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Numerical modelling of two dimensional heat
transfer in steady state regime

loan Sarbu

values will be calculated on the finite elements. Then, based

Abstract— Solving the differential equation of heat conductioron these partial solutions, the solution for the entire volume
the temperature in each point of the body can be determined. Howéll be determinated. Using this method we can divide into
ver, in the case of bodies with boundary surface of sophisticatefements also fields with unregulated border. In the BEM case

geometry no analytical method can be used. In this case the usg,gfy the boundary is discretized into elements and internal

numerical methods becomes necessary. The finite element metho{B i e )
based on the integral equation of the heat conduction. This is ob aé?nt position can be freely defined.

ned from the differential equation using variational calculus. The !N this paper the temperature distribution is analyzed in the
temperature values will be calculated on the finite elements. Th&®lid bodies, with linear variation of the properties, using the
based on these partial solutions, the solution for the entire volulr&EM and the BEM.

will be determined. Using this method we can divide into elements

also fields with_ any border. Also_, numerical model_ling with _boun- II. ANALYTICAL MODEL OFHEAT CONDUCTION

dary elements is used for analysis of heat conduction. In this paper ) ) ] ] )

are developed basic ideas of numerical analysis with finite elementsThe temperature in a solid body is a function of the time and
and boundary (constant) elements of conductive thermal fields gesgace coordinates. The points corresponding to the same tem-
rated or induced into solid body in steady state regime. The tempep@rature value belong to an isothermal surface. This surface in
ture distribution in some solid bodies and in pipe insulation i§ two dimensional Cartesian system is transformed into an
analyzed using analytical method and finite element and boundagsthermal curve.

element methods, implemented in two computer programs develo- he heat flow rat€) represents the heat quantity through an
ped by the author. This shows the good performance of the Propogetinarmal surfac&in the time unit:

numerical models.
Q=[qds @
S

Keywords— Heat transfer, Steady state regime, Finite elements,
Boundary elements, Variational calculus, Numerical models, Comwhere the density of heat flow rateis given by the Fourier
puter programs. law:

_ .ot _
. INTRODUCTION q= —7»% = -\ gradt )
ODERN computational techniques facilitate solving projn which  is the thermal conductivity of the material.
blems with imposed boundary conditions using diffe- The thermal conductivity of the building materials is the
rent numerical methods [6], [7], [9], [16—19]. Numerical anafunction of the temperature and variation can accordingly be
lysis of heat transfer [12], [13] has been independently thouglpressed as:

not exclusively, developed in three main streams: the finite x=x0[1+ b(t—to)] (3)
differences method [22], [24], the finite element method [1], L . .
[20], [23] and the boundary element method [3], [4], [5]. in which: Aq is the thermal conductivity corresponding to the

The finite differences method (FDM) is based on the diﬁetpmperaturgb— material constantl. . .
If there is heat conduction within an inhomogeneous and

rential equation of the heat conduction, which is transformed . . S o
. anisotropy material, considering the heat conductivity con-

. . . Ytant in time, the temperature variation in space and time is
lated in the nodes of the network. Using this method convc—'drl—ven by the Fourier equation:

gence and stability problem can appear.
The finite element method (FEM) and the boundary ele- pcﬂ:d[x ”"tJ+‘5'[;L ﬁj+d(k dtJJfQo 4)

ment method (BEM) is based on the integral equation of the dt dx{ “dx) dy\ *dy) dz\ *dz

heat conduction. This is obtained from the differential equas \\nich:t is the temperature:

. . . ) — time; p — material density;
tion using variational calculus. In first case the temperature

specific heat of the materialy, A,, A, — thermal conduc-
tivity in the directionsx, y andz Q, — power of the internal
loan Sarbu is currently a Professor and Department Head at the Buildﬁ'qgurces' . . . -
Services Department, “Politehnica” University of Timisoara, 300233 10 solve the differential equations it is necessary to have

ROMANIA, e-mail address: ioan.sarbu@ct.upt.ro supplementary equations. These equations contain the geome-
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trical conditions of the analysis field, the starting conditions (at 1ll. FORMULATION OF NUMERICAL MODEL WITH FINITE

T = 0) and the boundary conditions. The boundary conditions ELEMENTS

(Fig. 1) describe the interaction between the analyzed field andrg se the FEM, the transformation of the equations (4)...
the surroundings. In function of these interactions different) into integral model is necessary. To realize this transfor-
conditions are possible: mation we can use variation calculus.

