ef61190f-8fa2-4e6a-80ec-5015d9588a4f20210309084316590naunmdt@crossref.orgMDT DepositInternational Journal of Education and Information Technologies2074-131610.46300/9109http://www.naun.org/cms.action?id=3037430202043020201410.46300/9109.2020.14http://www.naun.org/cms.action?id=23206On Stability of Bases Made from Perturbed Exponential Systems in Morrey Type SpacesFatimaGuliyevaInstitute of mathematics and Mechanics of NAS of AzerbaijanPerturbed exponential system {eiλkχ}keZ (where {λn} is some sequence of real numbers) isconsidered in Morrey spaces Lp,α (0, π) These spaces arenon-separable (except for exceptional cases), and thereforethe above system is not complete in them. Based on theshift operator, we define the subspace Mp,a (0, π)C Lp,α (0, π) where continuous functions aredense. We find a condition on the sequence {λn} which issufficient for the above system to form a basis for thesubspace Mp,a (0, π). Our results are the analogues ofthose obtained earlier for the Lebesgue spaces Lp. Wealso establish an analogue of classical Levinson theorem onthe completeness of above system in the spaces Lp,1 <= p <=+∞831202083120206268https://www.naun.org/main/NAUN/educationinformation/2020/a162008-008(2020).pdf10.46300/9109.2020.14.8https://www.naun.org/main/NAUN/educationinformation/2020/a162008-008(2020).pdf10.1090/s0002-9947-1952-0047179-6R.J. Duffin, A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., vol. 72, 1952, pp. 341 – 366. R. Paley, N. Wiener, Fourier Transforms in the Complex Domain. Amer. Math. Soc. Colloq. Publ., 19 (Amer. Math. Soc., RI, 1934). B.Y. Levin, Distribution of Roots of Entire Functions. Moscow, GITL, 1956 (in Russian). M.I. Kadets, On the exact value of Paley-Wiener's constant. DAN SSSR, 1964 (in Russian). S.M. Ponomarev, On one eigenvalue problem. DAN SSSR, vol. 249, No5, 1979, pp. 1068-1070 (in Russian). E.I. Moiseev, On some boundary value problems for mixed type equations. Diff. uravneniya, v. 28, No1, 1992, 123-132 (in Russian) E.I. Moiseev, On solution of the Frankl problem in a special domain. Diff. uravn., vol. 28, No4, 1992, pp. 682-692 (in Russian). E.I. Moiseev, On basicity of sine and cosine systems. DAN SSSR, vol. 275, No 4, 1984, pp. 794-798 (in Russian). E.I. Moiseev, On basicity of one sine system. Diff. uravneniya, vol. 23, No 1, 1987, pp. 177-179 (in Russian). A.M. Sedletski, On convergence of non-harmonic Fourier series in exponential, sine and cosine systems. DAN SSSR, vol. 301, No5, 1988, pp. 501-504 (in Russian). B.T. Bilalov, Basicity of some exponential, sine and cosine systems. Dif. uravneniya, vol. 26, No1, 1990, pp. 10-16 (in Russian).B.T. Bilalov, Bases from exponents, cosines and sines which are the eigenvalues of differential operators. Dif. Ur., vol. 39, No5, 2003, pp. 1-5 (in Russian). B.T. Bilalov, Basis properties of some exponential, cosine and sine systems. Sibirskiy matem. jurnal, vol. 45, No2, 2004, pp. 264-273 (in Russian). B.T. Bilalov, On a remark on Riesz basicity of systems of sines and cosines, Trans. Sci. IMM NAS Az., vol. XXII, No. 4, 2002, pp. 47-50. B.T. Bilalov, Bases in pL from exponents, cosines and sines, Trans. Sci. IMM NAS Az., No. 1, 2002, pp. 45-51. 10.1007/s00009-011-0135-7B.T. Bilalov, Z.G. Guseynov, Basicity of a system of exponents with a piece-wise linear phase in variable spaces, Mediterr. J. Math., vol. 9 , No 3, 2012, pp.487–498. Shanli Ye, Products of Volterra-type operators and composition operators from analytic Morrey spaces into Zygmund spaces, WSEAS Transactions on Mathematics, pp. 378-388, Volume 18, 2019.Michael Gil, Exponential Stability of Nonautonomous Infinite Dimensional Systems, WSEAS Transactions on Mathematics, pp. 80-84, Volume 17, 2018. F.A. Guliyeva, S.R. Sadigova, On Some Properties of Convolution in Morrey Type Spaces. Azerb. J Math., vol. 8, No. 1, 2018, pp. 140-150 L. Caso, R. D’Ambrosio, L. Softova,Generalized Morrey Spaces over Unbounded Domains. Azerb. J Math., vol. 10, No. 1, 2020, pp. 193-208 10.1134/s0037446613030051B.T. Bilalov, F.A. Guliyeva, A completeness criterion for a double system of powers with degenerate coefficients. Sib. Mat.l Journ., vol.54, No. 3, 2013, pp. 536-543.10.33048/smzh.2019.60.206B.T. Bilalov, The basis property of a perturbed system of exponentials in Morrey-type spaces, Sib. Math. Journ., vol. 60, No.2, 2019, pp. 323-350. B.T. Bilalov, Z.G. Guseynov, Criterion for basicity of perturbed exponential system for Lebesgue spaces with variable index of summability. Dokladi Akademii Nauk, 2011, t.436, No5, pp.586-589 (in Russian) B.T. Bilalov, A.A. Huseynli, S.R. El-Shabrawy, Basis Properties of Trigonometric Systems in Weighted Morrey Spaces. Azerb. J Math., vol. 9, No. 2, 2019, pp. 183-209. 10.3906/mat-1901-113B.T. Bilalov, F.Sh. Seyidova, Basicity of a system of exponents with a piecewise linear phase in Morrey-type spaces, Turk. J Math., vol. 43, 2019, pp.1850 – 1866. N.P. Nasibova, F.Sh. Seyidova, On the basicity of a perturbed system of exponents with a unit in Morrey-type spaces. Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Mathematics, vol. 39, No.1, 2019, pp. 151-161.A.A. Huseynli, On the stability of basisness in Lp (1<p<+infinite) of cosines and sines, Turkish Journ. Math., vol. 35, 2011, pp. 47-54. C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, 1988, 469 p. B.T. Bilalov, Some problems of approximation, Baku, Elm, 2016, 380 p. (in Russian).D.R. Adams. Morrey spaces, Springer, 2016. 10.1007/978-3-319-21015-5Kokilashvili V., Meskhi A., Rafeiro H., Samko S., Operators in non-standard function spaces, V.I. Springer, 2016.10.1007/978-3-319-21015-5Kokilashvili V., Meshki A., Rafeiro H., Samko S., Operators in non-standard function spaces, V.II. Springer, 2016.