Comparison study between neural STSM and ANFIS-STSM method in DPC control scheme of DFIG-based dual-rotor wind turbines

Benbouhenni Habib #1, Boudjema Zinelaabidine*2, Belidi Abdelkader*3

#1 Laboratoire d’Automatique et d’Analyse des Systèmes (LAAS), Département de Génie Électrique, Ecole Nationale Polytechnique d’Oran Maurice Audin, Oran, Algeria.
1 habib0264@gmail.com
2 belaiddiaek@gmail.com
* Electrical Engineering Department, Hassiba Benbouali University, Salem district 02000 Chlef, Algeria.
3 boudjemaal1983@yahoo.fr

Abstract—This work presents the comparison study between neural super-twisting sliding mode control (NSTSM) and adaptive-network-based fuzzy inference system-STSM (ANFIS-STSM) algorithm of the doubly fed induction generator (DFIG) controlled by direct power control (DPC). The mathematical model of the three-phase DFIG has been described. The descriptions of the DPC strategy, NSTSM and the ANFIS-STSM algorithm have been presented. The DPC strategy with NSTSM and ANFIS-STSM has been described. The simulation studies of the DPC strategy with intelligent STSM algorithms have been performed, and the results of these studies are presented and discussed.

Keywords— Doubly fed induction generator, Direct power control, Neural super-twisting sliding mode control, Simulation studies, Adaptive-network-based fuzzy inference system.

I. INTRODUCTION

The development of variable structure systems (VSS) allows us to use a super-twisting sliding mode (STSM) algorithm instead of a traditional sliding mode controller (SMC). Major advantages of STSM algorithms are as follows: simple algorithm, insensitivity to parameters variation, fast dynamic response, and robust control compared to classical SMC method and other techniques.

Benbouhenni et al. [1], have proposed a second-order sliding mode controller (SOSMC) based on the fuzzy logic controller to control the doubly-fed induction generator (DFIG). This proposed strategy is a simple control scheme compared to the conventional SOSMC and SMC method. The simulation results have shown the superiority of the proposed method compared to direct vector control (DVC). Benbouhenni et al. [2-6], have designed the neural SOSMC method to minimize the reactive power ripple and harmonic distortion of stator current, the proposed SOSMC method has compared to classical SOSMC and DVC strategy under simulation. The simulation results have shown the superiority of the neural SOSMC method. A fuzzy SOSMC strategy technique was designed to control the DFIG-based wind turbines [7, 8]. This proposed strategy is simple and robust compared to the traditional SOSMC method. In [9], the Fuzzy SOSMC method minimized the reactive and active power ripples compared to the fuzzy SMC strategy. In [10], the fuzzy SMC strategy and space vector pulse width modulation (SVPWM) were combined to reduce the harmonic distortion of stator current and torque ripple of DFIG. In [11], fuzzy SMC was designed based on the neural SVPWM technique to regulate the active and reactive power of DFIG. Benbouhenni et al. [12, 13], have presented a neural SMC method to control the DFIG that is compared with the conventional SMC method in terms of elimination of the power ripple and torque ripple. The simulation results indicate that the neural SMC method showed better performance with reducing the reactive power ripple, active power ripple and torque ripple when it is compared with the traditional SMC technique. The author of the study [14-16], has used a neural SMC strategy based on neural SVPWM and fuzzy PWM technique to control the active and reactive power of DFIG-based wind turbine systems. The simulation results show that the neural SMC strategy is robust when used the fuzzy PWM technique. In [17], the neural SOSMC method reduced the torque ripple, reactive and active power ripples compared to the neural SMC strategy. The author of the study [18], has used an adaptive-network-based fuzzy inference system-SOSMC (ANFIS-SOSMC) to control the DFIG. The simulation results show that the ANFIS-SOSMC method is better than the traditional SOSMC strategy in terms of minimizing the torque ripple, active and reactive power. In [19], the ANFIS-SMC strategy minimized the torque ripple and active power ripple compared to the traditional SMC method. As another intelligent SOSMC method, is proposed to control the DFIG-based wind turbine [20-23]. Listwan [24], has presented the direct field-oriented control (DFOC) based on the STSM algorithm to control the six-phase induction motor using the SVPWM technique. The experimental results indicate that the DFOC with STSM algorithm showed better performance by reducing the torque ripple and flux ripple when it is compared with the DFOC strategy. In [25], the author has used the
STSM controllers based on the SVPWM technique to control the DFIG-based wind turbine systems. In [26], a second-order continuous sliding mode was proposed to control the DFIG. An SMC method was designed to control the dual rotor wind turbine (DRWT) system [27].