The temperaturg(x, y, z, T ) which represent a solution for
the differential heat conduction equation (4) and for condi-
tions (5), (6), (7), also represents a solution for the steady state
equation of the/ field:

t=fixy,z,7)

6F =0 (8)
which is equivalent, from mathematical point of view, with the

equations (4)...(7) and wete is the functional of the heat
conduction.

2 2 2
F:J.E /]Xﬁ +/]yﬁ +/]Zﬁ dv +
v 2 oX ay 0z
Fig. 1 Boundary conditions

+I pcﬁ—QO tav - Iqt ds+ jat(lt—te)ds 9)
— theDirichlet (type 1) boundary conditions give us the tem- or s 3 2

perature values on the boundary surf&ef the analyzed
field like a space function constant or variable in time: in which: Qo is positive when the internal sources produce heat
t=f (X V.2 r) (5) and negative when these sources absorb kemt;posi-tive
A when the body receives heat and negative when the body
— the Neumann (type Il) boundary conditions gives us theyields heat to the surrounding fluidy is positive on the
value of the density of heat flow rate through Sdoundary surfaces where the heat transfer happens from the body to the

q a,l,

surface of the analyzed field: fluid and it is negative inversely.
ot ot ot The minimization of the functional is done correspondingly
q=»xr, M ne+Xi, 07—yny +A, Enz (6) to each finite element. The solution for the entire field is obtai-

ned joining the partial solutions.

in which: n,, n,, n, are the cosine directors corresponding to Though the heat conduction is carried out within three—
the normal direction on the, Boundary surface. dimensional bodies, the temperature distribution variation is
— the Cauchy (type I1l) boundary conditions gives us the exsignificant only in certain directions. Thus, the analysis of
ternal temperature value and the convective heat transt@mperature distribution in bars, plain or cylindrical walls is

coefficient value between ti& boundary surface of the body done using a two—dimensional model.
and the surrounding fluid: In the steady state heat transfer processes the temperature

does not depend on the time, thus in the equation (9)
ﬁ +2 ﬁ + ﬁ ot/or =0. In addition, at two—dimensional problems, the tem-
Ix Ny +Ay ay n (1)

Y ‘o0z ° perature does not vary ardirection, thusot /0z=0.
in which: a is yhe convective heat transfer coefficient frGmn A. General Equations of the FEM
to the fluid (or inversely)t. —fluid temperature.
The analytical model described by the equations (4)...(7)

alt-t)=x, n

In our case the equation (9) can be expressed as:

can be completed with the material equations which provide us_ |1 ot ? ot ? ot ?
\ . e . . _jf/]xf I N i Ry ) Rty ) P X e VA
information about variation of the material properties de- 2 X | dy 0z
pending on temperature. In the case of matertials with linear
physical properties, this equations% const.) are not used in _ J.qtdS+ Im Et ~t ks (10)
the model. d 22 €

q a

Solving the differential equation of the heat conduction (4)
we can determine the temperature values in each point of thd aking into account that the temperature function is not
body. However, in the case of bodies with boundary surface @ntinuous on the entire field, the equation (10) can be inte-
Sophisticated geometrY, the equation (4) cannot be SOwﬁEﬁted Only on the finite elements. On the entire field the
using analytical methods. In this case numerical methofigictionalF can be written as a summffunctionalsF®, where
should be applied. The increasing availability of computef8 is the number of finite elements:

has also lead into the direction of more frequent use of these e
methods. F= Z F (11)
e=1
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2 2
4 1 ot°® ot® V7 T T
F= 3y +A dv - [Qytedv - Z—=h [[3] [D][a]da+ [a[N] [N]dL {t}, -
2 V{z[ 15 Y[ayH e Zomil| ] :
. (1. ~h[Q[N]'dA-h[q[N]'dL-h[at[N]"dL  (20)
- [ateds+ [ at St-tjdst (2 A 0 0
Sqe Ste The finite element thicknessis considered constant and
where the &exponent refers to a finite element. equal with 1 m. The equation (20), can be written as in com-
For a given finite element the temperattfrean be calcu- pressed form:
lated based on the temperature values in the nodes: e [k]{t} { } 01
£ = N, + Not, +...+ Nt =[Nt} (13) o, ~rdte TP (21)
where:n is the number of the finite element noded; f form  where:
matrix pf the finite elementt}. — vector of the temperature [k] - hJ.[J]T[D][J]dA+ h J.a[N]T[N]dL (22)
values in the nodes. A °

