
 

 

  
Abstract—Multi-expert constructing Fuzzy cognitive map is a 

typical multi-expert knowledge combination problem. In this paper, 
we investigate the use of Dempster-Shafer evidence theory as a tool 
for multi-expert knowledge combination. In proposed method, we use 
each expert opinion as a evidence, the possible value of weight as 
frame of discernment, the expert’s evaluation to a weight on frame of 
discernment as basic probability assignment, and Dempster-Shafe rule 
as combined basis of basic probability assignment m. Finally, the 
weight is given according to combined basic probability assignment. 
The strategy can gradually reduce the hypothesis sets and approach the 
truth with the accumulation of evidences, which make the result of 
decision more all –around and more scientific. The experimental result 
is shown that the method can keep exactitude information, reduce 
conflict factor and improve knowledge quality. 
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I. INTRODUCTION 
uzzy cognitive map (FCM) is an approach to knowledge 
representation and inference that are essential to any 

intelligent system. FCM allows experts to represent factual and 
evaluative concepts in an interactive framework, and can 
quickly draw FCM pictures or respond to questionnaires. 
Experts can consent or dissent to the local causal structure and 
perhaps the global equilibrium. Yet an FCM equally encodes 
the experts’ knowledge or ignorance, wisdom or prejudice. 
Worse, different experts differ in how they assign causal 
strengths to edges and in which concepts they deem causally 
relevant. The FCM seems merely to encode its designers’ 
biases and may not even encode them accurately. FCM 
combination provides a partial solution to this problem. 

Multi-expert constructing FCM is a typical multi-expert 
knowledge combination problem. Generally, the constructing 
FCM process is that each expert builds individual FCM, and 
then combines them by weight average. However, the method 
cannot effectively keep exactitude information, reduce conflict 
factor and improve knowledge quality. There is an urgent need 
to develop methods for multi-expert knowledge combination. 
Dempster–Shafer evidence theory provides solving method for 
the problem. In this paper, we investigate the use of 
Dempster-Shafer evidence theory as a tool for multi-expert 
knowledge combination 

The paper is organized as follows. Section 2 presents the 
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formalization representation of FCM. Section 3 presents the 
basic concepts of evidence theory. Section 4 presents how to 
use evidence theory for Multi-expert opinions combination. 
Section 5 presents the complexity analysis of combination 
calculating. Section 6 applies the proposed methodology to 
multi-expert opinions combination. Section 7 is the conclusion 
and suggestions for future works. 

II. FUZZY COGNITIVE MAP 
FCM[1][2] is an approach to knowledge representation and 

inference that are essential to any intelligent system. It 
emphasizes the connections as basic units for storing 
knowledge and the structure represents the significance of 
system. FCM can be easily built and represent knowledge 
directly, And form mapped relations with the knowledge 
structures in the brains of the experts of this area, FCM have 
been used for representing knowledge and artificial inference 
and have found many applications, for instance, geographic 
information systems [3], [4], fault detection [5],, policy 
analysis [6], etc. 

A FCM consists of nodes-concepts, each node-concept 
represents one of the key-factors of the system, and it is 
characterized by a value C∈ (0,1), and a causal relationship 
between two concepts is represented as an edge wij. wij 
indicates whether the relation between the two concepts is 
direct or inverse. The direction of causality indicates whether 
the concept Ci causes the concept Cj. There are three types of 
weights: 

wij>0 indicates direct causality between concepts Ci and Cj. 
That is, the increase (decrease) in the value of Ci leads to the 
increase (decrease) on the value of Cj. 

wij<0 indicates inverse (negative) causality between 
concepts Ci and Cj. That is, the increase (decrease) in the value 
of Ci leads to the decrease (increase) on the value of Cj. 

wij=0 indicates no relationship between Ci and Cj. 
A FCM is a 4-tuple (V, E, C, f) where --V={v1, v2, … , vn} is 

the set of n concepts forming the nodes of a graph. 
--E:(vi, vj) → wij is a function wij∈E, vi, vj ∈V, with wij 

denoting a weight of directed edge from vi to vj. Thus E 
(V×V)=(wij) is a connection matrix. 

--C: vi
→ Ci is a function that at each concept vi associates 

the sequence of its activation degrees, such as Ci(t) given its 
activation degree at the moment t. C(0) indicates the initial 
vector and specifies initial values of all concept nodes and C(t) 
is a state vector at iteration t. 
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--f is a transformation function, which includes recurring 
relationship between C(t+1) and C(t). 
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Eq. (7) describes a functional model of FCM. An FCM 
represents a dynamic system that evolves over time, it describes 
that the value of each concept is calculated by the computation 
of the influence of other concepts to the specific concept. 