Traditional field-oriented control (FOC) using proportional-integral (PI) regulators is the classical method used for DFIG [28-30]. This method is a simple structure and easy to implement [31, 32]. But, this method needs accurate values of DFIG parameters and rotor speed [33, 34]. On the other hand, this control scheme gives more torque ripple, reactive power ripple, active power ripple and harmonic distortion of stator current [35]. In [36], direct vector control (DVC) was proposed based on the five-level fuzzy SVPWM technique, where a hysteresis comparator was proposed based on fuzzy controllers. An indirect vector control (IVC) is designed based on the four-level fuzzy SVPWM technique to regulate the active/reactive power of DFIG [37]. In [38], the DVC method based on the intelligent SVPWM technique has been proposed. In [39], seven-level neural SVPWM is proposed to improve the DVC method. In [40], the IVC method was proposed based on the five-level fuzzy SVPWM technique to control the DFIG. In [41], a robust DVC method were proposed based on the four-level neural SVPWM technique, where the hysteresis comparators was proposed based on neural algorithms. In [42], the IVC method minimized the reactive power ripple, active power ripple and torque ripple compared to DVC method. In [43], the IVC method was proposed based on the three-level neural SVPWM and four-level neural SVPWM technique. In [44], the IVC method was proposed based on the two-level fuzzy PWM technique to control the DFIG. In [45], the IVC strategy was proposed based on the three-level neural SVPWM technique to regulate the reactive power and active power the DFIG. In [46], the DVC method was proposed based on the five-level neural SVPWM and two-level neural SVPWM techniques.

Since, direct power control (DPC) techniques have gained importance in the recent past due to their fast response, simple algorithm, good dynamic response, and superior method characteristic. In the traditional DPC method, reactive and active power can be directly controlled by using hysteresis comparators and switching tables. Nevertheless, a few disadvantages limit the use of these comparators, such as reactive power ripple, torque ripple, active power ripple and switching frequency [47]. In [48], the DPC method was proposed to improve the dynamic response of the DFIG-based wind energy generation systems (WEGS). In [49], the DPC method was proposed based on under distorted grid voltage conditions. A DPC method based on stator flux estimation was designed to control the DFIG-WEGS [50]. In [51], the DPC method was proposed to reduce the harmonic distortion of stator current. In [52], the DPC method based on two-level SVPWM technique has been proposed. In [53], the DPC strategy with intelligent control was presented. A DPC method was designed to control the permanent magnet synchronous generator (PMSG) based variable speed wind energy conversion (WEC) [54, 55]. In [56], the DPC method based on the discrete space vector modulation (SVM) technique has been proposed. In [57, 58], two different DPC strategy of DFIG-WEC was presented. Benbouhenni et al. [59], have proposed a DPC method based on neural PI controllers and neural PWM technique to control the DFIG-based wind turbine. This proposed strategy is a simple algorithm and robust method compared to the traditional DPC method. The simulation results have shown the superiority of the proposed method compared to the classical DPC strategy. In [60], the twelve sectors DPC method was designed based on the neural hysteresis comparators to minimize the torque ripple, active power ripple, reactive power ripple and harmonic distortion of stator current. The proposed DPC method has compared to classical DPC and FOC method under simulation. The simulation results have shown the superiority of the proposed control method. A DPC control scheme was designed based on on neural PI controllers to control the DFIG-based wind turbines [61]. In [62], the DPC method was proposed based on seven-level SVPWM technique. In [63], the five-level DPC method was proposed based on neural algorithm to control the DFIG, where, the switching table is replaced by neural controller. The proposed DPC minimized the harmonic distortion of stator current and reactive power ripple of the DFIG-based wind turbine. A DPC control scheme was designed based on three-level neural SVPWM technique to control the DFIG-based wind turbines [64]. In [65], the twelve sectors DPC method was designed based on neural algorithm, where the switching table and hysteresis comparators was replaced by neural algorithm. This method minimized the torque ripple, reactive power ripple, harmonic distortion of stator current and reactive power ripple compared to classical DPC method. A DPC method was designed based on neural STSM algorithm to control the DFIG-based wind turbines [66]. In [67], DPC control scheme was proposed based on ANFIS-STSM algorithm, where the two PI controllers was proposed based on ANFIS-STSM controllers. This control scheme is simple algorithm and easy to implement. In [68], DPC method was proposed based on discrete SVPWM technique to control the DFIG.