In the expression (12) appear the partial derivates of the
temperature, therefore the equation (13) should be derived: ~ {p} = hJ‘QO[N]T dA+h Iq[N]T dL+h Ime[N]T d.  (23)
A L,

o] [N, IN, ON, L .

t
x| | dx Ix Ix ! : in which: [K] is the matrix of the heat conduction correspon-
{B} Y e[| 2 Vi J L= [J]{t}e (14)  ding to a finite element, the first term is related to conduction
ot N, 2N, N,

J 7 ) t, and the second term to convection on ltheside of theS,e
ay y y y boundary surfacep} — vector of heat sources containing the
If the thermal conductivities are written in matrix form: ~ internal source®,, the density of heat flow ragon theS,
A 0 boundary surface and convection on $héoundary surface.
[D] = (15) The minimization of thé= functional supposes the equality
0 4 with zero of the first derivate in each point of the studied field.
then equation (12) can accordingly be expressed as: Taking into account of (11) results:
R l m m
Fe = [ 20930, ololithav - [ouNihav - [alnfi,ds+ LA N ) Y (24)
Ve Ve St d{t} d{t} e=1 e=1 d{t}e
a 2 o Introducing equation (21) in (24) we obtain the equation
* I E([N]{t}e) ds Ime[N]{t}edS (16) system corresponding to the entire field:
o S Kt ={P} (25)
Because where:

T T T m m
(oft) 2 ftfelal i . (17) K=Ykl {PF=>{n} (26)
(Nfeke) = (Nt )" (NKeke) = (e INT [NKel. o o N
i in which: [K] is matrix of heat conduction of the entire field;
the equation (16) can be expressed as: {P} — vector of heat sources corresponding to studies {igld;
Fe= .[E{t}l 31" [Dllof.av - [Qu[Nfthav - [a[NKt}.as+ — vector of unknown temperatures.
.2 V. See The equation (25) represents the form with finite element of

e

the differential equation of heat conduction, which contains a

amtigI
+ I E{t}e[N] [NJt}.ds- J'a'te[N]{t}edS (18)  number of equations equal to the number of the nodes with
Sze Sae unknown temperature values.
If we derive the matrix equation (18) the further equation is

B. Matrix of the Heat Conduction

If we use finite elements with triangle form in a certain point

o [T PDlev -+ [T ks{, - e s g e etn 09 e
e Ve

obtained:

sae t

i

—IQO[N]TdV - Iq[N]TdS— .[a'te[N]TdS (19) t€ = Nity + Njt; + Nyt =[N;Nj Ny it =[Nt (27)
Ve Spe ty

BecausedV =hdAand dS=hdL, whereh is the thick- in which:t, t;, t are the temperaturesiinj, k nodes (nodes of

ness of the finite elementAd- aria of the finite element and triangle finite element);N] — form matrix of the finite ele-
dL — length of the finite element side, result: ment [17], [19].

Sge

INTERNATIONAL JOURNAL of ENERGY and ENVIRONMENT



Issue 3, Volume 5, 2011

Fig. 2. Finite element with triangle form

The conduction matrix of a finite element is:
[k] = [i] + [k, ]
where:

[]=h[[aT'[Da]aa [k]=ha [IN][NJL  29)

(28)

ae

438

Using the L — natural coordinates and considering that
convective heat transfer exists on fkeside of the finite ele-
ment, we obtain:

0o 0 o
[.]=ha [0 LL; L jd (36)

To solve the equation (36), the following relation should be
used:

al BI(X, = X,)
(@ +B+1)

