Abstract — A study on fuzzy prime ideals in near-subtraction semigroups is already known. We have to expand the concept of prime fuzzy bi-ideals in near-subtraction semigroups and analyse some of its properties to characterize it. This will lead to learn a new type of fuzzy ideal and to develop the researcher to made their research.

Keywords — Fuzzy Ideals, Fuzzy prime ideals.

I. INTRODUCTION

In 1965, fuzzy set was first introduced by L.A. Zadeh [7]. The notion of Near-subtraction semigroup was studied by B.M. Schein. K.H. Kim et al. [2] & they established the concept of Ideals in near-subtraction semigroup & fuzzy set. Prince Williams [3] described the concept of Fuzzy ideals. Similarly, the concept such as Fuzzy bi-ideals has been described by V. Chinnadurai et. al. A detailed study on Fuzzy prime ideals was carried out by Mumtha.K and Mahalakshmi.V [6]. In this paper, we explore the concept of prime fuzzy bi-ideals in near-subtraction semigroups and discuss some of its properties.

II. PRELIMINARIES

Definition: 2.1

A right near-subtraction semigroup is a non-empty set X with “−” & “·” satisfies:

(i) (X, −) is a subtraction algebra
(ii) (X, ·) is a semigroup
(iii) For all p, q, r ∈ X, (p − q), r = p · r − q · r (right distributive law)

Definition: 2.2

If p, 0 = 0, p = 0, for all p ∈ X, then X is a zero-symmetric and is denoted by X₀. Now after, X stands for a zero-symmetric right near-subtraction semigroup (X, −, ·) with at least two elements.

Definition: 2.3

A fuzzy subset is the mapping μ from the non-empty set X into the unit interval [0,1].

Definition: 2.4

A fuzzy subset μ of X is called a fuzzy ideal of X if

(i) μ(x − y) = min(μ(x), μ(y)).
(ii) μ(xy) ≥ μ(y),
(iii) μ(xy) ≥ μ(x), for every x, y ∈ X.

Definition: 2.5

A fuzzy ideal μ is called a fuzzy prime ideal of X if σ, δ ⊆ μ ⇒ σ ⊆ μ or δ ⊆ μ, where σ & δ are any two fuzzy ideals of X.

Definition: 2.6

Let μ and λ be any two fuzzy subsets of X. Then μ ∩ λ, μ ∪ λ, μλ, λμ, μ ∗ λ are fuzzy subsets of X that are defined by,

(μ ∩ λ)(x) = min(μ(x), λ(x))
(μ ∪ λ)(x) = max(μ(x), λ(x))
(μ − λ)(x) = {sup₀{y > z} min{μ(y), λ(z)} if x = y − z
otherwise
μλ(x) = {sup₀{y = z} min{μ(y), λ(z)} if x = yz
otherwise
(μ ∗ λ)(x) = {sup₀{x = ac − a(b − c)} min{μ(a), λ(c)} if x = ac
otherwise

Definition: 2.7

For any fuzzy set μ in X and t ∈ [0,1], We define U(μ; t) = {x ∈ X/μ(x) ≥ t}, which is called a upper t-level cut of μ.

Definition: 2.8

Let I ⊆ X. Define a function fl : X → [0,1] by.

f_l(x) = { 1 if x ∈ I
0 otherwise }, for every x ∈ X.

Clearly, fl is a fuzzy subset of X and it is called the characteristic function of I.

Definition: 2.9

A fuzzy ideal μ of X is said to be normal if there exists a ∈ X such that μ(a) = 1

Definition: 2.10

A fuzzy ideal μ of X is said to be weakly complete if it is normal and there exists z ∈ X such that μ(z) < 1.

Theorem: 2.11

Let μ be a fuzzy bi-ideal of X. Then the finitely generated set, X_μ = {x ∈ X/μ(x) = μ(0)} is an bi-ideal of X.