In this work, two different strategies will be compared with each other. These strategies are DPC method using neural STSM algorithm and DPC strategy using ANFIS-STSM algorithm. The original contribution of this work is the application of the intelligent STSM algorithms in the DPC strategy with DFIG-DRWT and simulation investigation of this method.

This work is divided into seven sections. In Section 1, the introduction is presented. In Section 2, the mathematical model of the DFIG is described. The dual-rotor wind turbine has been discussed in Section 3. In Section 4, the description of the intelligent STSM algorithm is presented. Section 5 deals with the description of the DPC strategy with the application of intelligent STSM algorithms. Simulation studies are presented and discussed in Section 6. The work is concluded with a short summary.
II. MATHEMATICAL MODEL OF DFIG

Mathematical model of the DFIG has been presented in detail in [69, 70]. The DFIG dynamic can be represented by the Park’s equations.

Rotor voltage components:

\[
\begin{align*}
V_{dr} &= R_r I_{dr} + \frac{d}{dt}\psi_{dr} - \omega_r \psi_{qr} \\
V_{qr} &= R_r I_{qr} + \frac{d}{dt}\psi_{qr} + \omega_r \psi_{dr}
\end{align*}
\]

Where: \(V_d \) and \(V_q \) are the rotor voltages, \(R_r \) is the rotor resistance.

Rotor flux components:

\[
\begin{align*}
\psi_{dr} &= L_d I_{dr} + M I_{qr} \\
\psi_{qr} &= L_q I_{qr} + M I_{dr}
\end{align*}
\]

Where: \(\psi_d \) and \(\psi_q \) are the rotor fluxes, \(L_d \) is the inductance of the rotor, \(M \) is the mutual inductance, \(I_d \) and \(I_q \) are the rotor currents.

Stator voltage components:

\[
\begin{align*}
V_{ds} &= R_s I_{ds} + \frac{d}{dt}\psi_{ds} - \omega_s \psi_{qs} \\
V_{qs} &= R_s I_{qs} + \frac{d}{dt}\psi_{qs} + \omega_s \psi_{ds}
\end{align*}
\]

Where: \(V_d \) and \(V_q \) are the stator Voltages, \(R_s \) is the stator resistance, \(\omega_s \) is the electrical pulsation of the stator.

Stator flux components:

\[
\begin{align*}
\psi_{ds} &= L_d I_{ds} + M I_{qs} \\
\psi_{qs} &= L_q I_{qs} + M I_{ds}
\end{align*}
\]

Where: \(\psi_d \) and \(\psi_q \) are the stator fluxes, \(L_d \) is the inductance of the stator.

The torque can be written as follows:

\[
T_e = \frac{3}{2} p \frac{M}{L_s} (I_{ds}\psi_{qs} - I_{qs}\psi_{ds})
\]

Where: \(p \) is the number of pole pairs. \(T_e \) is the electromagnetic torque.