III. DEMPSTER-SHAFER EVIDENCE THEORIES 
Dempster-Shafer evidence theory provides a powerfully 

intelligent tool for multi-expert Opinions combination. It is 
introduced by Dempster[7] and extended later by Shafer[8]. 
Dempster-Shafer theory is concerned with the question of 
belief in a proposition and systems of propositions. Evidence 
can be considered in a similar way when forming propositions, 
and it is concerned with evidence, weights of evidence and 
belief in evidence. The theory does not make any assumption 
concerning the way human imagination works. Simply, it 
describes decision-makers receiving information from different 
sources and evaluating to what extent the evidence that they 
provide is compatible or contradictory.  

Dempster-Shafer evidence theory includes probability 
theory as a special case that obtains –among else–under the 
hypothesis that decision-makers are able to consider any 
combination of a given set of even and that no other event can 
be conceived. Namely a decision-maker who is envisaging two 
possibilities X and Y in a possibility set, according to 
probability theory, the complementary of X is the whole dashed 
area of   possibility set. In fact, probability theory assumes that 
this decision-maker is able to conceive all possibilities in 
possibility set-to be honest, the very idea of envisaging only X 
and Y would not make much sense within probability theory. 

A. Frame of Discernment  
In Dempster-Shafer theory, possibility sets are mental 

representations of empirical evidence in an individual’s mind. 
Shafer preferred to use another term [1]: it should not be 
thought that the “possibilities” that comprise [a set] Ω will be 
determined and meaningful independently of our knowledge. 
Quite to the contrary: Ω  will acquire its meaning from what we 
know or think we know, distinctions that it embodies will be 
embedded within the matrix of our language and its associated 
conceptual structures and will depend on those structures for 
whatever accuracy and meaningfulness they possess. In order 
to emphasize this epistemic nature of the set of possibilities, we 
will call it the frame of discernment. In the standard probability 
framework, all elements in Ω  are assigned a probability. And 
when the degree of support for an event is known, the 

remainder of the support is automatically assigned to the 
negation of the event. 

B. Mass Functions, Focal Elements And Kernel Elements: 
When the frame of discernment is determined, the mass 

function m is defined as a mapping of the power set m: 2Ω →

［0, 1］ 

1、 0)m( =φ                                        (3)  

2、 ∑
Ω⊂

=
A

Am 1)(                                   (4) 

The mass function m is also called a basic probability 
assignment function. m (A) expresses the proportion of all 
relevant and available evidence that supports the claim that a 
particular element of H belongs to the set A but to no particular 
subset of A. In engine diagnostics, m (A) can be considered as a 
degree of belief held by an   observer regarding a certain fault; 
different evidence can produce different degrees of belief with 
respect to a given fault. Any subset A of Ω  such that m (A) > 0 

is called a focal element; the union of all focal element C =∪ m 

(A) ≠ 0, A is called a kernel element of mass function m in the 
frame of discernment. 

C. Belief and Plausibility Functions  
The belief function Bel is defined as: 

Bel：2Ω→ ［0,1］ Ω⊂∀A  

∑ ∑∑
⊂ Φ≠∩Ω⊆

=−==
AB ABB

BmBmBm )()()()ABel(-1PI(A)    (5) 

The belief function Bel(A) measures the total amount of 
probability that must be distributed among the elements of A; it 
reflects inevitability and signifies the total degree of belief of A 
and constitutes a lower limit function on the probability of A. 

The plausibility function Pls and double function Dou are 
defined as: Pl: 2Ω→ ［0,1］ 

A)Bel(Dou(A)

)ABel(-1PI(A)

=

=
                             (6) 

The plausibility function Pl(A) measures the maximal 
amount of probability that can be distributed among the 
elements in A; it describes the total belief degree related to A 
and constitutes an upper limit function on the probability of A. 
it describes the total belief degree related to A and constitutes 
an upper limit function on the probability of A. 

D. Evidence Combination 
Let Bel1 and Bel2 be two belief functions in the same frame 

of discernment, then the corresponding basic belief assignment 
are m1 and m2 based on information obtained from two 
different information sources in the same frame of discernment 
Ω , focus elements are X1, X2,…,Xk, and Y1,Y2,…,Yk, if Xi∩
Yj=A, X Ω⊂ , then m1 (Xi)m2 (Yj) is the probability 
assignment to A, The total belief of A 
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Where )()(k 21 YmXm
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, K represents a basic 

probability mass associated with conflicts among the sources of 
evidence. It is determined by summing the products of mass 
functions of all sets where the intersection is null. K is often 
interpreted as a measure of conflict between the sources. The 
larger the value of K is, the more conflicting are the sources, 
and the less informative is their combination.  