Theorem: 2.12

Let A be a non-empty subset and μ_A be a fuzzy set in X defined by, μ_A(x) = {1 if x ∈ A
0 otherwise }, for every x ∈ X and s ∈ [0,1]. Then μ_A is a fuzzy bi-ideal of X iff A is an bi-ideal of X. Moreover, X_μ_A = A.
Lemma: 2.13
Let x_A be the characteristic function of a subset $A \subseteq X$. Then x_A is a fuzzy bi-ideal of X iff A is a bi-ideal of X.

III. PRIME FUZZY BI-IDEALS

Definition: 3.1
A fuzzy bi-ideal f is called a prime fuzzy bi-ideal of X if for any two fuzzy bi-ideals g and h of X such that $g \cdot h \leq f \Rightarrow g \leq f$ (or) $h \leq f$.

E.g: 3.1.1
Let $X = \{0, 1, 2, 3\}$ with "-" and "&". " are defined as,

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Let f, g and h be fuzzy subsets of X such that,

\[
\begin{align*}
 f(0) &= 1, \quad f(1) = 0.8, \quad f(2) = 0.7, \quad f(3) = 0.5 \\
 g(0) &= 1, \quad g(1) = 0.8, \quad g(2) = 0.6, \quad g(3) = 0.3 \\
 h(0) &= 1, \quad h(1) = 0.7, \quad h(2) = 0.5, \quad h(3) = 0.2
\end{align*}
\]

Clearly, f is prime fuzzy bi-ideal of X.

E.g: 3.1.2
Let $X = \{0, 1, 2, 3\}$ with "-" and "&". " are defined as,

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Let f, g and h be fuzzy subsets of X such that,

\[
\begin{align*}
 f(0) &= 1, \quad f(1) = 0.4, \quad f(2) = 0.4, \quad f(3) = 1 \\
 g(0) &= 0.8, \quad g(1) = 1, \quad g(2) = 0.8, \quad g(3) = 0 \\
 h(0) &= 0.8, \quad h(1) = 0, \quad h(2) = 0.8, \quad h(3) = 0
\end{align*}
\]

Here $g \cdot h \leq f$ but neither $g \leq f$ nor $h \leq f$, for some $x \in X$. Clearly, f is not a prime fuzzy bi-ideal of X.

Theorem: 3.2
Intersection of all prime fuzzy bi-ideals of X is also a prime fuzzy bi-ideal of X.

Proof:
Let $\{f_i | i \in \Omega\}$ be the set of all prime fuzzy bi-ideals in X.

To prove: $f = \bigcap_{i \in \Omega} f_i$ is also a prime fuzzy bi-ideal.

Let g and h be any fuzzy bi-ideals of X such that $g \cdot h \leq \bigcap_{i \in \Omega} f_i$.

Since each f_i is a prime fuzzy bi-ideal.

Therefore, $g \leq f_i$ (or) $h \leq f_i$, for all $i \in \Omega$.

(i.e) $g \leq \bigcap_{i \in \Omega} f_i$ (or) $h \leq \bigcap_{i \in \Omega} f_i$.

Note: 3.3
Every fuzzy prime ideal is a prime fuzzy bi-ideal but the converse need not be true in general.

Theorem: 3.4
If f is a prime fuzzy bi-ideal of X then the finitely generated set is a prime bi-ideal of X.

Proof:
Assume that f is a prime fuzzy bi-ideal of X.

By Theorem 2.11, X_f is a bi-ideal of X.

To prove: X_f is a prime bi-ideal of X.

Let A and B be any two bi-ideals in X such that $AB \subseteq X_f$.

We have to prove $A \subseteq X_f$ or $B \subseteq X_f$.

Define the fuzzy subsets g and h of X as,

\[
 g(x) = \begin{cases}
 f(0) & \text{if } x \in A \\
 0 & \text{otherwise}
 \end{cases} \quad h(y) = \begin{cases}
 f(0) & \text{if } y \in B \\
 0 & \text{if } y \notin B
 \end{cases}
\]

By Theorem 2.12, g and h are fuzzy bi-ideals.

Next we verify that $g \cdot h \leq f$.