The stator side active and reactive powers are defined as:

\[
\begin{align*}
P_s &= \frac{3}{2}(V_{ds}I_{ds} + V_{qs}I_{qs}) \\
Q_s &= \frac{3}{2}(V_{qs}I_{ds} - V_{ds}I_{qs})
\end{align*}
\]

Where: \(P_s \) is the stator active power, \(Q_s \) is the stator reactive power.

The electrical model of the DFIG is completed by the following mechanical equation:

\[
T_e - T_r = J \frac{d\Omega}{dt} + f \cdot \Omega
\]

Where: \(\Omega \) is the mechanical rotor speed. \(J \) is the inertia. \(f \) is the viscous friction coefficient. \(T_r \) is the load torque.

III. DUAL ROTOR WIND TURBINE

In the analyzed wind turbine, it is assumed that dual rotor wind turbine is consists by two rotors wind turbine. The DRWT has been proposed as a novel wind for improvement of power efficiency, as shown in Figure 1. The ideal maximum power coefficient \(C_p \) of the DRWT is 64% compared to a single rotor is about 59% [71]. On the other hand, the total aerodynamic torque of DRWT is the Auxiliary turbine add to the Main turbine torque as shown by the following equation:

\[
T_{DRWT} = T_T = T_M + T_A
\]

Where: \(T_M \) : Main turbine torque. \(T_A \) : Auxiliary turbine torque. \(T_T \) : Total torque.

The aerodynamic torque of the Auxiliary turbine is given:

\[
T_A = \frac{1}{2} \lambda_A^2 \lambda A \rho \pi R_A^2 C_p \omega_A^2
\]

The aerodynamic torque of the Main turbine is given:

\[
T_M = \frac{1}{2} \lambda_M^2 \lambda M \rho \pi R_M^2 C_p \omega_M^2
\]

With \(\lambda_A, \lambda_M \) : the tip speed ration of the main and auxiliary turbines, \(\rho \) : the air density and \(\omega_M, \omega_A \) the mechanical speed of the main and auxiliary rotors.

The \(C_p \) of a DRWT is given:

\[
C_p (\lambda, \beta) = \frac{1}{\lambda + 0.08 \beta} - \frac{0.035}{\beta^2 + 1}
\]

With \(\beta \) is pitch angle

The tip speed ratios for the main and auxiliary turbines are calculated through (12) and (13), respectively.

\[
\lambda_A = \frac{w_A \cdot R_A}{V_1}
\]

\[
\lambda_M = \frac{w_M \cdot R_M}{V_M}
\]

Where \(V_1 \) is the wind speed on an AWT and \(V_M \) is the speed of the unified wind on main turbine. On the other hand, the essential element for calculating the tip speed ratio is wind speed on the main and auxiliary turbines. Obtaining the wind speed on the auxiliary turbine is straight forward. However, calculation of wind speed on the main turbine requires further investigation. Based on the (14), it is possible to estimate the amount of the wind speed at any point between the auxiliary and main blades.

\[
V_i = V_1 (1 - \sqrt{(1 - C_R)(1 + \frac{2x}{\sqrt{1 + 4x^2}})})
\]

With \(x \) : the non-dimensional distance from the auxiliary rotor disk, \(V_x \) the velocity of the disturbed wind between rotors at
IV. DESCRIPTION OF THE INTELLIGENT STSM ALGORITHMS

The STSM algorithm maintains the advantages of the traditional SMC techniques and allows for the elimination of the undesirable phenomena of chattering. This method was proposed by Utkin et al., in 1999 [66]. The output signal from controller of this type is comparable with the control signal obtained from linear PI regulators. The control law of the STSM algorithm can be defined as follows:

\[
\begin{align*}
 u &= K_1 |S|^r \text{sgn}(S) + u_1 \\
 \frac{du_1}{dt} &= K_2 \text{sgn}(S)
\end{align*}
\]

(15)

where \(K_1\) and \(K_2\) are the coefficients of the proportional and integral parts of the STSM algorithm; \(S\) is the switching function determined for the STSM algorithm, respectively; \(r\) is the exponent defined for the STSM algorithm.

