

Abstract. Around the world, the “coding is the new

literacy” thesis is beginning to be shared by an

increasing number of decision-makers inside and outside

national education systems. This leads to the inclusion of

courses on information technology, including

programming, in the curricula of school and early

childhood education in various countries.

In Russia, with its centralized education system, the

amount of programming skills that a 9th grade graduate

must master was established by the federal standard in

mid-2021 and includes a certain set of initial

programming skills that a student must be able to

demonstrate by choosing one of the 6 full-text

programming languages prescribed by the standard.

Our experience shows that today the programming skills

provided for by the specified standard can be

successfully mastered by all primary school graduates

(age 11-12), and we predict that the problem of early

compulsory teaching in programming will be posed by

Russian legislators and solved by the Russian education

system in the near future.

The main thesis of this article is that the best way to

systematically teach the basics of programming to

beginners of all ages, including elementary school

students, is to consistently use the three approaches -

icon-based, block-based, and text-based - provided that

there is a methodological and technological continuity of

software environments that support these three

approaches. This continuity can be achieved by creating

a consistent family of multiple learning environments.

The article describes the experience of developing and

using such a family of three software environments for

the system of preschool and primary education in Russia,

as well as for the system of teacher training in

universities.

Keywords: pictogram, toy-robot, virtual robot, icon-

based programming, block-based programming,

PiktoMir, PiktoMir-K, KuMir, Scratch Junior, Scratch,

russian educational standards

I. INTRODUCTION

igital technologies are more and more included in

our daily life. Modern society needs training for users
of information services, systems and technological products,
as well as an increase in the number of qualified specialists
to develop and support information systems and services. In
response to this demand, there is an interest in including
programming and the basics of information technology in
school curricula, as this lays the foundation for the training
of qualified users and developers of information systems and
services. Along with these utilitarian arguments arising from
the need to train personnel for the new digital economic
order, according to many experts, the education system
should pose and solve the more fundamental cultural
problem of developing computational thinking in future
members of the information society [1]. For these reasons,
schools and other educational organizations, in an effort to
lower the age of first acquaintance with programming, are
trying to lower the threshold for entry into programming for
beginners of all ages by developing a convenient
programming environment interface and choosing tasks that
may be attractive to users of planned age.

Over the past half century, great strides have been made in
reducing the age of first acquaintance with programming.
Firstly, in the choice of the subject area, with the objects of
which the programs for beginners will work, and, secondly,
in the choice of the form of presentation and creation of
programs.

A. Subject area

Since the appearance in the sixties of the last century of the
Logo language and the well-known robot artist Logo Turtle,
both virtual and then real, no one disputes the thesis: “The
basics of programming should be learned not on examples of

Problems of Early Learning to Program.
How to Bridge the Gap Between Pictographic

and Textual Programming Styles
Agliamutdinova D.B.1, Besshaposhnikov N.O.1,

Kushnirenko A.G.1 , Leonov A.G.1,2,3 , Raiko M.V.1

1 Federal Research Center “Scientific Research Institute for System Analysis of the Russian Academy

of Sciences,” 36-1 Nakhimovsky Prosp., Moscow 117218, Russian Federation

2 Moscow State University, 1 Leninskiye Gory, Main Building., Moscow 119991, Russian Federation
3 Moscow State Pedagogical University, 1/1 Malaya Pirogovskaya Ulitsa, Moscow 119435, Russian

Federation

 Received: March 2, 2021. Revised: September 6, 2021. Accepted: October 1, 2021. Published: October 22, 2021.

D

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.35 Volume 15, 2021

E-ISSN: 2074-1316 331

computational algorithms, but on examples of algorithms
control of real and virtual moving objects” [2]. This thesis -
mastering the basics of programming by developing
programs to control moving objects - can be achieved with
an emphasis on real objects and their digital counterparts, or
with an emphasis on purely imaginary objects represented by
sprites on a two-dimensional screen.

The latter approach, an emphasis on sprite management, is
implemented in the famous Scratch [3] and Scratch Junior
[4; 5] systems and other systems based on the Blockly
platform [6]. An approach with an emphasis on controlling
real robots and their screen counterparts, implemented in
popular robotics kits like Primo toys [7]; Matatalab [8],
KIBO-robot [9], LEGO Education MINDSTORMS EV3
[10].

B. Methods for Representing and Generating

Programming Code

An important characteristic of a learning programming
environment is the method it provides for the presentation
and generation of program code. The full-text method of
code creation, inherited from professional programming
systems, is not suitable for beginners of any age, forcing
them to spend time entering program text character by
character, searching for and correcting syntax errors. In the
world, two approaches have been proposed that allow one to
get away from the full-text representation of the program and
the character-by-character input of its text: icon-base
programming and block-based programming.

Comment. Below we will use the term pictogram-based as
a synonym for icon-based.

C. Pictogram-based Methods Representing and

Generating Programming Code

In pictogram-based programming, the user represents the
program with one or more lines of pictograms. Pictograms
(icons) are atomic, indivisible objects selected by the user
from some predefined set and placed in the program in the
required order. This approach is used in many popular
systems such as the Lightbot game [11] and the Scratch
Junior environment [5]. The pictographic approach has a
number of advantages, both appreciated and underestimated.
The fully appreciated advantages include the ability to create
programs in the material world by mechanical manipulations
with tangible objects. When a program is represented in
pictograms (icons), it can be created not on the tablet screen,
but by manually laying out material carriers of pictograms.
These tangible carriers of pictograms can be blocks with
electrical connectors placed in the recesses of a special
electronic device such as, for example, in the robotic set The
Cubetto Playset [7]. Or passive cards with images
recognized by special devices included in the robotic kit as
in the Matatalab kit [8].

An underestimated advantage of the pictographic
approach is the ability to learn with it a full set of structured
programming constructs: sequences, loops, conditionals,
functions (subroutines) and, finally, counters. When learning
the basics of structured programming, one should use not so
much isolated structured programming constructs as their
commonly used combinations: a conditional statement inside
a while loop, nested loops, calling functions inside a

function, etc. Therefore, to study structured programming
constructs, we need simple intuitive means to set in the
pictographic program of nested block structures. Below we
will talk about our approach to defining such structures.

