and gives a better view of the source

code components.

In software engineering, many Researchers suggested and

used alternative approaches that do not involve giving great

amounts of attention to software comprehension. Examples of

such approaches include refactoring. Refactoring [14] tries to

improve the software’s interior construction, maintainability,

and comprehensibility, without changing software’s

behavior/functionality.

Moreover, the researchers have developed a lot of tools to

help in code comprehension, these tools stand mainly on

extracting function calls from source code [15]. For example,

Brilliant source code browser, it can import sources in many

different languages, and split them down into

classes/methods/functions, Exploration Tools; it is a

command-line based set of tools for examining functions and

the structure of C source code, it allows the user to scan and

analyze source code to build function call hierarchy and data

structure relations, and Source Navigator tool; it is known as

source code comprehension and documentation tool, it allows

the developers to perform source browsing, showing

relationships (call/callby/include/includeby/etc.) between the

various parts of the program [16].

In [17], the authors presented call-extraction tool, namely

callextractor, their tool can perform ordered-pattern extraction.

In [18], the authors used the function calls for source code

directed testing of functional programs. The authors use call

graphs in the context of software measurement for functional

programs. They consider function calls as atomic operations

and are produced for each function independently. In [19], a

code search system known as Portfolio is introduced. Portfolio

is a tool supports and helps programmers in identifying the

relevant functions or fragments of source code that implement

a specific concept that are reflected in developer query

expression, and determining how these functions are well

relevant to the query, moreover, the tool also make visualizing

dependencies of the retrieved functions to show their flows. In

[20], the authors use function calls as a guide in order to do

local and global analysis in source code by finding paths in the

control-flow graphs of functions. The author concluded that

identifying the list of functions that called from a given

function, can help in better understanding of source code

specially for large and complex programs.

In this paper, we present SCodeEx as a tool that supports

explorer through software systems. The program works with

all types of computers that use the Windows operating system.

It supports a range of services that require the developer first

degree, by giving data on the functions that in the code, such

as the degree of priority of each function, and the classes that

called every function. We begin with a brief survey of current

tools for source code explorer. Then, the proposed SCodeEx is

presented. This is followed by a discussion of the design,

implementation and testing of SCodeEx. Finally, conclusion,

recommendations and future work are presented.

 II. RELATED WORKS

There are different tools and mechanisms exist in state of art

for analyzing and exploring the source code. But, based on

literature review and a high citation rate, Ghinsu, SeeSoft, and

NavTracks are the famous tools. These tools were built in

order to help in program understanding, and to simplify the

comprehension task for a maintainer.

A. Ghinsu

The Ghinsu project started in early 1991 at the University of

Florida's Computer and Information Sciences Department and

has been funded by the Software Engineering Research Center

(SERC). Its target is the development of an environment that

integrates a number of tools aiding in a number of software

engineering activities, primarily in software maintenance. The

current version of Ghinsu can handle multiple file programs,

written in a large subset of ANSI-C, and has a graphical user

interface. It can perform a variety of program analysis

functions, including: program slicing and dicing, ripple

analysis, calculation of reaching definitions, calculation of DU

and UD chains, and calculation of execution slices.

B. SeeSoft

Seesoft software visualization system allows the developer

to analyze up to 50000 lines of code simultaneously by

mapping each line of code into a thin row. The color of each

row indicates a statistic of interest, e.g., red rows are those

most recently changed, and blue are those least recently

changed. Seesoft displays data derived from a variety of

sources, such as version control systems that track the age,

programmer, and purpose of the code (e.g., control ISDN

lamps, fix bug in call forwarding); static analyses, (e.g.,

locations where functions are called); and dynamic analyses

(e.g., profiling). By means of direct manipulation and high

interaction graphics, the user can manipulate this reduced

representation of the code in order to find interesting patterns.

Further insight is obtained by using additional windows to

display the actual code. Potential applications for Seesoft

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 13, 2019

ISSN: 2074-1316 95

include discovery, project management, code tuning, and

analysis of development methodologies.

C. NavTracks

NavTracks is a tool that supports navigating through

software systems. NavTracks keeps track of the navigation

history of software developers, forming associations between

related files. These associations are then used as the basis for

recommending potentially related files as a developer

navigates the software system.

Despite of the large number of source exploring tools, still

we need for more efficient tools that can support more

accurate analysis and exploring for developers. So, better tool

for source code explorer are required.