Since $g(h(a)) = \sup_{a=bc} \min\{g(b), h(c)\}$ if $a = bc$ otherwise $g(h(c) = f(0)$.

Hence, $g(h(a)) \leq f(a)$, \forall $a \in X$. Thus $g \cdot h \leq f$.

Since f is a prime fuzzy bi-ideal, $g \cdot h \leq f$.

So we have that $g \leq f$ or $h \leq f$.

Suppose $g \leq f$. If $A \subseteq X_f$, then there exists $a \in A$ such that $a \notin X_f$. This means that $f(a) \neq f(0)$. We already know that $f(0) \geq f(a)$. But $f(0) \neq f(a)$ and so $f(0) > f(a)$.

Now, $g(a) = f(0) > f(a)$.

Which is a contradiction to $g \leq f$. Hence $A \subseteq X_f$.

Similarly, If $h \leq f$, then we can show that $B \subseteq X_f$.

This shows that X_f is a prime bi-ideal of X.

Theorem: 3.5
Let I be an bi-ideal of X and f be a fuzzy set in X defined by, $f(x) = \begin{cases}
 1 & \text{if } x \in I, \forall x \in X \text{ and } s \in [0,1] \\
 0 & \text{otherwise}
 \end{cases}$. If I is a prime bi-ideal of X then f is a prime fuzzy bi-ideal of X.

Proof:
Suppose I is a prime ideal of X.

To prove: f is a prime fuzzy bi-ideal of X.
By Theorem 2.12, \(f \) is a fuzzy bi-ideal of \(X \). Let \(g \) & \(h \) be two fuzzy ideals of \(X \) such that \(g, h \leq f \).

To prove: \(g \leq f \) or \(h \leq f \).

Suppose not, (i.e) \(g \nleq f \) and \(h \nleq f \).

Then \(g(x) > f(x) \) and \(h(y) > f(y) \), \(\forall \ x, y \in X \).

Now, \(f(x) \neq 1 \) and \(f(y) \neq 1 \) \(\Rightarrow f(x) = s \) and so \(x, y \notin I \).

Hence, \(g(h(a)) > s \). Which is a contradiction.

Hence, \(f \) is a prime fuzzy bi-ideal of \(X \).

Corollary : 3.6

Let \(\chi_P \) be the characteristic function of a subset \(P \subseteq X \). Then \(\chi_P \) is a prime fuzzy bi-ideal iff \(P \) is a prime bi-ideal of \(X \).

Theorem: 3.7

If \(f \) is a prime fuzzy bi-ideal of \(X \) then, \(f(0) = 1 \).

Proof:

Suppose \(f \) is a prime fuzzy bi-ideal of \(X \).

To prove: \(f(0) = 1 \).

Suppose not, (i.e) \(f(0) < 1 \).

Since \(f \) is not a constant, then there exists \(a \in X \) such that \(f(a) < f(0) \).

Define the fuzzy subsets \(g \) & \(h \) as, \(\forall x \in X \)

\[
g(x) = f(0) \quad \text{and} \quad h(x) = \begin{cases} 1 & \text{if } f(x) = f(0) \\ 0 & \text{otherwise} \end{cases}
\]

Since \(g \) is a constant function, \(g \) is a fuzzy bi-ideal.

Note that, \(h \) is the characteristics function of \(X_f \).

Now, by Theorem: 2.12, \(h \) is the fuzzy bi-ideal of \(X \).

Since \(h(0) = 1 \) \(\Rightarrow f(0) \) and \(g(a) = f(0) > f(a) \).

We have that, \(g \nleq f \) & \(h \nleq f \).

Let \(b \in X \). We know that,

\[
g.h(b) = \begin{cases} \sup_{a=cd} \left(\min \{g(c), h(d)\} \right) & \text{if } b = cd \\ 0 & \text{otherwise} \end{cases}
\]

Now, we prove, \(\min \{g(c), h(d)\} \leq f(b) \), where \(b = cd \).