D. Block-based Methods Representing and Generating

Programming Code

The second approach is a block representation of the
program and the use of a syntactically oriented editor that
allows you to easily, quickly and accurately add not symbols
or words to the program, but ready-made syntactically
correct control structures and blocks. This approach,
described, for example, in [5],[12] and [13], turned out to be
very successful and is widely used today. However, with the
accumulation of experience in using the block method of
creating programs for different audiences, it became clear
that the transition from “child-oriented” block programming
with graphical input of program code to “adult”,
professional programming with input of textual information
from the keyboard is not easy both technologically and
psychologically.Ways to overcome the difficulties of
transition from block programming to textual programming
are the subject of works [14], [15] and [16].

Technologically, this transition is difficult, since
a) changes the visual form of the image of the program code,
b) changes the way of entering the program code, c) sets the
task of understanding and correcting syntax errors, which
was completely or largely automatically solved by the block
programming environment. Psychologically, the problem
lies in the fact that children from a certain age, on the one
hand, perceive block programs as "toys" and strive to master
a "real" style of programming based on text, and on the other
hand, they are afraid that real programming is much more
difficult than toy programming and will be for them too
complicated [16].

The choice of methods for representing and generating
program code in the initial programming course and the
number of lessons conducted using one method or another
depend on the objectives of the course.

II. RUSSIAN EXPERIENCE. MANDATORY REQUIREMENTS FOR
THE RESULTS OF MASTERING PROGRAMMING BY 9TH GRADE

GRADUATES IN ACCORDANCE WITH THE RUSSIAN
EDUCATIONAL STANDARD

In accordance with the legislation of the Russian Federation
on education, compulsory, with the exception of cases
provided for by law, is the acquisition of primary education
(grades 1-4, age 7-11) and the acquisition of Basic General
Education (russian acronim ООО - Основное Общее
Образование) (grades 5-9).

By law, 80% of the content of education is determined by
federal educational standards. The current standards for
preschool education and primary education do not provide
for compulsory study of programming. The 2021 revision of
the Basic General Education Standard requires compulsory
study of programming at a basic level and also standardizes
possible advanced study. Here is a literal translation of the
two clauses of the standard that define mandatory
programming skills at a basic level [17, section 45.5.3.]

45.5.3.6) the ability to compose, manually and on a

computer, simple algorithms for managing robots (Turtle,

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.35 Volume 15, 2021

E-ISSN: 2074-1316 332

Draftsman); create and debug programs in one of the

programming languages (Python, C++, Pascal, Java, C#,

School Algorithmic Language) that implement simple

algorithms for processing numerical data using loops and

branches; the ability to split tasks into subtasks, use

constants, variables and expressions of various types

(numeric, logical, symbolic); analyze the proposed

algorithm, determine what results are possible for a given

set of initial values;

45.5.3.7) the ability to write in the studied programming

language algorithms for checking the divisibility of one

integer to another, checking a natural number for

simplicity, separating digits from a natural number,

searching for maxima, minima, the sum of a numerical

sequence;

A. Fulfillment of most of the requirements 45.5.3.6 and
45.5.3.7 of the standard is possible using only pictogram-

based and block-based programming environments

The School Algorithmic Language, included above in the list
of 6 programming languages, is a Pascal-like programming
language with Russian-language vocabulary, proposed by

Academician A.P. Ershov in 1985 with the introduction of a
new subject in Russian schools, "The Basics of Computer
Science and Computer Technology." Thus, work in any of
the 5 professional programming languages allowed by the
standard, as well as work in The School Algorithmic
Language, requires the use of a full-text programming
environment - the use of a block programming environment
is not provided for by the standard. However, an analysis of
the concepts of the mandatory basic level part of the
standard shows that most of these concepts relate to
structured programming and working with simple variables
and do not require working with complex data structures
with direct acces. Therefore, most of the concepts prescribed
by the standard can be successfully studied in block and
even iconic programming environments. For example,
solving the most difficult programming problem for the 9th
grade final exam in computer science in Russia in 2021 uses
only conditions and WHILE LOOP constructions and
therefore can be easily implemented in a programming
environment based on PiktoMir icons. (Fig. 1)

Fig. 1 The robot, shown in the form of a diamond, must walk along the wall, consisting of one horizontal section, in which one pass was
made and one vertical section, in which a second pass was made, and paint over the cells adjacent to the wall. The length of the wall
sections and passageways is unknown.

Thus, the basic programming concepts described in the
above standard can be equally successfully mastered by 9th
grade graduates and primary school graduates using
pictogram-based and block-based programming
environments. The requirement to master a text-based
programming environment in one of the 6 languages listed in
the standard should be considered as a reasonable additional
requirement that can be easily fulfilled in the final part of the
course, provided that the language and text-based
programming environment are close to a block environment.

B. Why the fulfillment of the requirements of the standard

is impossible without the use of pictogram-based and

block-based programming environments

The minimum core of structured programming concepts
formulated in the standard should be mastered volens nolens
in any conceivable introductory programming course. Just as
learning arithmetic requires solving at least several hundred
exercises, and learning to write requires writing hundreds of
lines, learning to code requires completing tasks of
composing and debugging several hundred simple programs.
Therefore, a significant share of efforts in the development
of the ABC of Coding course should be aimed at achieving
the following goal: to create conditions in which each

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.35 Volume 15, 2021

E-ISSN: 2074-1316 333

student independently performs several hundred programs
with a minimum of time and effort during training. tasks.
Achieving this goal is impossible if we restrict ourselves to
full-text programming environments. Not a single such
system gives a teacher the opportunity to organize a student's
solution to hundreds of simple problems in a dozen lessons.
Full-text programming environments are focused on solving
more complex problems and, no matter how convenient they
are for the user, they do not provide adequate student
performance in solving simple exercises. The desired
performance at the beginning of the course can be achieved
using pictogram-based and block-based programming
environments. Some data to support this claim will be given
below.

III. DRAFT INTRODUCTORY PROGRAMMING COURSE FOR
PRIMARY SCHOOL

Over the past 10 years, the Department of Educational
Informatics of SRISA RAS has been developing methods
and tools for initial teaching programming to preschoolers,
schoolchildren, students of natural science and pedagogical
universities. Employees of the department work in Moscow
State University, Moscow State Pedagogical University,
State University of Maanagement, kindergartens and schools
in Moscow, supervise experiments in teaching programming
to preschoolers in the city of Surgut, Samara region and
Tyumen region. Every year we work with several thousand
students in dozens of educational organizations. The
accumulated experience has shown that the trajectory of
teaching programming, which ultimately leads to the
acquisition of skills in a full-text "adult" programming
environment, must go through the stages of pictogram
(iconic) and block programming and the greatest difficulties
arise at the junction of the stages. These difficulties are also
noted by other researchers [18].

