
 

 

  
Abstract— Solving the differential equation of heat conduction 

the temperature in each point of the body can be determined. Howe-
ver, in the case of bodies with boundary surface of sophisticated 
geometry no analytical method can be used. In this case the use of 
numerical methods becomes necessary. The finite element method is 
based on the integral equation of the heat conduction. This is obtai-
ned from the differential equation using variational calculus. The 
temperature values will be calculated on the finite elements. Then, 
based on these partial solutions, the solution for the entire volume 
will be determined. Using this method we can divide into elements 
also fields with any border. Also, numerical modelling with boun-
dary elements is used for analysis of heat conduction. In this paper 
are developed basic ideas of numerical analysis with finite elements 
and boundary (constant) elements of conductive thermal fields gene-
rated or induced into solid body in steady state regime. The tempera-
ture distribution in some solid bodies and in pipe insulation is 
analyzed using analytical method and finite element and boundary 
element methods, implemented in two computer programs develo-
ped by the author. This shows the good performance of the proposed 
numerical models. 

 
Keywords— Heat transfer, Steady state regime, Finite elements, 

Boundary elements, Variational calculus, Numerical models, Com-
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I. INTRODUCTION 

ODERN computational techniques facilitate solving pro-
blems with imposed boundary conditions using diffe-

rent numerical methods [6], [7], [9], [16–19]. Numerical ana-
lysis of heat transfer [12], [13] has been independently though 
not exclusively, developed in three main streams: the finite 
differences method [22], [24], the finite element method [1], 
[20], [23] and the boundary element method [3], [4], [5]. 

The finite differences method (FDM) is based on the diffe-
rential equation of the heat conduction, which is transformed 
into a numerical one. The temperature values will be calcu-
lated in the nodes of the network. Using this method conver-
gence and stability problem can appear. 

The finite element method (FEM) and the boundary ele-
ment method (BEM) is based on the integral equation of the 
heat conduction. This is obtained from the differential equa-
tion using variational calculus. In first case the temperature 
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values will be calculated on the finite elements. Then, based 
on these partial solutions, the solution for the entire volume 
will be determinated. Using this method we can divide into 
elements also fields with unregulated border. In the BEM case 
only the boundary is discretized into elements and internal 
point position can be freely defined. 

In this paper the temperature distribution is analyzed in the 
solid bodies, with linear variation of the properties, using the 
FEM and the BEM. 

II.  ANALYTICAL MODEL OF HEAT CONDUCTION 

The temperature in a solid body is a function of the time and 
space coordinates. The points corresponding to the same tem-
perature value belong to an isothermal surface. This surface in 
a two dimensional Cartesian system is transformed into an 
isothermal curve. 

The heat flow rate Q represents the heat quantity through an 
isothermal surface S in the time unit: 

         sqQ
S
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where the density of heat flow rate q is given by the Fourier 
law: 
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in which λ is the thermal conductivity of the material. 
The thermal conductivity of the building materials is the 

function of the temperature and variation can accordingly be 
expressed as: 

       ( )[ ]00 +1λλ ttb −=        (3) 

in which: λ0 is the thermal conductivity corresponding to the t0 
temperature; b – material constant. 

If there is heat conduction within an inhomogeneous and 
anisotropy material, considering the heat conductivity con-
stant in time, the temperature variation in space and time is 
given by the Fourier equation: 
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in which: t is the temperature; τ – time; ρ – material density; c 
– specific heat of the material; λx, λy, λz – thermal conduc-
tivity in the directions x, y and z; Q0 – power of the internal 
sources. 