The graphical representation of the control law of the STSM algorithm is shown in Figure 2.

The disadvantage of STSM algorithms of the DFIG-DRWT is that the electromagnetic torque ripple, active power ripple, harmonic distortion of stator current and reactive power ripple. In this work, two different intelligent STSM algorithms was proposed to improve the DPC method of the DFIG-DRWT.

One way to improve STSM algorithm performance is to combine it with neural and fuzzy logic controller to form a neural STSM and fuzzy STSM algorithm. The design of a STSM algorithm incorporating intelligent control helps in achieving minimized torque ripple, harmonic distortion of stator current, simple algorithm and robust control.
Neural algorithm is a method based on observations and engineering experience. In neural method, an exact mathematical model is not necessary. This technique is simple and robust. The feedforward neural network (FNN) algorithm was the first type of neural network algorithm. This algorithm is similar to the conventional neural network (CNN) algorithm, where the neurons have learnable weights and biases. Many studies [72-77] are oriented toward this type of algorithm to reduce the flux and torque ripples. Figure 3 shows the schematic block of a neural STSM algorithm. The principal of the neural STSM algorithm is similar to traditional STSM algorithm. However, the Sign(U) of traditional STSM algorithm is replaced by neural controller. This method based on neural classification has the advantage of simplicity and easy to implement.

To make the FNN algorithm, we used the Levenberg-Marquardt backpropagation (LMB) algorithm. This algorithm is simple and easy to use. In Matlab/Simulink, trainlm is the word we use to accomplish this algorithm. The structure of the ANN controller is illustrated in the Figure 4. The block diagram of layer 1 and layer 2 is shown in Figure 5 and Figure 6 respectively. The parameters of the FNN algorithm for the STSM algorithm are shown in Table 1.

The STSM algorithm with the application of ANFIS controller is shown in Figure 7. In this method control, the Sign(U) control is replaced by ANFIS controller. However, this technique is a simple algorithm, robust control and reduced power ripple, torque ripple compared to traditional STSM algorithm.
The block diagram of ANFIS controller is shown in Figure 8. ANFIS architecture was first proposed by Jang [78] in 1993. This strategy is a widely applied artificial intelligent that combines the advantages of both ANN controller and fuzzy logic (FL) it is generally used for nonlinear and complex systems in various fields [79, 80]. The ANFIS rules for the proposed system are given in Table 2 [81-83]. The membership function definition is shown in Figure 9. We use the next designations for membership functions:

- NB: Negative Big.
- NM: Negative Middle.
- NS: Negative Small.
- PS: Positive Small.
- PB: Positive Big.
- EZ: Equal Zero.
- PM: Positive Middle.

Figure 7. ANFIS-STSM algorithm.

Figure 8. ANFIS controller.

Figure 9. Membership functions.

TABLE 2

<table>
<thead>
<tr>
<th>e</th>
<th>NB</th>
<th>NM</th>
<th>NS</th>
<th>EZ</th>
<th>PS</th>
<th>PM</th>
<th>PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>∆e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>EZ</td>
</tr>
<tr>
<td>NM</td>
<td>NB</td>
<td>NB</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>EZ</td>
<td>PS</td>
</tr>
<tr>
<td>NS</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>EZ</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
</tr>
<tr>
<td>EZ</td>
<td>NB</td>
<td>NM</td>
<td>NS</td>
<td>EZ</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
</tr>
<tr>
<td>PS</td>
<td>NM</td>
<td>NS</td>
<td>EZ</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
</tr>
<tr>
<td>PM</td>
<td>NS</td>
<td>EZ</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
</tr>
<tr>
<td>PB</td>
<td>EB</td>
<td>PS</td>
<td>PM</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
<td>PB</td>
</tr>
</tbody>
</table>