As a result of many years of experimentation, we have
developed a three-stage introductory programming course
project for primary school students that uses a family of
three educational software environments based on
pictogram-based, block-based and full-text approaches. Our
decision to include practice full-text programming in the
course is not obvious. There are arguments for and against
this decision [16]. Our choice was partly due to external
reasons - the desire to fully comply with the spirit and letter
of Russian educational standards, but mainly - the desire to
facilitate the transition to traditional programming for those
course graduates who later choose advanced learning
programming. In accordance with world and domestic
experience, the basics of programming are first set out using
examples of programs that control various virtual and real
robots, and only at the final stages do various tasks of
processing text and numerical information begin to be
solved. As students age, the methods available to them for
representing code and developing code change.

A. First stage

The basic set of control structures of programming
languages is mastered by preschoolers and primary school
students in free educational programming environment
called PiktoMir [19; 20], by compiling programs for
controlling real or virtual toy robots. Work on the PiktoMir
environment began 10 years ago and the current version of

the system takes into account ten years of operating
experience in a real educational process. Programs in this
environment have a non-textual representation.
Programming is done by dragging and dropping icons onto
the touch screen or manually laying out tangible media of
icons, some tangible objects such as magnetic cards, wooden
cubes, etc., on a table or on a magnetic board, followed by
photographing the configuration of the icons with the child's
tablet and recognizing the structure of the program. In none
of these modes PiktoMir does not allow the child to make a
syntax error. The language supports subroutines with a
predefined one-letter name, branching and repetition
constructs.

As already mentioned, nested block structures are
supported in PictoMir. Attempts to define block structures
by introducing block-terminating icons, such as in [9], have
the disadvantage that syntax errors are possible (see Fig. 2)

Fig. 2 Nested loops in KIBO environment. The inner loop

REPEAT 2 TIMES is nested in the outer loop REPEAT 4 TIMES.

We manage to avoid this by using indentation to indicate the
end of a block, as in Python. Please note that the computing
power of modern mass tablets is so great that programs
assembled from images, similar to the program shown in
Fig. 3, can be recognized by the neural network module in a
split second without the help of any QR codes, which cannot
be deciphered by a child.

Fig. 3 Nested loops in PiktoMir environment. The inner loop

REPEAT 2 TIMES is nested in the outer loop REPEAT 4 TIMES.

The generalization of the semantics of horizontal indentation
used in Python, which we have invented, allows us to
consider it syntactically correct and execute absolutely any
program laid out from square icons in the cells of an
imaginary rectangular table. This semantics will be formally
described in a separate publication. A meaningful examples
of using indentation to define nested block structures can be
found in Fig. 3 and Fig. 9.

The current version of PiktoMir allows you to control one
real and five virtual robots (see Fig. 4). An example program
for the Vertun robot is shown in Fig. 6. Our experience has
shown that preschoolers from 6 years old and first graders
easily master the process of drawing up programs for these
robots and are able to independently compose 120-150
programs per year, provided that one half-hour lesson is held
weekly (see Results). It is worth mentioning that 50% of the
time of each lesson is devoted to various unplugged

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.35 Volume 15, 2021

E-ISSN: 2074-1316 334

activities, so the screen time is about a quarter of an hour.
(see Results).

This first stage of learning described in detail in the
articles [21; 22] and can be carried out in kindergarten or in
the early years of school.

Most of PiktoMir's robots are united by a space legend.
According to this legend, robots perform some work on
passenger and cargo mobile space platforms orbiting the
planet. For example, the Vertun robot repairs the cracked
plates of the space platform after takeoff by painting them
with fire-resistant paint.

PiktoMir also supports a collaborative programming
process. While carrying out a common task, two children -
each at his workplace on his tablet - compose two programs
to control two robots operating in a common environment.

When robots work together, they have to do some common
work.

The completed course of textless, pictographic
programming takes about a year and a half and allows all
children, without exception, to master the basic
constructions of sequential programming, techniques for
drawing up and debugging programs, and gain experience in
cooperative solution of programming tasks. In [23] and [24],
we explain why, in our opinion, such introductory course of
textless programming should be included in the compulsory
curriculum of kindergartens and primary schools.

Fig. 4 Five virtual robots in PiktoMir and PiktoMir-K environments

The didactic unit in PiktoMir is the Game, which consists

of about ten methodically related programming tasks. The
implementation of these tasks is carried out in the form of
passing the levels of the game. The game is played during
one lesson, homework is not assigned. At this stage, in a
comfortable pictogram-based programming environment, the
standard control structures of procedural programming
languages are systematically and deeply mastered and with
their help a corpus of about one and a half hundred problems
is solved to compose control algorithms with feedback. The
main problem of this stage is to avoid the child's loss of

motivation locally, during the lesson, or globally, during the
course after one or two dozen lessons. The local problem is
mitigated by providing the child at each level of the Game
with some program template that the child will have to fill
(Fig. 5 and Fig 6). Thanks to the templates, the child quickly
passes the first levels of the Game proposed in this lesson
and strives to pass the following levels of the Game.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.35 Volume 15, 2021

E-ISSN: 2074-1316 335

Fig. 5 An example of a partially filled program template

Fig. 6 An example program in the PiktoMir environment, created

using given template

The global problem is countered by the alternation of
different types of activities: teamwork with a real robot, co-
programming in pairs, individual or team competitions. It is
also important to have a large number of attractive
graphically virtual robots. . Acquaintance with each of them
is carried out in the form of imitation of the behavior of this
robot by children. This is facilitated by the presence of plush
toys that accurately represent screen robots (see Fig.
7.).

Fig. 7 Plush toys Vertun, Dvigun and Tyagun and toy robot Polzun

But the most important thing is the attractiveness and

accessibility for the child of the tasks offered at each lesson,
ensuring success for each child in each lesson. The tasks in
the PiktoMir system are quite interesting and diverse. For
example, although there are no variables in the PiktoMir
system, the virtual device “Magic Jug with Stones” allows
you to visually simulate the counter and solve problems such
as "reach the obstacle and return to the starting point."
During the transition to block programming, this Magic Jug
will help children quickly learn the concept of an integer
variable (see Fig. 10 below). The pictographic form of the

program presentation is also good in that it allows you to
compactly show on one screen, without rolling, several
dozen commands.

PiktoMir allows you to execute programs continuously and
step by step. Linear sections of the program can be created
as protocols for remote control of the robot with command-
by-command haulage (the so-called Piggy bank mode).
Thus, already at the first stage of training, children get
acquainted with the methods of debugging.