For this, we consider two cases, \(h(x) = 0 \) & \(h(x) = 1 \) in the following:

Case - (i)

Suppose \(h(x) = 0 \).

Then \(h(x) < h(0) \) (By definition of \(h \)). Now,

\[
\min \{g(c), h(d)\} = \min \{f(0), 0\} = 0 \leq f(xy) = f(b).
\]

Case - (ii)

Suppose \(h(x) = 1 \). Then \(f(x) = f(0) \).

Now, \(\min \{g(c), h(d)\} = \min \{f(0), 1\} = f(0) = f(x) \leq f(xy) = f(b) \).

From this, we conclude that,

\(g.h(b) = \min \{g(c), h(d)\} \leq f(b) \) and so \(g \leq f \).

Since, \(f \) is a prime fuzzy bi-ideal, we have \(g \leq f \) or \(h \leq f \).

Which is a contradiction to \(g \nleq f \).

Hence, \(f(0) = 1 \).

Theorem: 3.8

Every prime fuzzy bi-ideal is normal.

Proof:

By Previous Theorem 3.7, it is obviously true.

Theorem: 3.9

Every prime fuzzy bi-ideal is weakly completely normal.

Proof:

Let \(f \) be prime fuzzy bi-ideal.

Then \(f \) is normal and \(f \) lies between the values 0 & 1.

It follows that, \(f(0) = 1 \) & \(f(x) < 1 \), for all \(x \in X \).

Therefore, \(f \) is weakly completely normal.

Theorem: 3.10

If \(f \) is a prime fuzzy bi-ideal of \(X \) then, \(|Im(f)| = 2 \).

Moreover, \(Im(f) = \{1, s\} \), where \(0 \leq s < 1 \).

Proof:

Suppose \(f \) is a prime fuzzy bi-ideal of \(X \).

To prove: \(Im(f) \) contains exactly two values.

We know that, by previous Theorem 3.7, \(f(0) = 1 \).

Let \(a \) & \(b \) be two elements of \(X \) such that,

\(f(a) < 1 \) and \(f(b) < 1 \).

Enough to prove: \(f(a) = f(b) \).

Part-(i)

Define the fuzzy subsets \(g \) and \(h \) as, \(\forall x \in X \) and \(a \in X \)

\[
g(x) = f(a) \quad \text{and} \quad h(x) = \begin{cases} 1 & \text{if } x \in <a > \\ 0 & \text{otherwise} \end{cases}
\]

By Theorem: 2.12, \(g \) & \(h \) are fuzzy bi-ideals of \(X \).

Since \(a \in <a > \), we have \(h(a) = 1 \) \(\Rightarrow f(a) \) and so \(g \nleq f \).

Let \(z \in X \). We know that,

\[
g.h(z) = \begin{cases} \sup_{x=xy} \left(\min \{g(x), h(y)\} \right) & \text{if } z = xy \\ 0 & \text{otherwise} \end{cases}
\]
If \(x \notin < a > \), then \(h(x) = 0 \)
\[\Rightarrow \min \{g(x), h(y)\} = \min\{f(a), 0\} = 0 \leq f(xy) = f(z). \]
If \(x \in < a > \), then \(h(x) = 1 \)
\[\Rightarrow \min \{g(x), h(y)\} = \min\{f(a), 1\} = f(a) \leq f(xy) = f(z). \]
We know that, \(f(x) \geq f(a) \), for all \(x \in < a > \)
It follows that, \(f(a) \leq f(x) \leq f(xy) = f(z) \).
From these, we conclude that, \(g, h \leq f \).
Since \(f \) is a prime fuzzy bi-ideal, we have \(g \leq f \) or \(h \leq f \)
Since \(h \not\leq f \). It follows that \(g \not\leq f \).
Now, \(f(b) \geq g(b) = f(a) \).