To solve the differential equations it is necessary to have 
supplementary equations. These equations contain the geome-
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trical conditions of the analysis field, the starting conditions (at 
τ = 0) and the boundary conditions. The boundary conditions 
(Fig. 1) describe the interaction between the analyzed field and 
the surroundings. In function of these interactions different 
conditions are possible: 

 
Fig. 1 Boundary conditions 

– the Dirichlet (type I) boundary conditions give us the tem-
perature values on the boundary surface St of the analyzed 
field like a space function constant or variable in time: 

        ( ) τ, , , zyxft =          (5) 

– the Neumann (type II) boundary conditions gives us the 
value of the density of heat flow rate through the Sq boundary 
surface of the analyzed field: 
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in which: nx, ny, nz are the cosine directors corresponding to 
the normal direction on the Sq boundary surface. 
– the Cauchy (type III) boundary conditions gives us the ex-
ternal temperature value and the convective heat transfer 
coefficient value between the Sα boundary surface of the body 
and the surrounding fluid: 
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in which: α is yhe convective heat transfer coefficient from Sα 
to the fluid (or inversely); te –fluid temperature. 

The analytical model described by the equations (4)…(7) 
can be completed with the material equations which provide us 
information about variation of the material properties de-
pending on temperature. In the case of matertials with linear 
physical properties, this equations (λ = const.) are not used in 
the model. 

Solving the differential equation of the heat conduction (4) 
we can determine the temperature values in each point of the 
body. However, in the case of bodies with boundary surface of 
sophisticated geometry, the equation (4) cannot be solved 
using analytical methods. In this case numerical methods 
should be applied. The increasing availability of computers 
has also lead into the direction of more frequent use of these 
methods. 

III.  FORMULATION OF NUMERICAL MODEL WITH FINITE 

ELEMENTS 

To use the FEM, the transformation of the equations (4)… 
(7) into integral model is necessary. To realize this transfor-
mation we can use variation calculus. 

The temperature t(x, y, z, τ ) which represent a solution for 
the differential heat conduction equation (4) and for condi-
tions (5), (6), (7), also represents a solution for the steady state 
equation of the V field: 

          0δ =F           (8) 

which is equivalent, from mathematical point of view, with the 
equations (4)…(7) and were F is the functional of the heat 
conduction. 
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in which: Q0 is positive when the internal sources produce heat 
and negative when these sources absorb heat; q is posi-tive 
when the body receives heat and negative when the body 
yields heat to the surrounding fluid; α is positive on the 
surfaces where the heat transfer happens from the body to the 
fluid and it is negative inversely. 

The minimization of the functional is done correspondingly 
to each finite element. The solution for the entire field is obtai-
ned joining the partial solutions. 

Though the heat conduction is carried out within three–
dimensional bodies, the temperature distribution variation is 
significant only in certain directions. Thus, the analysis of 
temperature distribution in bars, plain or cylindrical walls is 
done using a two–dimensional model. 

In the steady state heat transfer processes the temperature 
does not depend on the time, thus in the equation (9) 

0/ =∂∂ τt . In addition, at two–dimensional problems, the tem-
perature does not vary on z direction, thus 0/ =∂∂ zt . 

A. General Equations of the FEM 

In our case the equation (9) can be expressed as: 
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Taking into account that the temperature function is not 
continuous on the entire field, the equation (10) can be inte-
grated only on the finite elements. On the entire field the 
functional F can be written as a sum of m functionals Fe, where 
m is the number of finite elements:  

         ∑
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where the “e”exponent refers to a finite element. 
For a given finite element the temperature te can be calcu-

lated based on the temperature values in the nodes: 

    [ ]{ }enn
e tNtNtNtNt =+++= ...2211     (13) 

where: n is the number of the finite element nodes; [N] – form 
matrix of the finite element; {t}e – vector of the temperature 
values in the nodes. 

In the expression (12) appear the partial derivates of the 
temperature, therefore the equation (13) should be derived: 

{ } [ ]{ }e

n

n

n

e

e

tJ

t

t

t

y

N

y

N

y

N
x

N

x

N

x

N

y

t
x

t

B =


































=





















= 2

1

21

21

...

...