B. Second stage

From our point of view, the most important property of a
block programming environment for novice students and for
a teacher leading a large group of novice students is not
clarity and graphical appeal, but the lack of the ability to
make a syntax error; the main task of the stage of transition
from pictogram representation to block-text is to develop
skills for quick perception of the structure of the program
from its text, these skills can be effectively developed only if
the semantics of control structures of structured
programming is fully understood by the learner and external
hindrances to this perception due to the appearance of
syntactic errors are completely absent. Therefore, at the next
stage, the development of programs is carried out in the
PiktoMir-K block environment with a hybrid graphical-
textual representation of the program, close to the traditional
textual representation of the program, but with non-textual
input of the program code through dragging and dropping
the graphically represented blocks. Unlike traditional block
environments, in our PiktoMir-K environment, when a block
is released at the right place in the program, its graphical
representation turns into a textual one, slightly supplemented
with graphical markings. As already mentioned, the most
important property of this environment, like many other
block environments, is its syntactic safety - in these
environments, a student, in principle, cannot make a syntax
error.

Programming in general and block programming in
particular is an excellent tool for developing problem
solving skills, but when mastering new interfaces, the
meaningful difficulty of the problems being solved should be
reduced or eliminated altogether. When starting to master
the block programming environment, at first, you should
avoid examples or tasks that have additional complexity and
are designed to develop general problem-solving skills,
rather than specific skills in working in a new environment.
That is why at the beginning of the second stage, children
receive familiar tasks for managing familiar robots. Program
input is carried out using familiar command and control
structures icons. The only difference is the textual, not the
pictographic, representation of the program. The program in
the PiktoMir-K environment is depicted on a subset of so
called the school algorithmic language widely known in
Russia, implemented in the full-text programming system
KuMir. The school algorithmic language and the Kumir
system are used in many Russian school textbooks [25-31].
Having created a program in the PiktoMir-K system, the
child can see how the same program would look in the
KuMir environments, which will further facilitate the
transition to the third stage (see Fig.8). However, it should
be noted that the visual appearance of the program in the
PiktoMir K block system is very close to the appearance of

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.35 Volume 15, 2021

E-ISSN: 2074-1316 336

the program in the KuMir full-text system. In this matter, our
point of view is close to the point of view of the developers
of the WoofJS software environment, half-jokingly-half-
seriously expressed in [32]:
“The marketing solution for Scratch is counter-intuitive, but

not impossible: tell kids Scratch is hard. This means

removing all of the bright, primary colors, and childish

cartoons. Replace them with harder, more standard adult

colors and photos. Eschew rounded blocks for ones with

hard edges. … Basically make Scratch look more like what

kids imagine adult coding to look like.” In [23] it is
explained that the popularity of KuMir in Russia is largely
due to the fact that this environment has the Russian
vocabulary of control structures and allows names of
variables and subroutines with spaces. This was the reason
for using the school algorithmic language in both block and
 full-text programming environments. The transition from
PiktoMir to PiktoMir-K is psychologically comfortable for
children. Several lessons are devoted to working with robots

from PiktoMir and re-solving in a new environment the
problems that were solved in the previous step. The child
can, by choice, carry out solutions of these problems in the
PiktoMir-K environment in the pictogram-based or in the
block-based representation of the program, switching, if
desired, between these representations. The main goal of this

stage is to acquire solid skills in reading programs in text

form. As already mentioned, the program in the PiktoMir-K
system is depicted on a subset of the school algorithmic
language. Accelerated acquisition of reading and
comprehension skills in programs in this language is helped
by superimposed on the text of the program a laconic
graphical form of representation of a block structure using
nested rectangles (see Fig. 8). Note that some pseudo-
graphic representation of nested block structures is
preserved in the Kumir environment as well.

Fig. 8 A program that controls a turtle in the PiktoMir-K environment. The block representation of the program in the PictoMir-K
environment and the full-text representation in the Kumir environment are shown.

So, the very important thing is that when creating a simple
program (without variables), a child can see how the same
program would look in PiktoMir systems, and when creating
more complex programs, a child can, looking ahead, see
how the created program will look like in the KuMir system.
Fig. 9 shows the representation of the same program in the

PiktoMir, PiktoMir-K and KuMir systems. Note that in
KuMir, the editor automatically concatenates the beginning
and end of each control structure with a vertical column of
dot symbols to better visualize the nested block structure. A
simple comparison of these three views reveals the reason
for the effectiveness of work in the PictoMir environment.

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.35 Volume 15, 2021

E-ISSN: 2074-1316 337

Fig. 9 How the same program looks in three programming environments

Representation of the program in the PiktoMir environment
requires the use of 3 lines and 9 characters, while in
PiktoMir-K and Kumir, 5 times more lines and 10 times
more characters are required. Only after obtaining fluent,
stable skills of recognition and understanding of the block
structure of a program with nested blocks, the development
of new, in comparison with PiktoMir, system capabilities
begin.

The central new concept is the concept of a named integer
variable, a value assignment construct, and a way of entering
an arithmetic expression that makes it impossible to make a
syntax error. An integer variable is introduced to replace the
Magic Jug with Stones already mastered by children and is
explained using its commands (see Fig. 10).

Fig. 10 Representation of the "counter" commands in the PiktoMir

and PiktoMir-K environments

Further, at the second stage, robots are mastered, the

commands of which have numerical parameters and the
technique of error-free input of arithmetic expressions is
further mastered. In a limited form in the PiktoMir-K
environment, it is possible to solve the tasks of processing
data arrays. The fact is that in the PiktoMir-K and KuMir
environments there is a moving device called the Robot,
which, according to legend, inspired by the Chernobyl
events, can measure the temperature and radiation of the cell
in which it is located.

The temperatures of cells in a rectilinear row of cells
along which the Robot moves form a numerical sequence.
This allows you to solve the problem provided for by the
above Russian educational standard, namely to educate “the

ability to write in the studied programming language

algorithms for searching for maxima, minima, the sum of a

numerical sequence”. In a visual form, these tasks turn into
tasks of creating a program that finds the maximum,
minimum and average temperature of cells of a given row in
the Robot field.

Our experience shows that a schoolchild can complete up
to a dozen tasks in the PiktoMir-K environment in an hour's
lesson. The submission of tasks and the registration of the
results of their implementation can be carried out under the
control of a networked digital educational environment
external to the PiktoMir-K programming environment.