Part-(ii)

Now, we construct fuzzy bi-ideals \(\rho, \theta \) of \(X \),
\[\rho(x) = f(b) \quad \text{and} \quad \theta(x) = \begin{cases} 1 & \text{if } x \in < b > \\ 0 & \text{otherwise} \end{cases}, \quad \forall x \in X \]
As in part-(i), we can verify that \(f(a) \geq f(b) \).
Thus from parts-(i) & (ii), it follows that \(f(a) = f(b) \).
Hence the proof.

Theorem: 3.11

Let \(f \) be fuzzy bi-ideal in \(X \). Then \(f \) is a first prime fuzzy bi-ideal of \(X \) iff each level subset \(f_t, t \in \text{Im}(f) \) of \(f \) is a prime bi-ideal of \(X \).

Proof:

Assume that \(f \) is a prime fuzzy bi-ideal of \(X \).

By Theorem 3.7, \(f_t \) is an bi-ideal of \(X \).

To prove: \(f_t \) is a prime bi-ideal of \(X \).

Let \(A \) & \(B \) be two ideals in \(X \) such that \(AB \subseteq f_t \).

Define the fuzzy subsets \(g & h \) of \(X \) as,
\[g(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad h(x) = \begin{cases} 1 & \text{if } x \in B \\ 0 & \text{otherwise} \end{cases} \]

By Theorem 2.12, \(g & h \) are fuzzy bi-ideals of \(X \).

Next we verify that, \(g, h \leq f \).

Since, \(g, h \) assume exactly two values.
\[g(h(a)) = \sup_{a \in A} \min \{g(b), h(c)\} \]
We conclude that, \(g(b) = h(c) \geq t \). So \(b \in A \cap c \in B \).

Now, \(\alpha = bc \in AB \subseteq f_t \). (i.e, \(\alpha \in f_t \)) \(\Rightarrow f(a) \geq t \).

Hence \(g, h \leq f \), \(\forall \alpha \in A \). Thus \(g, h \leq f \).

Since \(f \) is prime fuzzy bi-ideal, we have \(g \leq f \) or \(h \leq f \).

Suppose \(g \leq f \). If \(A \not\subseteq f_t \), then there exists \(\alpha \in A \) such that \(\alpha \not\in f_t \). This means that \(f(a) \geq t \). (i.e, \(f(a) < t \).

Now, \(g(a) \geq t > f(a) \). Which is a contradiction to \(g \leq f \).

Similarly, if \(h \leq f \), then we can show that \(B \subseteq f_t \).
This shows that \(f_t \) is a prime bi-ideal of \(X \).

Conversely,

Assume that \(f_t, t \in \text{Im}(f) \) is a prime bi-ideal of \(X \).

To prove: \(f \) is a prime fuzzy bi-ideal of \(X \).

Let \(f \) be a fuzzy subset of \(X \) defined by,
\[f(x) = \begin{cases} 1 & \text{if } x \in f_t \\ s & \text{otherwise} \end{cases} \]

By Theorem 2.12, \(f \) is an fuzzy bi-ideal of \(X \).

To prove: \(f \) is prime.

Let \(g & h \) be two fuzzy bi-ideals of \(X \) such that \(g, h \leq f \).

Enough To prove: \(g \leq f \) or \(h \leq f \).

Suppose \(g \not\leq f \) and \(h \not\leq f \).

Then \(g(x) > f(x) \) and \(h(y) > f(y), \forall x \in X \).

Now, \(f(x) \neq 1 \) and \(f(y) \neq 1 \)
\[\Rightarrow f(x) = f(y) = s \]
Since \(f_t \) is a prime ideal, we have that \((x)(y) \not\in f_t \).
Then \(f(a) = s \) and hence \(g, h(a) \leq f(a) = s \).

Since \(a = cd, c = < x > \) and \(d = < y > \). Then \(s = f(a) \geq g, h(a) \).

Now, \(g, h(a) = \min \{g(c), h(d)\} \geq \min \{g(\alpha), h(\beta)\} \geq \min(f(x), f(y)) = s \).

Therefore, \(g, h(a) > s \). Which is a contradiction.
Hence \(f \) is a prime fuzzy bi-ideal of \(X \).