The produced function m =m1 ⊕  m2 is also a mass function 
in the same frame of discernment Ω , it represents the 
combination of m1 and m2 and carries the joint information 
from the two sources.  

In the case of n mass functions m1, m2. . . ,mn in Ω , according 
to rule of evidence combination:                                                              
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IV. MULTI-EXPERT OPINIONS COMBINATION  
According to the formulized definition of FCM, experts’ 

opinions are reflected on the estimate of the degree of the cause 
that is between nodes in the referred concept set, namely weight 
estimate. In the construction of FCM, multi-experts’ opinions 
combination is represented as the combination of the 
corresponding elements in the connection matrix provided by 
experts. Then each expert’s estimate of some cause relation can 
be regarded as evidence. The possible values of the affection 
degree of the cause relation between concepts form a frame of 
discernment. The combined probability assignment function is 
regarded as the evidence of last weight integration. 

A FCM equals the code of experts’ knowledge; In general, 
because of experts’ different preferences and knowledge 
structures, the understandings about the problem may be 
different. Such as, different experts differ in how they assign 
causal strengths to edges and in which concepts they deem 
causally relevant. There is a requirement to build a selection 
rule of concept set and to enact a standard of cause effect 
degree before FCM combination. 

Definition 1: Connection Matrix Standardization 

Suppose there are n experts, the FCM of each expert’s is 
established according to their own experiences and knowledge. 
The connection matrices of n experts’ are F1，F2，…，Fn. The 
union (m) of all experts’ concepts is regarded as a set of 
concept. The connection matrices of experts’ are expanded to m
×m, and we fill the row or column absent of concept nodes with 
0. The process is called the standardization of connection 
matrix. 

The general process of combining multi-experts’ FCM with 
evidence theory is as follows:                                                                        
1) A frame of discernment is firstly defined; it translates the 

research of proposition into the research of a set. 
2) Basic probability assignments are established according to 

evidence. 
3) Basic probability assignment functions are combined 

according to the combination rule of evidence theory, and 
then the target type is determined by the rule of belief 
evaluation. 

4) Applying weighted average on all elements of the frame 
according to the integrative basic probability assignment 
function 

A. Building of Discernment Frame 
The selection of frame of discernment depends upon our 

knowledge, cognition and what we know and want. In 
application of FCM, expert estimates the weight using 
linguistic weight. Their values are usually nothing, very weak, 
weak, medium, strong, and very strong. 

Example 1: 
(none, very weak, weak, strong, very strong, extremely 

strong) → {0, 0.2, 0.4, 0.6, 0.8, 1} 
Example 2: 
(none, weak, strong, extremely strong) → {0, 0.4, 0.6, 1} 
The possible values of weight form a frame of discernment, 

which is defined by the demand of accuracy. 
 We can define a frame of discernment according to the 

example above. 

Ω ={0，0.2，0.4，0.6，0.8， 1} 
Or: 
Ω = {0，0.4，0.6，1} 

B. Building of Mass Function  
According to the experience and knowledge, each expert 

makes a basic probability assignment function m(also called 
the mass function m ) for every element of the connection 
matrix in a frame of discernment. Suppose there are n experts, 
we can gain n basic probability assignment functions: m1, m2, 
…,  mn .  

N experts’ evaluating a weight in the frame of discernment 
can capture a matrix form: The matrix M is as follows: 
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Where each row in matrix M represents the evaluation of ith 
expert; each column of matrix M represents the evaluation that 
n experts get after evaluating the jth element of the frame of 
discernment. mij   denotes the ith expert’s probability 
assignment of the jth element of the frame of discernment Ω .   

The result that the ith expert estimates a weight in the frame 
of discernment is a fuzzy value. A basic probability assignment 
function mi is produced by solving membership of the fuzzy 
value. 

For example, solving m, when a fuzzy value is 0.48, the 
membership function is defined as follows:  

Fig.1. the six membership functions corresponding to each 
one of the six linguistic variables the fuzzy number 
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 According to formula above:μ 0.4(0.48)=0.6 

μ 0.6(0.48)=0.4 
We can obtain the base probability assignment 

m=[0,0,0.6,0.4,0,0] 

C. Evidence Combination 
Firstly, the conflict between the expert’s opinions is 

calculated with )()( 21 YmXmk
YX

∑
=∩

=
φ

.  

If combination condition is satisfied, then the combinative 
base probability assignment is calculated according to formula 
bellow: 
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D.  Calculate Integrated Weight 
The integrated weight w is defined as: 
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Where aj is the base probability assignment of the jth state, 
θ j is the jth state value of the frame of discernment. 