C. Third stage

When the complexity of the problems being solved and the
size of the program reach a certain threshold level, the
textual representation of the program and character-by-
character input of the program code from the keyboard
become more efficient than the block representation, since it
makes it easier for the programmer to transform the program
from one correct state to another along the path passing
through syntactically incorrect states. In theory, this could
allow the course authors to visually demonstrate to the
novice programmer the feasibility of switching to full-text
programming environments. In practice, however, this

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.35 Volume 15, 2021

E-ISSN: 2074-1316 338

threshold level of complexity is not reached in a short
introductory programming course. All the problems to be
solved are so simple that the transition to the usual block-
based programming environment to a more complex full-text
programming environment does not give the student any
visible advantages. The student will only need to believe in
the need to master the full-text environment. For this reason,
special care must be taken to provide a user-friendly
interface for a text-based programming environment.

At the final stage, the programming language and learning
environment are expanded to a full-text educational Pascal-
like digital platform KuMir, that allows working with
complex text and numerical data structures: arrays and
strings. In terms of the style of work, this platform does not
differ much from 5 production platforms, listed in the
Russian standard and prepares students who decide to study
computer science and programming at an advanced level to
transition to a production style of programming in languages
such as Python, Java Script, or C. When using the KuMir
system in elementary school, it is important that this system
uses keywords and names written in Russian and has a
developed system for diagnosing syntax errors.

In KuMir, as in any professional full-text programming
environment, there are tools that make it easier to enter a
program in text form. But, basically, the input of the
program, as in professional programming systems, is carried
out in KuMir character by character. At this stage, students
first encounter the concept of a syntax error, and special
measures have been taken in KuMir to minimize the costs of
mastering of methods for correcting syntax errors. KuMir is
equipped with an advanced system for detecting syntax
errors, including establishing any cross-references errors.

Kumir graphically indicates the expected location of the
error in the edited line of the program code and places a
diagnostic message about the error on the continuation of the
line, in which found the error. Error messages are placed in
the margin of the program, at the moment when the input
focus leaves the line. The control of the correctness and
integrity of the program created by the trainee is carried out
in parallel with its editing. When the input focus is removed
from the edited line, the program is fully analyzed, and the
error message, if necessary, automatically appears in the
continuation of the edited line, as well as in the continuation
of all lines that are affected by the error in the newly edited
line. Even if there is an error, KuMir lets you run the
program and see the partial results of that execution. These
features of the KuMir system create a comfortable
environment for students in which they can focus on the
algorithmic component of the problem being solved. At the
previous two stages of mastering programming, in the
PiktoMir and PiktoMir-K environments, each task was
checked by the programming environment, within which
tasks were created. In the full-text programming
environments KuMir, each task of the course can be
equipped with a built-in, invisible to the learner, a checking
program (created by the author of the task in the same school
algorithmic language in which the student performs the
task.). The didactic unit in the KuMir system is a workshop
with automatic verification of the correctness of the tasks
performed by the student. Since the PiktoMir-K and KuMir
environments have several common virtual robots, mastering
the KuMir system begins with resolving the control

problems of known robots mastered at the previous two
stages.

Thus, the features of working in a full-text programming
system are first mastered on the fully studied algorithmic
material, and only after getting used to the full-text system,
the development of new capabilities of the school
algorithmic language and the KuMir environment begins.

Our experience shows that in a one hour contest a student
is able to complete up to a dozen easy tasks for managing
robots or about half a dozen tasks for processing numerical
or symbolic information minimal complexity, for example,
counting the number of positive elements in a numeric array
or the number of spaces in a string. The submission of tasks
and the registration of the results of their implementation can
be carried out under the control of a networked digital
educational environment external to the KuMir
programming environment.

IV. RESULTS

A. In the course of many years of experiments, we made

sure that preschoolers aged 6+ and younger

schoolchildren with pleasure and without difficulty

perform more than a hundred tasks for compiling simple

programs in an annual introductory programming course.

A1. Our experience of working with preschoolers in the
city of Surgut age 6+ in the 2018-2019 academic year and
the 2019-2020 academic year (6,000 children annually),
described in [22], shows that preschoolers aged 6+ make up
about 5 - 6 simple programs for a 15-20 minute computer
part of the lesson. Thus, in an annual course of 30-35 half-
hour lessons, children acquire the skills to independently
compile 120-150 of the simplest programs.

A2. Article [33] provides data on the number of problems
solved by preschoolers of the municipal kindergarten in the
ninth week lesson of the course in December 2019. The data
refer to a group of 50 preschoolers from the municipal
kindergarten of the city of Surgut, 27 boys, 23 girls. This
number 9 lesson under discussion was organized as a
competition., therefore, the entire time of a half-hour lesson
was allocated to work on tablets - 30 minutes with a 5-
minute exercise break. 9 tasks were offered. More than half
of the children completed all 9 assignments without any
assistance from the teacher. The rest of the children
completed 7 or 8 tasks out of 9, while some of the children
needed the teacher's help in solving one or two tasks.

A3. In 2018-2019, we monitored the work of a private
kindergarten in Moscow. Children and their parents were
promised that at the end of each semester, children will be
issued certificates listing their specific achievements. So
throughout the year we recorded the number of tasks
completed by each child in each lesson. The course
consisted of 12 lessons in the fall semester and 12 lessons in
the spring semester. The group consisted of 5 boys and 6
girls, the age of the youngest child at the beginning of the
course was 5 years and 6 months. The fall semester was
devoted to the compilation of linear programs. The number
of tasks completed by children per semester varied from 55
to 71, that is, on the computer part of each lesson, each child
managed to solve at least 5 problems. Similar results were
achieved in the second, spring semester. Namely, in 7
lessons devoted to the REPEAT N TIMES cycle, each child

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.35 Volume 15, 2021

E-ISSN: 2074-1316 339

completed 35 to 40 tasks, that is, at least 5 tasks in each
lesson. During 5 sessions devoted to subprograms, each
child completed about 20-25 tasks. Thus, in an annual
course of 24 lessons, the number of tasks completed by a
child varied from 110 to 130.

A4. In the 2019-2020 academic year, we tracked the
annual Algorithmics course as part of extracurricular STEM
classes, conducted according to our methodology for fourth-
graders in one of the Moscow schools. In a group of 22
schoolchildren, divided into two subgroups (a total of 11
boys and 11 girls), 26 lessons were held, each lasting 45
minutes. For a computer workshop on tablets, 15 minutes
were allocated for each lesson. 20 workshops were held in
the pictogram-based environment of PiktoMir and 6
workshops in the block-based environment of PiktoMir-K.
At each workshop, each child managed to complete from 4
to 5 tasks. Thus, it turned out that the productivity of novice
fourth-graders in compiling the simplest programs is
commensurate with the productivity of preschoolers aged
6-7 years.