Consequently for products with the same indices k is
obtained:

X
jwqm= 37)
X;

210! Loe

J.L-L-dL:J‘LLdL:J.LZ-dL: Lee =
i-i Kk i (2+0+1)
: - - 2+0+1) 3

and for products with different indicgsindk is obtained:

(38)

The [J] matrix, using the relation (14) can be expressed as: Substituting into equation (36) results:

ot | [N Nj - Ny |y
1704 ax  Jdx Ix||.
Bt = = t. p=|JIRt 30
ay dy dy dy |X
If we derive the elements of the form matrix:
N, N N,
x Ox Ox 1 (b by b
J|= =— (31)
ady dJdy Jdy

whereA, is the area of the finite element, and heespective
c can be written as [19]:

B =Y =Y b =YV b=y,
Consequently, thel[ matrix is constant. Because theand

(32)

_ _o1a Le
iLﬂ*dL-!lepL—(I:I:ﬁL% : (39)
L |ooo
[k,]="9=ee g 2 1 (40)

012

If convective heat transfer exists tijeor ki sides of the
finite element are:

210 201
[@khm% 12 0$Q:EE@0 0 0| (1)
000 102

The matrix k] exists only in the case when at least, 0 none
side of the finite element heat transfer is realized by con-
vection.

C. Vector of the Heat Sources

This vector is based on the equation (23) from three terms,
which can be calculated using thenatural coordinates. Sup-
posing thatQ, is constant for a finite element, using the follo-

Ay thermal conductivities do not vary for a finite element, thging relation:

[D] matrix is also constant, thus:

[k]=h[[] [oloea=rb]Dla]a  (33)

Introducing the expression of][matrix from (31) and the

expression offp] matrix from (15) in (33) results:
h Abb +Acc Abb; +Ace;  Abb +A,cc
[k1]=4— Abib +Acic Adb; +Acicp Abib +A4cic

Abb +A.cc Abb; +Acc; Abby +A,c.C
The matrix k] from the equation (28) can be written as:

[k]=ha [|N;N; NN NN (L (39)
Lol NN, NGNS NN

S raas AP
iLHLNA gy 20 42)
we obtain that:
N;
{po}ztho[N]TdA=thj N, tdA=
A A Nk
L 1
:hQOJ. L]. dA:hQ—g'Ab 1 (43)
A Lk

The second term, for a certain density of heat flow rate,

corresponds to the heat transfer on the boundary surface of the
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studied field. Supposing that the body receives the heat flow ) 0 .0
throughLy; = Lge side of the finite element, using the relation 1 ne distance((, X) between the current poink and the

(37) we obtain: source point is calculated with the relation:
N; L hqL 1 o o 2 o 2 %
{p}=naN]"dL=ha [} 0 dl=ha [} 0 dl == 10, (44) r(Z,X)={[x(X)—X(Z)} +[y(X>—y(z>” (48)
Lqe Lqe Nk Lqe Lk 1

The third term, from the equation (23), corresponds to con-BoundaryT is discretized intoN constant boundary ele-
vective heat transfer on thk (Lix = L) side of the finite Ments for which one considers temperattite®spectively the

element. Using the relation (37) we obtain: normal derivative dt/on); constant and equal to the mid point
0 (node) value of the element. Thus the integral equation is
T obtained under the following discretized form:
{pa}:hjme[N] dL:hmeJ. Nj dL = N o o N o o

A\ Ce | N ot + Dt [V, X)dr(X) :Z(ﬂj [ur@.xyrx)y  (49)

- B CoE m\onJ;¢

0 0 or
hat_ L

=hmej L L =——eae ] (45) N N (ot

L 2 | o, +JZ:;AJ | ;Eﬁ,( dnl (50)

It could be observed that the element zero in the vector (4iﬁ)which coefficientsA. andB; have the expressions:
and (45) can occupy any position, corresponding to the side of ! I ’