V. THE COMPLEXITY ANALYSIS  

The frame of discernment is set as: Ω = {Θ 1, Θ 2,…Θ n}, 
there are k evidences that k experts offer. In the extreme, each 
group of evidences has 2n-1 mass function values: m ({Θ 1}) ，

m ({Θ 2}) ,…,m ({Θ 1,Θ 2}) ,…, m ({Θ }). On this condition, 
the complexity degree of the information is O (k*2n). Then 
we’ll discuss the complexity degree of using the combination 
formula of 2 evidences and the combination formula of k 
evidences to combine k experts’ knowledge. For using the 
combination formula of two evidences, the main calculation is 
the multiplication of two mass functions, so the complexity 
degree is (2n-1)*(2n-1)=O(22n).And for the knowledge 
combination of k experts , the complexity  degree of 
information is k*O(22n)=O(k*22n). For the combination 
formula of multi-evidences, the main calculation is the 
multiplication of k mass functions. So the complexity degree is 
(2n-1)k , namely O(2kn). 

For the problem of combining many experts’ knowledge on 
FCM, when there are n values of mass function in each 
evidence, the complexity degree of the information is- O(kn). 
Using the combination formula of two evidences to calculate k 
evidences, the complexity degree of the information is O (n2). 
And for the knowledge combination of k experts’, the 
complexity degree of information is k*O(n2)=O(k*n2). For the 
combination formula of multi-evidences, the complexity 
degree is O(nk). 

Based on the analysis above, when the knowledge of k 
experts’ are being combined in the same frame of discernment, 
the complexity degree of two evidences combination relates 
linearly to the number of evidences, and may form a 
exponential relation with the number of possible results in the 
frame of discernment. For the multi-evidences combinations, 
the complexity degree has an exponential relationship with the 
number of evidences and the number of possible results in the 
frame of discernment. 

VI. APPLICATION 
To demonstrate the feasibility of the proposed method, we 

applied the proposed method to the combination of three 
experts’ opinions. 

We define a frame of discernment:  

Ω ={0，0.2，0.4，0.6，0.8， 1} 
Three experts give judgment to the cause affection degree of 

Ci and Cj in concept set{C1，C2，…Cn}, see table 1. 
TABLE1 
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 EXPERT KNOWLEDGE 
 state 
expert 

0 0.2 0.4 0.6 0.8 1 

Expert 1 0 0 0.7 0.3 0 0 
Expert 2 0 0.1 0.8 0. 0 0 
xpert 3 0 0 0.9 0.1 0 0 

According to formula )()( 21 YmXmk
YX

∑
=∩

=
φ

， we get 

k=0.41.  
     The combinative result of Expert 1 and expert 2 

according to Eq (7) is shown  in table 2. 
TABLE 2  

 EXPERTS KNOWLEDGE COMBINATION (1) 
 state 
expert 

0 0.2 0.4 0.6 0.8 1 

Expert 1 0 0 0.7 0.3 0 0 
Expert 2 0 0.1 0.8 0.1 0 0 

Combination 
result 1 

0 0 0.95 0.05 0 0 

Again, according to )()( 21 YmXmk
YX

∑
=∩

=
φ

， we get 

k=0.14  
The combinative result of expert 1, expert 2  and expert 3 

according to Eq (7) is shown in table 3. 
TABLE 3  

EXPERTS KNOWLEDGE COMBINATION (2) 
 State 
Expert 

0 0.2 0.4 0.6 0.8 1 

Result 1 0 0 0.95 0.05 0 0 

Expert 3 0 0 0.9 0.1 0 0 

Combination 
result 

0 0 0.99
4 

0.005
8 

0 0 

The result of three experts’ combination can be seen from 
table 3. The base probability assignment is 0.994 when state 
value is 0.4 and m (0.6) is 0.0058. 

Using Eq(9) to solve the integrated weight according to the 
combined base probability assignment function m. 

Based on the example above, we get wij;  
wij=0.4*0.994+0.6*0.0058=0.40108 

VII. CONCLUSION 
We have developed a method for Multi-Expert Opinions 

Combination Based on Evidence Theory. . In the method, we 
use multi-expert knowledge as evidence, the possible value of 
weight as frame of discernment, expert’s evaluation to a weight 
on frame of discernment as basic probability assignment, and 
Dempster-Shafe rule as combined basis of basic probability 
assignment m. Finally, the weight is given according to 
combined basic probability assignment. The strategy can 
gradually reduce the hypothesis sets and approach the truth 
with the accumulation of evidences, which make the result of 
decision more all–around and more scientific.  Consummating 
the proposed method and exploring the applying area are the 
direction of our future work. 
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