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂
∂
∂

 (14) 

If the thermal conductivities are written in matrix form: 
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then equation (12) can accordingly be expressed as: 
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the equation (16) can be expressed as: 
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If we derive the matrix equation (18) the further equation is 
obtained: 
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Because dAhdV = and dLhdS = , where h is the thick-

ness of the finite element, dA – aria of the finite element and 
dL – length of the finite element side, result: 
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 The finite element thickness h is considered constant and 
equal with 1 m. The equation (20), can be written as in com-
pressed form: 
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where: 
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in which: [k] is the matrix of the heat conduction correspon-
ding to a finite element, the first term is related to conduction 
and the second term to convection on the Lαe side of the Sαe 
boundary surface; {p} – vector of heat sources containing the 
internal sources Q0, the density of heat flow rate q on the Sqe 
boundary surface and convection on the Sα boundary surface. 

The minimization of the F functional supposes the equality 
with zero of the first derivate in each point of the studied field. 
Taking into account of (11) results: 
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Introducing equation (21) in (24) we obtain the equation 
system corresponding to the entire field: 
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where: 
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in which: [K] is matrix of heat conduction of the entire field; 
{P} – vector of heat sources corresponding to studies field; {t} 
−  vector of unknown temperatures. 
 The equation (25) represents the form with finite element of 
the differential equation of heat conduction, which contains a 
number of equations equal to the number of the nodes with 
unknown temperature values. 

B. Matrix of the Heat Conduction 

If we use finite elements with triangle form in a certain point 
of the finite element, using the relation (13) the te temperature 
(Fig. 2), can be written as: 
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in which: ti, tj, tk are the temperatures in i, j, k nodes (nodes of 
triangle finite element); [N] – form matrix of the finite ele-
ment [17], [19]. 
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Fig. 2. Finite element with triangle form 

The conduction matrix of a finite element is: 
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where: 
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The [J] matrix, using the relation (14) can be expressed as: 
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If we derive the elements of the form matrix: 
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where Ae is the area of the finite element, and the b respective 
c can be written as [19]: 
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Consequently, the [J] matrix is constant. Because the λx and 
λy thermal conductivities do not vary for a finite element, the 
[D] matrix is also constant, thus: 
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Introducing the expression of [J] matrix from (31) and the 
expression of [D] matrix from (15) in (33) results: 
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The matrix [k2] from the equation (28) can be written as: 

   [ ] L

NNNNNN

NNNNNN

NNNNNN

hk
eL

kkjkik

kjjjij

kijiii

d2 ∫
















=
α

α    (35) 

Using the L – natural coordinates and considering that 
convective heat transfer exists on the jk side of the finite ele-
ment, we obtain: 
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To solve the equation (36), the following relation should be 
used: 
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Consequently for products with the same indices j or k is 
obtained: 
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and for products with different indices j and k is obtained: 
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Substituting into equation (36) results: 
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If convective heat transfer exists the ij or ki sides of the 
finite element are: 

[ ] [ ]
















=
















=
201

000

102

6
;

000

021

012

6 22
ee Lh

k
Lh

k αα αα
  (41) 

The matrix [k2] exists only in the case when at least, o none 
side of the finite element heat transfer is realized by con-
vection. 

C. Vector of the Heat Sources 

This vector is based on the equation (23) from three terms, 
which can be calculated using the L–natural coordinates. Sup-
posing that Q0 is constant for a finite element, using the follo-
wing relation: 
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we obtain that: 
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The second term, for a certain density of heat flow rate, 
corresponds to the heat transfer on the boundary surface of the 
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studied field. Supposing that the body receives the heat flow 
through Lki = Lqe side of the finite element, using the relation 
(37) we obtain: 
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The third term, from the equation (23), corresponds to con-
vective heat transfer on the jk (Ljk = Lαe) side of the finite 
element. Using the relation (37) we obtain: 
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It could be observed that the element zero in the vector (44) 
and (45) can occupy any position, corresponding to the side of 
finite element with heat transfer.  