Theorem: 3.12

Let \(P \) be a prime bi-ideal of \(X \) and \(a \) be a prime element of \(L, L \in [0,1] \). Let \(f \) be a fuzzy subset of \(X \) defined by,
\[f(x) = \begin{cases} \begin{cases} 1 & \text{if } x \in I \\ s & \text{otherwise} \end{cases} & \text{iff } f \text{ is a prime fuzzy bi-ideal of } X \end{cases} \]

Proof:

Clearly, \(f \) is a non-constant fuzzy bi-ideal.

To prove: \(f \) is prime.

Let \(g & h \) be two fuzzy bi-ideals such that, \(g \not\leq f \) and \(h \not\leq f \).
Then there exists \(x, y \in X \) such that \(g(x) \not\leq f(x) \) and \(h(y) \not\leq f(y) \).

This implies that \(f(x) = f(y) = s \) and hence \(x, y \notin I \).
Since \(I \) is prime, then there exists an element \(r \in X \) such that \(xry \notin I \).

Now, we have \(f(x) \neq s \) or \(f(x) \neq s \) (otherwise \(h(y) \neq a \) and since \(a \) is prime, \(g(x) \neq f(x) \).

This implies that \(g(x) \neq h(y) \) and \(h(x) \neq h(y) \) and hence \(f(x) \neq f(y) \).

Hence \(f \) is prime fuzzy bi-ideal.

Conversely,

Let \(f \) be a prime fuzzy bi-ideal. Then, \(f(0) = 1 \).
Next we observe that \(f \) assumes exactly two values.
Let \(a & b \) be elements of \(X \) such that \(f(a) < 1 \) \& \(f(b) < 1 \).
Define \(g \) & \(h \) as,
\[
g(x) = \begin{cases}
1 & \text{if } x \in (a) \\
o & \text{otherwise}
\end{cases} \\
h(x) = f(a), \forall x \in X.
\]

By Theorem: 2.12, \(g \) & \(h \) are fuzzy bi-ideals.

And also we have, \(g(x), h(y) \leq f(xy), \forall x, y \in X. \)

And hence \(g \cdot h \leq f \). Put \(g \equiv f \).

Since \(f \) is prime fuzzy bi-ideal and so \(h \leq f \) so that \(h(b) \leq f(b) \) hence \(f(a) \leq f(b) \). Thus \(f \) assumes only one value, say \(a \) other than 1.

Let \(I = \{ x \in X/f(x) = 1 \} \). Then clearly, \(I \) is a proper bi-ideal of \(X \) and for \(x \in X, f(x) = \begin{cases}
1 & \text{if } x \in I \\
a & \text{otherwise}
\end{cases}.
\)

Now, to prove: \(I \) is a prime bi-ideal of \(X \) & \(a \) is a prime element in \(L \).

That \(a \) is prime follows that the fact that for any \(a \in L \) & for the constant map \(\bar{a} \leq f \) iff \(a \leq a \). Let \(J \) & \(K \) be ideals of \(X \) such that \(JK \subseteq I \). Then \(\chi_J \chi_K = \chi_{JK} \subseteq \chi_I \subseteq f \) so that \(\chi_J \subseteq f \) or \(\chi_K \subseteq f \). Which implies that \(f \leq I \) or \(K \subseteq I \).

Corollary: 3.13

Let \(L \) be a complete chain and \(P \) is an bi-ideal of \(X \). Then \(P \) is a prime bi-ideal of \(X \) iff \(\chi_P \) is a prime fuzzy bi-ideal of \(X \).

IV. CONCLUSION

We have analyse the concept of prime fuzzy bi-ideal \(f \) in near-subtraction semigroups and investigated some of its properties. We find

- \(f(0) = 1 \)
- \(Im(f) = \{1, s\} \), where \(0 \leq s < 1 \).
- Prime fuzzy bi-ideal iff each level subset is prime fuzzy bi-ideal.

ACKNOWLEDGEMENT

We thank the anonymous referees for their useful suggestions.

REFERENCES

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US