This paper proposes SCodeEx. The SCodeEx motivates

heads of work, testers, and all decision makers in the company

of the software to take accurate, well-structured, and well-

presented information about the code. The main objective of

SCodeEx can be summarized like follow:

1. To save time, money and reduce the needed effort; the costs

that are software companies dispensed with the aim of

tracking code may outweigh the costs of creating it from

scratch, but in terms of time, huge amount of time are

usually wasted by developers, whether developers, analyzers,

testers or even leaders, lost the time while trying to keep

track the code in terms of mental effort, the process of

tracking of the most important requirements it's focus and

understanding carefully and all these things are considered

difficult for people or in some cases is almost impossible, so

why not be a program does all this work.

2. Increasing the accuracy of retrieved data. The main

contribution of the presented tool is basically providing the

developers with information about particular function,

variable, or class in the source code. Thus, the manual

manipulation over any source regarding finding or

recovering any related information for any fragment of code

may has large percentage of error, moreover, the manual

investigation may also waste the time of developers.

3. An accurate statistical report will be provided for each

function; the extracted report has many different options

which can be easily added to the report.

Other existing programs provide services to help software

developers to determine the efficiency of the code, where it

give just a comparison between the existing code and the

standard one, but the SCodeEx will support additional services

not in the short term but in the long term, in terms of targeting

and maintain the system in the future easily and efficiently.

Fig. 1 Flow Chart for the main process

III. PROPOSED APPROACH

As mentioned before, the main objective of SCodeEx is to

provide data about the code to be classified and analyzed later

by the owner and developers of the source code easily and

accurately. The SCodeEx presents the artifacts of source code

in appropriate data structure to be read and retrieved easily.

This new structure can help efficiently while the evolution and

refactoring processes over any undertaken software. More

details are explained later in this section.

Generally, the presented tool works in a sequence manner,

the program input is a C++ code, then the program will

perform some preprocessing steps over the code, and then the

output will show hints to developer about the code for more

details. The SCodeEx system is designed with simple and

accurate user interface that can be directed and used by the

developer effortlessly, even for the novice users. The flow

chart for the SCodeEx can be illustrated by Fig. 1. The initial

step in the work flow is uploading and selecting the source

file, typically, the source file is a C++ program. By selecting

the source file, the user can explore the artifacts of the

undertaken system. This step is considered the base step for

the whole process.

Many different outputs for the presented tool can be offered

for the users such as providing the number of functions, class,

and variables in the system, providing the names of classes and

the functions in the system, providing name of all local

variables in the system and its data type, providing caller and

caller for each function along with numbers, finding the ratio

of priority for each function, providing data about the types of

functions, and providing access to modify the function

directly.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 13, 2019

ISSN: 2074-1316 96

The following sub-sections present briefly the needed steps

for running the tool a long with a snip for each step and the

reader can easily follow the steps in order to explore any

system structure. The main features and buttons are also

presented.

A. INSTALLATION

We test the .exe file of the program in installation process.

The way of installing SCodeEx system on the computer is to

copy the program icon to the desired device. The install

process is not complex, and eases of dealing with users. The

SCodeEx system contains the following screens; welcome,

upload file, general table, graph tree, search, add and edit

class, and main screen.

B. UPLOAD FILE SCREEN

After running the program, the welcome screen appears for

the user also known as Sign-in Screen, the user then press on

the "Enter" button, next, a dialog box will appear which ask

the user to select the source file to be uploaded as shown in

Fig. 2. The Browse button also added to the screen to select

the source file, once the file is chosen and uploaded, the

explore button will be enabled.

Fig. 2 Upload screen

C. GENERAL TABLE SCREEN

The general table shows a specific data or profile for each

function in the system which include: class name, number of

local variables, number of call and callee, access modifiers,

and return data type as shown in Fig. 3.

D. GRAPH TREE TABLE SCREEN

The graph tree table shows the relations between classes by

showing the number of calling between them as shown in Fig.

4. For example, the table provides number of calls between:

phpDataTypesphpLoops (15-times). So, the phpDataTypes

class based on phpLoops in a high degree.

Fig. 3 General table

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 13, 2019

ISSN: 2074-1316 97

Fig. 4 Graph tree table

E. SEARCH SCREEN

The search screen contains two tabs such as functions and

variables as described below:

1) Function tab search

To test the search about function: Just select name of

function from the list and then, press on the “Go” button and

then, you can know the call and callee to the function (brief

description) as shown in Fig. 5.

Fig. 5 Search of function in search screen

2) Variables tab search

To test the search about variables, we just select name of

variable from the list and then press on the “Go” button and

then you can explore the Scope (Class and function) to the

undertaken variable as shown in Fig. 6.

Fig. 6 Search of variable in search screen

F. ADD AND EDIT CLASS SCREEN

To add class on the selected code, the user need to press on

the “Add Class” button, and then enter the class content as

shown in Fig. 7.