Based on the equation systems obtained for the finite ele-
ments, they can realize the equation system for the entire stu-
died field. This system can be solved using analytical or itera-
tive methods. 

In present there are different programms on the software 
market which permit numerical analysis of the temperature 
distribution (e.g. WAEBRU) but these programms are too 
expensive and our department cannot buy them. In this con-
text to analyze the temperature distribution in a solid body 
under steady state heat transfer regime using the numerical 
model presented above the TAFEM software has been deve-
loped by author of this article. The equation system is solved 
using the Gauss method. 

IV.  DEVELOPMENT OF NUMERICAL MODEL WITH BOUNDARY 

ELEMENTS 

In the case of a plain wall, inside the analysis field, the heat 
conductivity in steady state regime is modelled by the Laplace 
equation [4]: 

          02 =∇ t           (46) 
On Γt portion of boundary Γ of the analysis field Dirichlet 

boundary conditions are imposed and leftoner portion Γq 
Neumann boundary conditions are imposed. 

In order to determine the temperature on the boundary of 
the analysis field one uses the following integral equation [3], 
[4], [6]: 
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where: ζ is the point in which one writes the integral equation 

(source point); c(ζ) − a coefficient; 
o
X  − the current integra-

tion point; ( ) 
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solution; nuv ∂∂ /∗∗ =  − normal derivative of this solution. 

The distance r(ζ,
o
X ) between the current point 

o
X  and the 

source point ζ is calculated with the relation: 
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Boundary Γ is discretized into N constant boundary ele-
ments for which one considers temperatures tj, respectively the 
normal derivative (∂t/∂n)j constant and equal to the mid point 
(node) value of the element. Thus the integral equation is 
obtained under the following discretized form: 
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in which coefficients $Aij and Bij have the expressions: 
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When i = j these become: 
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Explicitely, equation (50) generates a liniar and compatible 
system of N equations with 2N unknowns [tj and (∂t/∂n)j] and 
after implementing the boundary conditions, the number of 
unknowns is reduced to N. In the case of constant boundary 

elemnents, coefficient ci has the value 1/2. Coefficients $Aij and 

Bij from (51) is computed using a Gauss quadrature [8], [19]: 
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in which lj is the length of the j boundary element. 
Introducing notations: nx = cos(n, x); ny = cos(n, y) and 

using, for ∀
o
X ∈Γ, the parametric equations: 

   [ ]1,1   ,; −∈+=+= ξξξ DCyBAx     (54) 

where: x∈[xj, xj+1] and y∈[yj, yj+1], the following relations are 
obtained: 
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in which (xj, yj) and (xj+1, yj+1) are the extremities of the boun-
dary element j. 

The analysis field is transformed into a dimensionless one 
by replacing the dimensional variables (x, y) with dimension-
less ones (x∗, y∗): 

       
maxmax

;
x

y
y

x

x
x == ∗∗       (56) 

in which xmax is the maximum extension of the analysis field 
after axis Ox. 
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In order to determine the temperature inside of the analysis 
field is used the integral representation: 
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in which: ,
o
Ω∈iζ  where 

o
Ω  represent the inside of the ana-

lysis field Ω  ( Ω =
o
Ω UΓ). 

After the discretization of boundary Γ into N constant boun-
dary elements one obtains the integral equation under discre-
tized form: 
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which can be writhen as such: 
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Coefficients ijij BA  and  are evaluated using a Gauss qua-

drature: 
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in which: m is the number of Gauss type points; wk − weight 
coefficients. 

Temperatures ti from points ζi are easily determined taking 
into account that values tj and (∂t/∂n*)j are known on the ana-

lysis field boundary, and coefficients ijij BA  and  are computed 

with equation (54). 
By knowing values tj and ti of the temperature on the ana-

lysis field boundary, the group of coordinate points (x∗, y∗) for 
which t = const. represents the isothermal curves. 