. . . ~ [0} (o] (o] (o]
finite element with heat transfer. _ N = JVD(Z,X)dI'(X); B; = JUD@ Xy (X) izj (51)
Based on the equation systems obtained for the finite ele= E

ments, they can realize the equation system for the entire stuwhl —ith b )
died field. This system can be solved using analytical or itera- eni =] these become:

tive methods. _1o4. _ I,
. =—+ A JR i — L
In present there are different programms on the software A 2 Aii B 2;1(1 In 2 (52)

market which permit numerical analysis of the temperature Explicitely, equation (50) generates a liniar and compatible

distribution (e.g. WAEBRU) but these programms are tOsttem ofN equations with B unknowns § and t/an)] and

expensive and our department cannot buy them. In this CQfjre jmplementing the boundary conditions, the number of

text to analyze the temperature distribution in a solid body . nowns is reduced tiy. In the case of constant boundary
under steady state heat transfer regime using the numericgl

model presented above the TAFEM software has been degézmnents, coefficiers has the value 1/2. Coefficienty, and
loped by author of this article. The equation system is solv&j from (51) is computed using a Gauss quadrature [8], [19]:

J

using the Gauss method. ~ L& |, o
A, :—ZJZVEW . B :—ZJZUEWk (53)
IV. DEVELOPMENT OFNUMERICAL MODEL WITH BOUNDARY . . . k=1 . k=1
ELEMENTS in whichl; is the length of thgboundary element.

. - - Introducing notationsn, = cosf, X); n, = cosf, y) and
In the case of a plain wall, inside the analysis field, the heat g X 0. ); ny 0. y)

conductivity in steady state regime is modelled by the Laplacging, forC )0( ar, the parametric equations:
equation [4]: , x=Af+B; y=C&+D, £0[-1,1] (54)
0t=0 (46

On T, portion of boundary of the analysis field Dirichlet where: XJ[x;, 1] and Y[y, ¥+, the following relations are

boundary conditions are imposed and leftoner porfign obtained:

Neumann boundary conditions are imposed. n :L; n A (55)
In order to determine the temperature on the boundary of X A AZ+C2 Y N AZ+C?

th lysis field the following int I ti - "

[4? ?6?? ysis Tield one Lses the Toflowing Integral equation [?111 which €, y;) and &1, ¥j+1) are the extremities of the boun-
T o dary element.
c(()t(()+Jt()0()vD(Z,)%)dF()%):Iat(x)um(i,)%)dr()%) 47) The an.aIyS|s fle!d is transformfed into a qhme_nswnlgss one

L L on by replacing the dimensional variables ¥) with dimension-

where:Z is the point in which one writes the integral equatioless onesx; y):

o]
(source point)c(¢) — a coefficient; X — the current integra- x0 = X . yD -y (56)