Fig. 7 How to add new class

Fig. 8 shows the menus for editing the added code. To edit

the code, the user need to press on the “Edit the code” button

and then edit from the source file as shown in Fig. 9.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 13, 2019

ISSN: 2074-1316 98

Fig. 9 C# code that added the class to the source code

Fig. 8 How to edit the selected code

Fig. 10. Main screen

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 13, 2019

ISSN: 2074-1316 99

G. MAIN SOURCE CODE EXPLORER SCREEN

After uploading the file, the main screen will appear as in

Fig. 10, which is divided into two parts: the right part is

responsible for data display, and the left part is responsible for

the selection (function or class).

The proposed SCodeEx system has been tested to a range of

issues that we want to explore uploaded file (source code file).

The proposed system is successfully passed and the users

notice the credibility of the system in the following:

a) Explore the list of class.

b) Explore the function of a certain class.

c) Explore the return data type to each function.

d) Explore the access modifier to each function.

e) Explore the list of callee to each function.

f) Explore the list of call to each function.

g) Explore the list of local variables to each function.

h) Explore the code to each function.

i) Explore the code to each class.

As in example “explore the code to each class”. If pressed

on the class name from the tree in the left part (See Figure 10),

is assumed to be presented a code to this class on a screen

which is located on the right. We have been tested these code

to certain class, and it is actually the code to this class. If have

been to take a snapshot (See Figure 11), see the content to

class in original file and see the content on screen that

provided by the SCodeEx system, you will notice the

credibility of the system.

Fig. 11 Snapshot to test the credibility about the content to

certain class

From the conducted evaluation and experiments, we can

conclude that the proposed SCodeEx has many features such

as exploring software code artifacts starting from class and

ending by variables, and giving a statistical data about the

source code. Another important feature is the visualization for

the code based on class granularity, the visualization shows the

relations between code fragments, in addition it show the

dependency between code fragment. On other side, SCodeEX

allows the developer to edit the code directly. Thus, the

developers can directly see the impact of any added code,

furthermore, this feature will make the coding more safely and

more accurate.

IV. CONCLUSION

The result of this work is a practical system that includes a

tool to help the developers, testers, team leaders and system

analyzers to ease understand the large source code to find-out

class, functions, and collection of data which relate to a

particular system. This data can provide information about

priority to each function and class. The presented tool enable

the developers in viewing and exploring millions line of code

easily and quickly. This is named SCodeEx. It can save time

and money for Software Development Company by knowing

the information about the code, and the report about fragments

of code. Also the users can edit the code in easy way. As a

future work, we plan to make a version of the presented tool to

support Java language.

REFERENCES

[1] N. Alhindawi, R. Malkawi, M. S. Al-Batah, and A. Al-Zuraiqi,

"Hybrid Technique for Java Code Complexity Analysis,"

INTERNATIONAL JOURNAL OF ADVANCED COMPUTER

SCIENCE AND APPLICATIONS, vol. 8, pp. 379-385, 2017.

[2] O. Meqdadi, N. Alhindawi, M. L. Collard, and J. I. Maletic,

"Towards understanding large-scale adaptive changes from version

histories," in 2013 IEEE International Conference on Software

Maintenance, 2013, pp. 416-419.

[3] N. Alhindawi, J. Alsakran, A. Rodan, and H. Faris, "A survey of

concepts location enhancement for program comprehension and

maintenance," Journal of Software Engineering and Applications,

vol. 7, p. 413, 2014.

[4] M. F. Klaib, M. S. Al-batah, and R. J. Rasras, "3-way Interaction

Testing using the Tree Strategy," Procedia Computer Science, vol.

65, pp. 845-852, 2015.

[5] P. E. Livadas and S. D. Alden, "A toolset for program

understanding," in [1993] IEEE Second Workshop on Program

Comprehension, 1993, pp. 110-118.

[6] S. Eick, J. L. Steffen, and E. E. Sumner, "Seesoft-a tool for

visualizing line oriented software statistics," IEEE Transactions

on Software Engineering, vol. 18, pp. 957-968, 1992.

[7] F. Niessink and H. Van Vliet, "Software maintenance from a

service perspective," Journal of Software Maintenance: Research

and Practice, vol. 12, pp. 103-120, 2000.

[8] M. Kersten and G. C. Murphy, "Mylar: a degree-of-interest model

for IDEs," in Proceedings of the 4th international conference on

Aspect-oriented software development, 2005, pp. 159-168.

[9] J. Singer, R. Elves, and M.-A. Storey, "NavTracks: Supporting

Navigation in Software Maintenance " 21st IEEE International

Conference on Software Maintenance (ICSM'05), pp. 325-334,

2005

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 13, 2019

ISSN: 2074-1316 100

[10] R. DeLine, A. Khella, M. Czerwinski, and G. Robertson, "Towards

understanding programs through wear-based filtering,"

Proceedings of the 2005 ACM symposium on Software

visualization, pp. 183-192, 2005.