V. INTELLIGENT STSM DPC STRATEGY

The DPC strategy of the DFIG with the application of intelligent STSM algorithms is shown in Figure 10. In this method, the reactive and active powers are controlled by the intelligent STSM algorithms. On the other hand, the DPC goal is to minimizes the active and reactive powers ripples of the DFIG-DRWT compared to FOC method. This method is based on the same strategy principles as in the direct torque control (DTC). In DTC method, it’s the rotor flux and the electromagnetic torque which are directly controlled, while in DPC strategy, it’s the reactive and active stator powers, which are directly controlled [64]. The main advantages of the DPC strategy are its simple control scheme, easy to implement, superior method Characteristic, good dynamic response and robust method compared to vector control scheme. But, this method gives more harmonic distortion of...
stator current, active power ripple, torque ripple and reactive power ripple of the DFIG-DRWT. To obtain high performance DPC method, a simple algorithm and intelligent STSM algorithm is designed to minimizes the reactive and active power ripples.

In this work, a DPC method of the DFIG-based DRWT is presented. The DPC is proposed based on intelligent STSM algorithm to regulate the reactive power, harmonic distortion of stator current, torque and active power. Two intelligent STSM algorithms are selected to describe the switching surfaces for reactive and active power command. The intelligent STSM algorithm is designed to avoid the reaching phase stability problem. The proposed method preserves the advantages of the traditional DPC method such as simplicity, less parameters dependence and fast response. The stability of the STSM algorithm is proven using Lyapunov stability theorem.

Active and stator reactive powers is estimated using (16) and (17) [63, 68].

\[
P_s = \frac{3}{2} \frac{L_m}{\sigma L_s L_r} (V_r \varphi_{r\beta})
\]

\[
Q_s = \frac{3}{2} \frac{V_r}{\sigma L_s} \varphi_{r\beta} - \frac{V_r L_m}{\sigma L_s L_r} \varphi_{ra}
\]

Where: \(\varphi_{s\beta} \) is the stator flux linkage of \(\beta \)-axis. \(\varphi_{s\alpha} \) is the rotor flux linkage of \(\alpha \)-axis.

\[
\psi_{s\alpha} = \sigma L_r I_{ra} + \frac{M}{L_s} \psi_s
\]

Where : \(\psi_s \) : is the stator flux linkage of \(\alpha \)-axis. \(\psi_s \) is the stator flux. \(I_{ra} \) : is the rotor current linkage of \(\alpha \)-axis. \(\psi_{s\beta} = \sigma L_r I_{r\beta} \)

Where : \(\Psi_{s\alpha} \) : is the stator flux linkage of \(\alpha \)-axis. \(\Psi_{r\alpha} \) : is the rotor current linkage of \(\alpha \)-axis.

\[
\left| \Psi_\alpha \right| = \left| \frac{V_s}{w_s} \right|
\]

Where : \(V_s \) is the stator voltage.

\[
\sigma = 1 - \frac{M^2}{L_s L_r}
\]

Reactive and active powers can be reformulated by inducing angle \(\lambda \) between the rotor and stator vectors as follows :

\[
P_r = -\frac{3}{2} \frac{L_m}{\sigma L_s L_r} \varphi_r \| \psi_r \| \sin(\lambda)
\]

\[
Q_r = -\frac{3}{2} \frac{V_r}{\sigma L_s} \| \psi_r \| \cos(\lambda) - \| \psi_r \|
\]

The derivation of the active and reactive powers can given by:

\[
\frac{dP_r}{dt} = -\frac{3}{2} \frac{L_m}{\sigma L_s L_r} \varphi_r \| \psi_r \| \sin(\lambda)
\]

\[
\frac{dQ_r}{dt} = -\frac{3}{2} \frac{M w_r}{\sigma L_s L_r} \| \psi_r \| \cos(\lambda)
\]

On the other hand, the magnitude of stator flux, which can be estimated by:

\[
\Psi_{s\alpha} = \int (V_{s\alpha} - R_s I_{s\alpha}) dt = 0
\]

\[
\Psi_{s\beta} = \int (V_{s\beta} - R_s I_{s\beta}) dt = 0
\]

Figure 10. Block diagram DPC with intelligent STSM of DFIG-based DRWT.