(o) [0}
tion point; uD((,X):(1/2n){1/r((, X)} - fundamental
in which Xya is the maximum extension of the analysis field
solution; V"' = du”/ dn - normal derivative of this solution. ~ after axis Ox.
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In order to determine the temperature inside of the analysis vy q
field is used the integral representation: '
at()o() o [ [ o [¢] 5 U/ “/ \u’ \ll/ \L!/
) 75 3
W) =[St oaeo-freove.xaareo - D e A A Py T ]
r r
o o 7 15 23 3 39
in which: ¢; 0Q, where Q represent the inside of the ana- e 9. 90 AN 50,1435 1P {c
o ol o
lysis field Q (Q=0Q UT). N . 1B “ 4 “ il 4 el —
After the discretization of boundafyinto N constant boun- %t & 12,1720, |28 % R e q
dary elements one obtains the integral equation under discre 3 " 15 27 LS l
tized form: NE 70 %16 N7 1% 2; .
L R P A AU R (-F:)) 1 o s | | l
t(¢)= L X)dr(X) = 't L, X)dr (X 1
@) ;(an*).f” €3 (0) - 31, [ X () e Al sle N -
i ir i r h ( ) 4 <
(Xy, ey
which can be writhen as such: 20
N, _ (ot N 30
j=1 j =t 50
Coefficients A; andB; are evaluated using a Gauss qua- Fig. 3 Analysis field
drature: Table I. Temperature values in the nodes
N A _
— . — i i
Ai _EZVEW : Bij _EZUEWK (60) Node Coordinates t1°c] | Node Coordinates| t[°c]
k=1 k=1 X y X y
in which: m is the number of Gauss type pointg;— weight 0] 1] 2 3 4 5 6 4
Temperatures from points¢; are easily determined taking ; 8'8 ;8'8 gg'ggg i; 28'8 ;88 1(2)2.48(2)
into account that valuesand @t/an’); are known on the ana- : : ' : -
o e 6 ) )J_ _ 4 0.0 30.0] 93.393 19] 300 30j0 143.%86
|yS|S field bOUndary, and CoeﬁICIenI}S” andEﬁi are Computed 5 0.0 20.0] 107.70%4 20 30.0] 40.0l 160.397
with equation (54). 6 |10.0f 0.0 | 58.153| 21| 40. 0. 90.647
By knowing valueg; andt; of the temperature on the ana- | 7 | 10.0] 100 | 77.100] 22| 40.0 100 119.105
lysis field boundary, the group of coordinate point$ ) for 8 |10.0] 200 | 94.157] 23[ 40.0 20.p 142.159
whicht = const. represents the isothermal curves. 9 [10.0 30.0 | 109.883 24 | 40.0] 30.0 161.641
The numerical model based on BEM has been implemented 10 ;8'8 %060 1625":346 226 40(')0( 4%(2 17(?.73326
in computer program TABEM, realized in Fortran program- E 20'0 1(')0 8;.201 > 20') 1(‘) 5 11377.4;8
ming language, for IBM—PC compatible systems. 13 120.0l 200 | 109028 28 1 5001 20.0f T6Lich
V. A CATIONS 14 [ 20.0] 30.0 | 126.452 29 50.0| 30.0] 181.013
- APPLICATION 15 | 20.0] 40.0 | 142.754 30 | 50.0] 40.0] 198.159

A. Temperature Distribution in Orthotropic Body

The temperature distribution is analyzed in a solid body
500x400 mm sectional dimensions (Fig. 3). The body receives
heat flow on two sides), = 2320 W,g, = 928 W. On the other
two sides the body transmit heat by convectiQr o, = 23.2
W/(m?[K). The material of the body has orthotropic properties
with the following values of the thermal conductivies: =
11.6 W/(mK), A, = 5.8 W/(niK).

The studies field is divided into 40 finite elements with 30
nodes. Running the TAFEM program the values of tempera-
tures in the nodes have been obtained and presented in Table
The temperature distribution in the body is presented in Figure
4.

Wood is the only one orthotropic material which is used in
civil engineering, and this property should be taken into ac-
count at heat loss determination of the buildings (e.g. heat flow
direction perpendicular or parallel on the fiber).

t, [oC]

Fig. 4 Temperature distribution in the studied body

INTERNATIONAL JOURNAL of ENERGY and ENVIRONMENT



Issue 3, Volume 5, 2011 441

B. Temperature Distribution in Pipe Insulation

The temperature distribution in pipe insulation was andPese boundaries.

lyzed (Fig. 5) using the TAFEM program. The calculus was
made for a pipe with 800 mm nominal diameter and the hot
water temperature was 18C. The ambient temperature was
considered IC.

1 2a 2b 3

air

Fig. 5 Structure of insulation
1-pipe wall; 2a, 2b — insulation layers;
3—protection coat

To obtain results which describe the real situation as exactly
as possible the convective heat transfer coefficient on the
external insulation surface was considered variable with values
between 10 and 25.6 W/{).

In Figures 6and 7 the analyzed field and the temperature
distribution are presented in the pipe section. It can be obser-
ved that duet to the variable boundary conditions on the insu-
lation surface the isotherm curves are not circular curves
which are obtained when the classical calculus is used.