The numerical model based on BEM has been implemented 
in computer program TABEM, realized in Fortran program-
ming language, for IBM–PC compatible systems. 

V. APPLICATIONS 

A. Temperature Distribution in Orthotropic Body 

The temperature distribution is analyzed in a solid body 
500×400 mm sectional dimensions (Fig. 3). The body receives 
heat flow on two sides: qx = 2320 W, qy = 928 W. On the other 
two sides the body transmit heat by convection αx = αy = 23.2 
W/(m2⋅K). The material of the body has orthotropic properties 
with the following values of the thermal conductivies: λx = 
11.6 W/(m⋅K), λy = 5.8 W/(m⋅K). 

The studies field is divided into 40 finite elements with 30 
nodes. Running the TAFEM program the values of tempera-
tures in the nodes have been obtained and presented in Table I. 
The temperature distribution in the body is presented in Figure 
4. 

Wood is the only one orthotropic material which is used in 
civil engineering, and this property should be taken into ac-
count at heat loss determination of the buildings (e.g. heat flow 
direction perpendicular or parallel on the fiber). 

 
Fig. 3 Analysis field 

Table I. Temperature values in the nodes 

Coordinates Coordinates Node 
x y 

t [oC] Node 
x y 

t [oC] 

0 1 2 3 4 5 6 7 
1 0.0 0.0 49.063 16 30.0 0.0 78.094 
2 0.0 10.0 65.543 17 30.0 10.0 103.400 
3 0.0 20.0 79.955 18 30.0 20.0 124.892 
4 0.0 30.0 93.393 19 30.0 30.0 143.586 
5 0.0 40.0 107.704 20 30.0 40.0 160.357 
6 10.0 0.0 58.153 21 40.0 0.0 90.677 
7 10.0 10.0 77.100 22 40.0 10.0 119.105 
8 10.0 20.0 94.157 23 40.0 20.0 142.159 
9 10.0 30.0 109.882 24 40.0 30.0 161.681 
10 10.0 40.0 125.446 25 40.0 40.0 178.732 
11 20.0 0.0 67.581 26 50.0 0.0 107.376 
12 20.0 10.0 89.601 27 50.0 10.0 137.498 
13 20.0 20.0 109.025 28 50.0 20.0 161.191 
14 20.0 30.0 126.452 29 50.0 30.0 181.013 
15 20.0 40.0 142.752 30 50.0 40.0 198.159 

 

 
Fig. 4 Temperature distribution in the studied body 
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B. Temperature Distribution in Pipe Insulation 

The temperature distribution in pipe insulation was ana-
lyzed (Fig. 5) using the TAFEM program. The calculus was 
made for a pipe with 800 mm nominal diameter and the hot 
water temperature was 150 °C. The ambient temperature was 
considered 1°C. 

 
Fig. 5 Structure of insulation 

1–pipe wall; 2a, 2b – insulation layers; 
3–protection coat 

To obtain results which describe the real situation as exactly 
as possible the convective heat transfer coefficient on the 
external insulation surface was considered variable with values 
between 10 and 25.6 W/(m2⋅K). 

In Figures 6 and 7 the analyzed field and the temperature 
distribution are presented in the pipe section. It can be obser-
ved that duet to the variable boundary conditions on the insu-
lation surface the isotherm curves are not circular curves 
which are obtained when the classical calculus is used. 

 
Fig. 6. Analysis field 

 
Fig. 7. Temperature distribution in pipe insulation 

C. Temperature Distribution in Metallic Plaque 

In figures 8 and 9 are considered two variants of a metallic 
plaque, with dimensions 40×40×70 mm, for which one deter-
mines the temperature field using BEM and analytical method 
(ANM). In figures 10 and 11 are presented the dimensionless 

analysis domains together with mixed boundary conditions for 
these boundaries. 