Where : \(V_{s\alpha} \) is the stator voltage linkage of \(\alpha \)-axis.
V_{s\beta} \text{ is the stator voltage linkage of } \beta\text{-axis.}

The stator flux amplitude is given by:

\[\Phi_s = \sqrt{\Psi_s^2 + \Psi_s^2} \]

(27)

The stator flux angle is calculated by:

\[\theta_s = \text{arctg} \left(\frac{\Psi_s}{\Psi_s} \right) \]

(28)

In the outer control loop of the DFIG power, the reference value of the reactive power is compared with the measured DFIG reactive power. The switching function for DFIG reactive power regulator can be specified as follows:

\[S_{Q_s} = Q_{s\text{ref}} - Q_s \]

(29)

This controller determines the reference component of the reactive power vector (RPV), which is responsible for the command of the magnitude of the RPV. The output signal from the regulator of the magnitude of the RPV is determined by the following system of equations [67]:

\[
\begin{align*}
V_{dr}^* &= K_3 \left(0.5 sgn(S_{Q_s}) + V_{dr1}^* \right) \\
\frac{dV_{dr}^*}{dt} &= K_4 sgn(S_{Q_s})
\end{align*}
\]

(30)

In STSM algorithm, the switching function for active power vector (APV) regulator can be specified as follows:

\[S_{P_s} = P_{s\text{ref}} - P_s \]

(31)

The output signal from the regulator of the magnitude of the APV is determined by the following system of equations [66, 67]:

\[
\begin{align*}
V_{qr}^* &= K_1 \left(0.5 sgn(S_{P_s}) + V_{qr1}^* \right) \\
\frac{dV_{qr}^*}{dt} &= K_2 sgn(S_{P_s})
\end{align*}
\]

(32)

Table 3 shows the constants values of the active/reactive power STSM algorithm gains (K1, K2, K3 and K4).

<table>
<thead>
<tr>
<th>Reactive power</th>
<th>Active power</th>
</tr>
</thead>
<tbody>
<tr>
<td>K3</td>
<td>K4</td>
</tr>
<tr>
<td>200</td>
<td>1000</td>
</tr>
</tbody>
</table>

VI. RESULTS AND ANALYSIS

The simulation results of DPC with ANFIS-STSM algorithms (DPC-ANFIS-STSM) of the DFIG are compared with DPC control with neural STSM algorithms (DPC-NSTSM). For this end, the control system was tested under different tests.

The DFIG used in our study has the following parameters: nominal active power of the stator : \(P_n = 1.5 \text{ MW} \), stator voltage : 380/696V, two poles, stator voltage frequency : 50Hz; \(R_s = 0.012 \ \Omega \), \(R_r = 0.021 \ \Omega \), \(L_s = 0.0137 \text{H} \), \(L_r = 0.0136 \text{H} \), \(L_m = 0.0135 \text{H} \), \(J = 1000 \text{ kg.m}^2 \) and \(f_r = 0.0024 \text{ Nm/s} \).

A. Reference tracking test (RTT)

Figures 11-12 show the harmonic distortion of stator current of DFIG-based DRWTS obtained using FFT (Fast Fourier Transform) strategy for DPC-ANFIS-STSM method and DPC-NSTSM method respectively. It can be clearly observed that the THD is minimized for DPC-ANFIS-STSM method (THD = 0.23%) when compared to DPC-NSTSM (THD = 0.42%). Table 4 shows the comparative analysis of the harmonic distortion of stator current.

The simulation waveforms of the reference and measured active power of the DFIG-based DRWTS are shown in Figure 13 in order to compare the performance of the DPC-ANFIS-STSM method with the performance of the DPC-NSTSM method. The active power tracks almost perfectly their reference value \((P_{s\text{ref}}) \). On the other hand, the amplitudes of the oscillations of the active power are smaller and occur in a shorter time period in comparison with the oscillations obtained for the DPC-NSTSM method (see Figure 17).