B. Successful use of our three programming

environments in teaching future teachers at Moscow State

Pedagogical University.

In parallel with the development of an introductory
programming course for russian elementary school (grades 1
to 4) we were solving the problem of preparing teachers
capable of teaching this course. For the last five years we
have been teaching the annual course "Methods of Teaching
Programming" at Moscow State Pedagogical University. For
the first three of these five years, we used the PiktoMir
system in the first quarter of the course, and the Kumir
system in the rest of the course. Our experience has shown
that the transition from PiktoMir to KuMir was
psychologically difficult for students, and technologically
required a lot of time and effort to master the minor details
of the language.

In the last two years, the course "Methods of Teaching
Programming" has been redesigned for students with the
main specialization: elementary school teacher and
additional specialization: computer science teacher in basic
school (grades 5-9). In this course, we have increased the
number of hours devoted to pictogram programming and
started using the PiktoMir-K block programming system.

First use of the PiktoMir-K system in 2019-2020
academic year as a bridge between the two styles of
programming showed encouraging results. So in the next
2020-2021 academic year we began to consistently use our
three programming environments in teaching future teachers
at Moscow State Pedagogical University.

In the 2020-2021 academic year, 19 students began to
attend the course. Within a year, 1 student dropped out of
the university for family reasons. 18 students graduated from
the course, including 1 boy and 17 girls. One student was 25
years old, the rest of the students were 20-21 years old. In
this course, as in many courses taught at this university, an
initial questionnaire was conducted. Here are the answers to
three questions of the questionnaire concerning the results of
students in mastering programming in school.

Question. In which programming language (if any) you

were taught to program at school.

Answers. Pascal - 5, KuMir - 4, did not learn - 9.

Question and answers. Assess your level of

programming by the time you leave school by choosing one

of the most appropriate answers out of 3.

- did not learn to program at all – 8 students;
- learned to program a little – 8 students;
- learned to program well – 2 students.

Question. Reconstruct the two missing slots of this 3-line
program snippet to calculate the number of distinct roots of
equations x (x-a) (x-b) = 0, or write a similar snippet in any
programming language
if(a=0) then n:=1 else n:=2;

if((b<>0) and then;

writeln('The number of roots = ', n);

Answers. In the allotted time of 10 minutes, only 5 students
out of 18 tried to solve this problem, none of them managed
to fill in correctly two slots of 6 characters each:
if((b<>0) and (b<>a) then n:=n+1;

The results of the questionnaire survey of this group reflect,
in the opinion of the authors, a picture typical for Russia:
half of the school graduates in Russia did not encounter
programming at all at school. Those who studied
programming in school are not getting enough practical
skills. So, the course "Methods of Teaching Programming"
was attended by students who did not have stable basic
programming skills. Therefore, the main attention in this
course had to be paid not to teaching methods, but to the
very basics of programming.

C. We managed to develop a one-year programming

course for future teachers (70 academic hours), in which

students who did not have even the most basic

programming skills could master the skills of working in

pictogram, block and full-text programming environments.

by completing at least three hundred assignments for

writing simple programs. of them at least 80 programs in

the full-text programming environment.

For this course, we have prepare

130 tasks in the PictoMir environment,
170 tasks in the PiktoMir-K environment and
105 tasks in the KuMir environment.

In total, 405 assignments were given in the course of 35 one
and a half hour lessons. Certification required 80 percent of
the tasks in each environment to be completed, and all 18
students (100%) successfully completed this task.

D. The time spent working in pictogram and block

programming environments pays off when switching to a

full-text programming environment.

Of the 105 tasks in the Kumir environment, the first 30
were robot control tasks that could be solved in the
PictoMir-K environment, that is, they were proposed to
facilitate mastering the interface of the full-text
programming environment. Only 75 out of 105 tasks in the
KuMir environment were aimed at working with integers,
arrays and strings, traditional for introductory courses. It
turned out that the introduction of the intermediate

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.35 Volume 15, 2021

E-ISSN: 2074-1316 340

environment PiktoMir-K increased the productivity of
students in the KuMir environment when solving these
traditional problems. A significant part of the students in the
current academic year succeeded, during classes in the
KuMir environment, not to be limited to the completion of
80% of the credit assignments, but to complete all the
assignments. (Each task of the course has a built-in
mechanism for automatic verification of the correctness of
the solution found by the student, the number of attempts to
verify the solution is not limited, and unsuccessful attempts
are not penalized)

E. CONCLUSIONS AND FUTURE WORKS
Based on many years of work with beginners of different
ages, we have come to several conclusions, outlined below.
Thesis 1. The effectiveness of the sequential use of three

programming styles in the initial course of programming is

due to the nature of things. A beginner must simultaneously

learn both a) the rules for presenting the program code and

b) the methods of creating program code.

Both a) and b) can be done in a simpler visual-graphic form

and in a more complex symbolic-textual form. Combinations

of these forms give three types of programming

environments of increasing complexity to learn.

Table 1. Three types of programming environments

type of
programming
environment

program code
representation

program code
input method

icon-based icon-graphical,
pictographic

manipulations of
tangible objects,
drug-and-drop

block-based mixed
textual/graphical

drug-and-drop

full-text-based plain text keyboard

Thesis 2. In the initial programming course for students of

all ages, the study of structured programming constructs -

sequence, branching, repetition, condition, subroutine,

counter - and their most common combinations are most

effectively carried out in an icon-based programming

environment. To define nested block structures in an icon-

based environment, in our opinion, some generalization of

the horizontal indentation technique in the spirit of the

Python language is beyond competition.
Future work. Publication of an article on defining the
semantics of horizontal indents in pictogram programming,
which allows any program to be considered syntactically
correct and executable.

Thesis 3. Completion of mastering the full set of structured

programming constructs and their combinations such as

‘loop inside a conditional structure’, ‘conditional structure

inside a loop’, ‘loop in a loop’, setting one or several

subroutines, calling one subroutine inside another, etc. on

the material of control algorithms for the simplest real and

virtual robots, possibly upon reaching the age of 7 years (in

Russia this is the age of completion of the stage of preschool

education). This development can be started at the age of 4-

5 years.

Future work. Together with the Institute of Educational
Technologies in the city of Samara, we began a massive

experiment to introduce two and three-year programming
courses in the preschool education system of the Russian
Federation at 250+ experimental sites. [34].

Fig. 11 Еxperimental sites of the "PiktoMir for Preschoolers"
project on the map of Russia.