 
Fig. 8 Metallic plaque 

 
Fig. 9 Metallic plaque with a semicylindrical cut–out 

 
Fig. 10 Boundary conditions for metallic plaque 

 
Fig. 11 Boundary conditions for metallic plaque  

with semicylindrical cut–out 
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For metallic plaque in figure 2 the boundary can be discre-
tized into N = 16 boundary elements, one states 9 internal 
points (Fig. 12) and one applies the computational model 
based on BEM. The numerical results obtained by means of 
TABEM program are presented in Table II, comparatively 
with the ones obtained with ANM [13]. 

The absolute percentage value of the relative difference 
toward the analytical solution, for both the temperature εt and 
it normal derivative εndt is defined by: 
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Fig. 12 Discretization of the boundary and internal 
points of analysis field 

 

Table II. The values tj and 
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0 1 2 3 4 5 6 
1 0.125 1.000 93.052 0.000 93.750 0.0 
2 0.375 1.000 80.705 0.000 81.250 0.0 
3 0.625 1.000 68.299 0.000 68.750 0.0 
4 0.875 1.000 55.821 0.000 56.250 0.0 
5 1.000 0.875 50.000 –51.704 50.000 –50.0 
6 1.000 0.625 50.000 –48.290 50.000 –50.0 
7 1.000 0.375 50.000 –48.290 50.000 –50.0 
8 1.000 0.125 50.000 –51.704 50.000 –50.0 
9 0.875 0.000 55.821 0.000 56.250 0.0 
10 0.625 0.000 68.299 0.000 68.750 0.0 
11 0.375 0.000 80.705 0.000 81.250 0.0 
12 0.125 0.000 93.052 0.000 93.750 0.0 
13 0.000 0.125 98.776 50.000 100.000 50.0 
14 0.000 0.375 99.308 50.000 100.000 50.0 
15 0.000 0.625 99.308 50.000 100.000 50.0 
16 0.000 0.875 98.776 50.000 100.000 50.0 
17 0.250 0.250 86.836 0.000 87.500 0.0 
18 0.250 0.500 86.876 0.000 87.500 0.0 
19 0.250 0.750 86.836 0.000 87.500 0.0 
20 0.500 0.,250 74.521 0.000 75.000 0.0 
21 0.500 0.500 74.536 0.000 75.000 0.0 
22 0.500 0.750 74.521 0.000 75.000 0.0 
23 0.750 0.250 62.205 0.000 62.500 0.0 
24 0.750 0.500 62.240 0.000 62.500 0.0 
25 0.750 0.750 62.205 0.000 62.500 0.0 

 
Taking into account the results from Table II when ap-

plying equations (61), acceptable values have been obtained 
for εt and εndt (εt < 1.3%, εndt < 3.5%) even if the number of 
boundary elements considered is small. 

For metallic plaque in figure 3 the boundary can be discre-
tized into N = 56 constant boundary elements (Fig. 13) and 
using BEM was determined isothermal curves presented in 
Figure 14. 

VI.  CONCLUSIONS 

In practice there are many situations where it is indispen-
sable to know the temperature distribution in a body (e.g. in 
different mechanic and electronic components). In civil engi-
neering it is important to analyse the temperature distribution 
in thermal bridges, in pipe walls, in insulation materials [10]. 
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Fig. 13 Boundary discretization for the plaque with semicylindrical 

cut–out 

 
Fig. 14 Temperature distribution for the plaque with semicylindrical 

cut–out 

The numerical modelling with finite and boundary elements 
represents an efficient way to obtain temperature distribution 
in steady state conductive heat transfer processes. 

The numerical computation of the temperature field, on the 
basis of the boundary element method, has led to close values 
to the ones determined analytically even if a small number of 
boundary elements and respectively internal points of the ana-
lysis domain was used. 

Using the presented methods, different simulation pro-
grams could be realized what makes it possible to effectuate a 
lot of different numerical experiments of practical problems. 
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