For the DPC-ANFIS-STSM and DPC-NSTSM method, the reactive power track almost perfectly their reference value (see Figure 14). Moreover, the DPC-ANFIS-STSM method minimized the reactive power ripple compared to the DPC-NSTSM method (see Figure 18).

The trajectory of the measured magnitude of the stator current is shown in Figure 16. It can be stated that the amplitudes of the stator currents depend on the state of the drive system and the value of the load active/reactive power of the DFIG-based WTS. In addition, the DPC-ANFIS-STSM method reduced the stator current ripple compared to the DPC-NSTSM method (see Figure 20). On the other hand, the DPC-ANFIS-STSM method reduced the response time of active power, reactive power and torque compared to DPC-NSTSM method (see Table 5).

<table>
<thead>
<tr>
<th>THD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPC-NSTSM</td>
</tr>
<tr>
<td>Stator current</td>
</tr>
</tbody>
</table>

TABLE 5

<table>
<thead>
<tr>
<th>Response time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>DPC-NSTSM</td>
</tr>
<tr>
<td>DPC-ANFIS-STSM</td>
</tr>
</tbody>
</table>
Figure 11. Spectrum harmonic of stator current (DPC-NSTSM).

Figure 12. Spectrum harmonic of stator current (DPC-ANFIS-STSM).

Figure 13. Active power (RTT).

Figure 14. Reactive power (RTT).

Figure 15. Torque (RTT).

Figure 16. Stator current (RTT).

Figure 17. Zoom in the active power (RTT).
In this part, the nominal values of R_s and R_r are multiplied by 2 and L_s and L_r are multiplied by 0.5. Simulation results are presented in Figures 21-26. As it’s shown by these figures, these variations present an apparent effect on reactive power, torque, active power and stator currents curves such as the effect appears more significant for the DPC-NSTSM method compared to DPC-ANFIS-STSM (See Figures 27-30).

The harmonic distortion of stator current in the DPC-ANFIS-STSM method has been minimized significantly (See Figures 21-22). Table 6 shows the comparative analysis of harmonic distortion of stator current. Thus it can be concluded that the proposed DPC-ANFIS-STSM method is more robust than the DPC-NSTSM method.

TABLE 6

<table>
<thead>
<tr>
<th></th>
<th>DPC-NSTSM</th>
<th>DPC-ANFIS-STSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stator current</td>
<td>0.54</td>
<td>0.29</td>
</tr>
</tbody>
</table>

B. Robustness test (RT)

The selected signal: 65 cycles. FFT window (in red): 5 cycles zoom in the reactive power (RTT).

Figure 18. Zoom in the reactive power (RTT).

The selected signal: 65 cycles. FFT window (in red): 5 cycles zoom in the torque (RTT).

Figure 19. Zoom in the torque (RTT).

The selected signal: 65 cycles. FFT window (in red): 5 cycles zoom in the stator current (RTT).

Figure 20. Zoom in the stator current (RTT).

The harmonic distortion of stator current in the DPC-ANFIS-STSM method has been minimized significantly (See Figures 21-22). Table 6 shows the comparative analysis of harmonic distortion of stator current. Thus it can be concluded that the proposed DPC-ANFIS-STSM method is more robust than the DPC-NSTSM method.
VII. CONCLUSIONS

This work presents the simulation results of the DPC method of a DFIG-DRWT, using the two-level SVPWM technique compared with the ANFIS-STSM and neural STSM algorithms. Numerical simulations by Matlab/Simulink have been developed to test the performances provided by the techniques used. With results obtained from the simulation, it is clear that for the same operation condition, the DPC method with ANFIS-STSM algorithm had good and good performance than the DPC method with neural STSM algorithm and that is clear in the reactive and active power ripples which the use of the ANFIS-STSM algorithm, it is minimized of ripples more than the neural STSM algorithm.

REFERENCES

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en_US