Thesis 4. An introductory programming course that meets
the requirements of the Russian educational standard given
in section II above can be mastered by elementary school
students.
Future work. Together with the Institute of Educational
Technologies in the city of Samara, we began an experiment
to introduce such a course in several dozen schools in
Russia.

Thesis 5. In the annual programming course for future
teachers (70 academic hours), it is possible to ensure the
development of the pictogram-based, block-based and full-
text style of programming by solving at least three hundred
tasks for compiling simple programs by each student.

The main disadvantage of the approach proposed in this

article. The methodology for learning the basics of
programming described in the article has the disadvantage
that in the first two stages, students do not get acquainted
with the methods of input-output, event control and dialog
work.
Future work. a) Develop a legend that requires interactive
work and event management when working with virtual
robots used in PiktoMir and PiktoMir-K,
b) develop tasks that require the preparation of dialogue
programs.

Acknowledgements
The authors are grateful to reviewers 1, 2, and 3 for
comments and suggestions, the consideration of which led to
an improvement in the quality of the article.

The work was carried out within the framework of the
state assignment of Scientific Research Institute of System
Analysis of the Russian Academy of Sciences (SRISA/NIISI
RAS) on topic No. 0580-2021-0010, registration No.
121031300134-3).

References

[1] Betelin, V.B., Kushnirenko A.G., Semenov A.L.,
Soprunov S.F. ABOUT DIGITAL LITERACY AND
ENVIRONMENTS FOR ITS DEVELOPMENT.
Informatics and Applications, 14(3), pp 100-107
(2020), (In Russ.)
DOI:https://dx.doi.org/10.14357/19922264200414

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.35 Volume 15, 2021

E-ISSN: 2074-1316 341

https://dx.doi.org/10.14357/19922264200414

[2] Papert, Seymour: Mindstorms: Children, Computers and
Powerful Ideas.: Basic Books Inc. Publishers. New
York, NY USA 252 p. (1980).

[3] Resnick, M. et al. Scratch: Programming for all.
Commun. ACM 52, 11 (Nov. 2009), Pages 60-67.
https://doi:10.1145/1592761.1592779

[4] Flannery, L.P., Kazakoff, E.R., Bonta, P., Silverman,
B., Bers, M.U., & Resnick, M. (2013). Designing
ScratchJr: Support for early childhood learning through
computer programming. In Proceedings of the 12th
International Conference on Interaction Design and
Children (IDC ’13). ACM, New York, NY, USA, 1-10.
DOI=10.1145/2485760.2485785

[5] Bers M.,U., Resnick, M., The Official ScratchJr Book:
Help Your Kids Learn to Code, No Starch Press, (2015)

[6] Blockly, https://en.wikipedia.org/wiki/Blockly
[7] Meet Cubetto. URL: https://www.primotoys.com, last

accessed 2021/09/27.
[8] Matatalab, URL: https://matatalab.com/en, last accessed

2021/09/27.
[9] Sullivan, A., Elkin, M., & Bers, M. U. (2015). KIBO

Robot Demo: Engaging young children in programming
and engineering. In Proceedings of the 14th
International Conference on Interaction Design and
Children (IDC '15). ACM, Boston, MA, USA.

[10] Lego_Mindstorms_EV3, URL:
https://en.wikipedia.org/wiki/Lego_Mindstorms_EV3,
last accessed 2021/09/27.

[11] Lightbot. URL: https://en.wikipedia.org/wiki/Lightbot,
last accessed 2021/09/27.

[12] Resnick, M. et al. Scratch: Programming for all.
Commun. ACM 52, 11 (Nov. 2009), Pages 60-67.
https://doi:10.1145/1592761.1592779

[13] Kelleher, C., Pausch, R., and Kiesler, S. Storytelling
Alice motivates middle school girls to learn computer
programming. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(2007), Pages 1455-1464.
https://doi.org/10.1145/1240624.1240844

[14] Homer M., Noble J., Lessons in Combining Block-
based and Textual Programming, Journal of Visual
Languages and Sentient Systems (VLSS), Volume 3,
2017

DOI 10.18293/VLSS2017-007
[15] Weintrop, David & Wilensky, Uri. Comparing Block-

Based and Text-Based Programming in High School
Computer Science Classrooms. ACM Transactions on
Computing Education. 18. 1-25. (2017).
https://doi.org/10.1145/3089799

[16] Weintrop, D., To block or not to block, that is the
question: students' perceptions of blocks-based
programming

IDC '15: Proceedings of the 14th International
Conference on Interaction Design and Children June
2015 Pages 199–208,
https://doi.org/10.1145/2771839.2771860

[17] Russian Federal State Educational Standard,
basic general education (Federal'nyy gosudarstvennyy
obrazovatel'nyy standart osnovnogo obshchego
obrazovaniya), (In Russ.),
URL:http://publication.pravo.gov.ru/Document/
View/0001202107050027, last accesed 2021/09/27.

[18] Weintrop D., Block-based Programming in Computer
Science Education, Communications of the ACM,
August 2019, Vol. 62 No. 8, Pages 22-25,
10.1145/3341221.

[19] Rogozhkina, Irina & Kushnirenko, Anatoli. PiktoMir:
Teaching programming concepts to preschoolers with
anew tutorial environment. Procedia - Social and
Behavioral Sciences. 28. pp 601-605. (2011).
doi:10.1016/j.sbspro.2011.11.114

[20] PiktoMir: The project starting page at the website of the
Federal Scientific Center NIISI RAS,

URL: https://www.niisi.ru/piktomir, last accessed
2021/09/27.

[21] Betelin V. B., Kushnirenko A. G., Leonov A. G.,
Mashchenko K. A., Basic Programming Concepts as
Explained for Preschoolers, pp. 245-255, Volume 15,
2021, International Journal of Education and
Information Technologies (NAUN). DOI:
10.46300/9109.2021.15.25.

https://www.naun.org/main/NAUN/educationinformati
on/2021/a502008-024(2021).pdf

[22] Besshaposhnikov N.O., Kushnirenko A.G., Leonov
A.G., Raiko M.V., Sobakinskikh O.V. Digital
educational environment PiktoMir: Experience of
development and mass implementation of an annual
programming course for preschoolers. Informatics and
education. 2020;(10):28-40. (In Russ.)

https://doi.org/10.32517/0234-0453-2020-35-10-28-
40

[23] Leonov, A. & Pervin, Yu & Zaidelman, Ya.
SOFTWARE EXECUTORS IN THE DIGITAL
PEDAGOGICAL ENVIRONMENTS: PIKTOMIR,
ROBOTLANDIA AND KUMIR. Informatics in school.
pp 54-61 (2019).

https://doi.org/10.32517/2221-1993-2019-18-9-54-61.
[24] Besshaposhnikov N.O., Kushnirenko A.G., Leonov

A.G., Pictomir: how and why do we teach textless
programming for preschoolers, first graders and
students of pedagogical universities, CEE-SECR '17:
Proceedings of the 13th Central & Eastern European
Software Engineering Conference in RussiaOctober
2017 Article No.: 21, Pages 1-7,

https://doi.org/10.1145/3166094.3166115
[25] Kushnirenko, A.G., Lebedev, G.V., Svoren', R.A.