I, )
f't“:
s

Fig. 7. Temperature distribution in pipe insulation

C. Temperature Distribution in Metallic Plaque

In figures 8 and 9 are considered two variants of a metallic
plague, with dimensions 4@0x70 mm, for which one deter-
mines the temperature field using BEM and analytical method
(ANM). In figures 10 and 11 are presented the dimensionless

analysis domains together with mixed boundary conditions for

q
o
<
19
40
Fig. 8 Metallic plaque
|
q |
| ,’/"‘\)_
/); e
oy 2
o x| 7V 7
< o e
7 // 10
v o
40

Fig. 9 Metallic plaque with a semicylindrical cut—out

y*
100 1B = C
075 ¥
0.50-%;5000 t=50 °C
025+
A,
In* D
A T T T *
0 02 05 075 100 X

Fig. 10 Boundary conditions for metallic plaque

y*
1012 C
T
08 - In*
s gt?,;so °C  t=50°C
041 L
) n*
024
Al F E |D

0 02 04 06 08 10 X

*

Fig. 11 Boundary conditions for metallic plaque
with semicylindrical cut—out
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For metallic plaque in figure 2 the boundary can be discre- y*
tized intoN = 16 boundary elements, one states 9 internal 1 2 3 4
points (Fig. 12) and one applies the computational model 100 ¥ } i } o
based on BEM. The numerical results obtained by means of 16 19 22 25 5
TABEM program are presented in Table Il, comparatively 075+ o o o +4
with the ones obtained with ANM [13]. 15 6
The absolute percentage value of the relative difference 050 + 1? 201 2;1 1
toward the analytical solution, for both the temperagund P 7
it normal derivative,y is defined by: 025+ o o s 4
=t “teem (g 13112 11 10 918
tanm ~ } } ———
0 025 050 075 100 x
ot _( ot (61) . o .
an an Fig. 12 Dlscretlzgtlon of the b(_)un_dary and internal
Engt = ANM BEM | 100 points of analysis field

(o)
on’ ANM

Table Il. The valueg and [ at* ]
i

on

Point Coordinates BEM ANM

ot ot
. O 0
IR
0 1 2 3 4 5 6
1 0.125 1.000 93.057 0.000 93.750 0.0
2 0.375| 1.000| 80.705 0.000 81.250 0.0
3 0.625 1.000 68.299 0.000 68.750 0.0
4 0.875 1.000 55.821 0.000 56.250 0.0
5 1.000 [ 0.875| 50.000 -51.704 50.000 -50.¢
6 1.000 [ 0.625| 50.000 -48.290 50.000 —50.¢
7 1.000 0.375 50.000 —-48.290 50.0Q0 —50.¢
8 1.000 0.125 50.000 -51.704 50.0Q0 —50.¢
9 0.875| 0.000| 55.82] 0.000 56.250 0.0
10 0.625 0.000 68.299 0.000 68.750 0.0
11 0.375 0.000 80.705 0.000 81.250 0.0
12 0.125| 0.000| 93.057 0.000 93.740 0.0

13 0.000| 0.125[ 98.774 50.000 100.0p0 50.0
14 0.000 [ 0.375] 99.308 50.000 100.0p0 50.0
15 0.000 [ 0.625| 99.308 50.000 100.0p0 50.0
16 0.000| 0.875[ 98.774 50.000 100.0p0 50.0

17 0.250| 0.250( 86.834 0.000 87.5Q0 0.0
18 0.250 [ 0.500] 86.874 0.000 87.5(0 0.0
19 0.250 ([ 0.750| 86.834 0.000 87.5(0 0.0
20 0.500| 0.,250 74.52] 0.000 75.0Q0 0.0
21 0.500| 0.500{ 74.534 0.000 75.0Q0 0.0
22 0.500 | 0.750] 74.521 0.000 75.070 0.0
23 0.750 [ 0.250] 62.205 0.000 62.5(0 0.0
24 0.750 | 0.500{ 62.240 0.000 62.5Q0 0.0
25 0.750 | 0.750{ 62.209 0.000 62.500 0.0

Taking into account the results from Table 1l when ap-
plying equations (61), acceptable values have been obtained VI. CONCLUSIONS
for & andeny (& < 1.3%, & < 3.5%) even if the number of |y practice there are many situations where it is indispen-
boundary elements considered is small. ~ sable to know the temperature distribution in a body (e.g. in
_ For metallic plaque in figure 3 the boundary can be discrgitterent mechanic and electronic components). In civil engi-
tized intoN = 56 constant boundary elements (Fig. 13) angeering it is important to analyse the temperature distribution

;sing EiEM was determined isothermal curves presented j{ihermal bridges, in pipe walls, in insulation materials [10].
igure 14.
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