[11] M. P. Robillar and G. C. Murphy, "A Tool for Locating,

Describing, and Analyzing Concerns in Source Code," 25th

International Conference on Software Engineering, pp. 822-823,

2003.

[12] S. E. Sim, C. L. A. Clarke, R. C. Holt, and A. M. Cox, "Browsing

and Searching Software Architectures," Proceedings of the

International Conference on Software Maintenance, pp. 381-390,

1999.

[13] M.-A. D. Storey and H. A. Miiller, "Manipulating and

documenting software structures using SHriMP views,"

Proceedings of International Conference on Software

Maintenance, pp. 275-284, 1995.

[14] M. Fowler, "Refactoring: improving the design of existing code,"

Addison-Wesley Professional, 1999.

[15] Y. Padioleau, L. Tan, and Y. Zhou, " Listening to programmers

Taxonomies and characteristics of comments in operating system

code," Proceedings of the 31st International Conference on

Software Engineering. , pp. 331-341.

[16] N. Alhindawi, O. M. Al-Hazaimeh, R. Malkawi, and J. Alsakran,

"A Topic Modeling Based Solution for Confirming Software

Documentation Quality," International Journal of Advanced

Computer Science and Applications, vol. 7, pp. 200-206, 2016.

[17] J. W. LASKI and B. KOREL, "A data flow oriented program

testing strategy," IEEE Transactions on Software Engineering, pp.

347-354, 1983.

[18] K. v. d. Berg, "Software Mesurement and Functional Programming

" University of Twente, 1995.

[19] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,

"Portfolio: finding relevant functions and their usage,"

Proceedings of the 33rd International Conference on Software

Engineering, pp. 111-120, 2011.

[20] G. J. Holzmann, "Static source code checking for user-defined

properties," Integrated Design and Process Technology (IDPT)

Proc. IDPT, vol. 2, 2002.

Mohammad Subhi Al-Batah received his PhD in

Computer Science/ Artificial Intelligence from the

University of Science Malaysia in 2009. After working

as an assistant professor (from 2009) in the Dept. of

Computer Science, Jadara Univ. in Jordan, he has been

an associate professor at Jadara Univ. since 2014. He

worked as a dean of Faculty of Science and Information

Technology from 2015-2018. In 2019, he is the director

of the Academic Development and Quality Assurance Center. His research

interests include Image Processing, Artificial Intelligence, Medical Analysis,

Real Time Classification and Software Engineering, E-mail:

albatah@jadara.edu.jo, dralbatah@gmail.com.

Nouh Alhindawi is Associate Professor in Computer

Science & Software Engineering Departments at Jadara

University at Jordan since 2013. He is a member of the

Software Engineering Development Laboratory

(SDML). He is a member of the Software Traceability

Development Laboratory (TraceLab). His research

interests are in software maintenance and

comprehension, using information retrieval in software

engineering, and data visualization.

Saleh Oqeili is a full Professor of Computer

engineering. He received his PhD in 1983. He worked

in several Jordanian Universities and held different

positions: head of computer science department, dean

of IT faculties, and vice-president. Currently he is a

staff member at Al Balqa Applied University and

president at Jadara University/Jordan. Prof. Oqeili

published more than 80 scientific papers and books in

the areas of Computer Architecture, Computer Algorithms, Operating

Systems, Reliability, Coding Theory, and Programming Languages.

Obaida M. Al-Hazaimeh is Associate Professor in

Computer Science & Information Technology

Departments at Al Balqa Applied University at Jordan

since 2011. Dr. Obaida received his PhD in Computer

Science/ Cryptography from Malaysia in 2010. He co-

authored 2 book chapters, and 27 research articles in

leading ISI / International refereed journals. E-mail:

dr_obaida@bau.edu.jo

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 13, 2019

ISSN: 2074-1316 101

mailto:albatah@jadara.edu.jo
mailto:dralbatah@gmail.com
https://scholar.google.com/citations?view_op=view_org&hl=ar&org=13863361630535275571
https://scholar.google.com/citations?view_op=search_authors&hl=ar&mauthors=label:compuer_architecture
https://scholar.google.com/citations?view_op=search_authors&hl=ar&mauthors=label:algorithms
https://scholar.google.com/citations?view_op=search_authors&hl=ar&mauthors=label:operating_systems
https://scholar.google.com/citations?view_op=search_authors&hl=ar&mauthors=label:operating_systems
https://scholar.google.com/citations?view_op=view_org&hl=ar&org=13863361630535275571
https://scholar.google.com/citations?view_op=search_authors&hl=en&mauthors=label:cryptography
mailto:dr_obaida@bau.edu.jo