Osnovy informatiki i vychislitel'noj tehniki. Uchebnoe
posobie dlja 10 – 11-h klassov obshheobrazovatel'nyh
uchrezhdenij. Prosveshhenie. Moscow, USSR. 224 s.
(In Russ.), (1990).

[26] Zvonkin, A.K., Lando, S.K., Semenov, A.L.
Informatika. Algoritmika. 6 klass. Prosveshhenie.
Moscow, Russian Federation, 239 s. (In Russ.), (2006).

[27] Lando, S.K., Semenov, A.L., Vjalyj, N.M. Informatika.
Algoritmika. 7 klass. Prosveshhenie. Moscow, Russian
Federation, 208 s. (In Russ.), (2008).

[28] Bosova, L.L., Bosova, A.Yu. Informatika. 7 klass. LBZ.
Moscow, Russian Federation, 224 s. (In Russ.), (2013).

[29] Kushnirenko, A.G., Leonov A.G., Zaidelman Ya.N.,
Tarasova V.V., Informatika. 7 klass. Dropha. Moscow,
Russian Federation, 176 s. (In Russ.), (2017).

[30] Kushnirenko, A.G., Leonov A.G., Zaidelman Ya.N.,
Tarasova V.V., Informatika. 8 klass. Dropha. Moscow,
Russian Federation, 224 s. (In Russ.), (2017).

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.35 Volume 15, 2021

E-ISSN: 2074-1316 342

https://doi:10.1145/1592761.1592779
https://matatalab.com/en
https://en.wikipedia.org/wiki/Lego_Mindstorms_EV3
https://doi:10.1145/1592761.1592779
https://dl.acm.org/doi/10.1145/2771839.2771860
https://dl.acm.org/doi/10.1145/2771839.2771860
https://dl.acm.org/doi/10.1145/2771839.2771860
https://dl.acm.org/doi/proceedings/10.1145/2771839
https://dl.acm.org/doi/proceedings/10.1145/2771839
https://doi.org/10.1145/2771839.2771860
http://publication.pravo.gov.ru/Document/
https://www.niisi.ru/piktomir
https://checklink.mail.ru/proxy?es=lVENJRFOT9TxJzOEjEYlfyPi3nqBkyt7woeLUeCNiRg%3D&egid=nZFjbcAqZwDqaWUin3zEnXfxp6NcGF%2F8QWeofZQX7ts%3D&url=https%3A%2F%2Fclick.mail.ru%2Fredir%3Fu%3Dhttps%253A%252F%252Fwww.naun.org%252Fmain%252FNAUN%252Feducationinformation%252F2021%252Fa502008-024(2021).pdf%26c%3Dswm%26r%3Dhttp%26o%3Dmail%26v%3D3%26s%3D2e6e9ac3f8594d9d&uidl=16315370891120331720&from=tsarev.sfu%40mail.ru&to=agk_%40mail.ru&email=agk_%40mail.ru
https://checklink.mail.ru/proxy?es=lVENJRFOT9TxJzOEjEYlfyPi3nqBkyt7woeLUeCNiRg%3D&egid=nZFjbcAqZwDqaWUin3zEnXfxp6NcGF%2F8QWeofZQX7ts%3D&url=https%3A%2F%2Fclick.mail.ru%2Fredir%3Fu%3Dhttps%253A%252F%252Fwww.naun.org%252Fmain%252FNAUN%252Feducationinformation%252F2021%252Fa502008-024(2021).pdf%26c%3Dswm%26r%3Dhttp%26o%3Dmail%26v%3D3%26s%3D2e6e9ac3f8594d9d&uidl=16315370891120331720&from=tsarev.sfu%40mail.ru&to=agk_%40mail.ru&email=agk_%40mail.ru
https://doi.org/10.32517/0234-0453-2020-35-10-28-40
https://doi.org/10.32517/0234-0453-2020-35-10-28-40
https://dl.acm.org/doi/proceedings/10.1145/3166094
https://dl.acm.org/doi/proceedings/10.1145/3166094
https://dl.acm.org/doi/proceedings/10.1145/3166094
https://doi.org/10.1145/3166094.3166115

[31] Kushnirenko, A.G., Leonov A.G., Zaidelman Ya.N.,
Tarasova V.V., Informatika. 9 klass. Dropha. Moscow,
Russian Federation, 232 s. (In Russ.), (2017).

[32] Krouse, S., Scratch Has a Marketing Problem, URL:
https://medium.com/free-code-camp/scratch-has-a-
marketing-problem-f84626bd18ef, last

accessed 2021/09/27.
[33] Leonov, A.G., Raiko, M.V., Sobakinskikh, O.V.,

Sobyanina, N.V.The results of mastering the annual
program "Algorithmics for preschool children" by the
preparatory groups of the municipal preschool
educational institution, Trudy SRISA RAS, 2020, vol.
10, № 5-6, pp. 195-199, (In Russ.)

[34] Experimental sites of the “PiktoMir for preschoolers
and firstgraders” project on the map of Russia.

URL: https://inott.ru/projects/piktomir/uchastniki-
doshkolnoe-obrazovanie/ , last accessed 2021/09/27.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.enU
S

INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES
DOI: 10.46300/9109.2021.15.35 Volume 15, 2021

E-ISSN: 2074-1316 343

https://medium.com/free-code-camp/scratch-has-a-marketing-problem-f84626bd18ef
https://medium.com/free-code-camp/scratch-has-a-marketing-problem-f84626bd18ef
https://inott.ru/projects/piktomir/uchastniki-doshkolnoe-obrazovanie/
https://inott.ru/projects/piktomir/uchastniki-doshkolnoe-obrazovanie/
https://creativecommons.org/licenses/by/4.0/deed.enUS
https://creativecommons.org/licenses/by/4.0/deed.enUS

