
 

 

  
Abstract—Two-dimensional non-stationary model for the non-

isothermal gas/steam filtration through a monospherical particle layer 

with internal heat generation is considered with a particular emphasis 

on the non-thermal gas/particles local equilibrium, taking into 

account the real non-linear properties of the media. The boundary 

problem for the multiphase system of gas and particles is formulated 

and solved numerically using the effective finite-difference fractional 

time-step method. It is shown that some initial thermodynamic 

perturbations in the system may cause localization of a gas heating 

(mainly due to a non-linear heat conductivity), which will lead to a 

temperature escalation in a specific spatial subdomains. Furthermore, 

the effects of other parameters such as particles’ size and porosity of 

the layer, an amplitude and a form of an initial temperature 

perturbation, the level of an initial temperature difference between 

the gas and solid phases, etc. are analyzed.  

The model considered can be comparably easily modified for the 

three-dimensional non-stationary case using the numerical algorithm 

applied. An examples of computer simulations are presented for the 

cases of the volcanic geological mains and for the nuclear power 

safety. The phenomenon of the blow-up regimes due to non-linear 

heat conductivity causing local abnormal heat escalation in a narrow 

domain may be of great interest for some natural, as well as technical 

systems and processes.    

 

Keywords—Blow-up heating, filtration, underground layer, non-

linear heat conductivity.  

I. INTRODUCTION 

The problem of a non-stationary non-isothermal gas (steam) 

flow in porous media with account of the real physical 

properties of the media, which can strongly depend on the 

temperature spatial distribution, is of paramount interest for a 

lot of modern industrial, technological and natural processes, 

for example the following ones:  

• Coolability of a heat-generating porous beds in a severe 

accidents at the Nuclear Power Plants [1, 2] 

• Gas and steam flow through the underground permeable 

layers in Geothermal and Gas Industry as well as 

Vulcanology [3, 4] 

• Diverse gas and steam flows in Chemical Reactors, porous 

elements of the Avionic Components, etc. [5, 6]. 

   An early theoretical and experimental study of the thermal 

hydraulics in a volumetrically heated porous layer is that of 

 
 

Choudhary and El-Wakil [7] who solved numerically the linear 

energy equation for the solid and gas mixture by an implicit 

modified Crank-Nicolson method. Vasiliev and Mairov [8] 

analyzed heat transfer, pressure drop and stability 

characteristics of a volumetrically heated porous layer cooled 

with forced flow evaporation.  

    Depending on the physical properties of the coolant, they 

divided the porous layer into three regions: subcooled, 

saturated two phase mixture and superheated steam.  

    The energy equations with appropriate boundary conditions 

were solved for each region to obtain the temperature 

distribution in a solid and a fluid phases. Later, Naik and Dhir 

[9] experimentally investigated a volumetrically heated porous 

layer and obtained the data for the steady state temperature 

profile and pressure drop of an evaporating two-phase coolant 

flowing vertically. The one-dimensional energy equations for 

the particles and coolant with assumption of no differences 

between the solid and liquid temperatures, were solved. The 

two-phase pressure drop was evaluated by a separated flow 

model using the experimental data and the void fraction was 

correlated as a function of the flow regime and mass flow rate. 

The model showed reasonable correlation for a water-steam 

flow at atmospheric pressure but not as well for the fluid 

mixtures with a higher vapor/liquid volume ratio.  

    Hofmann [10] presented the experimental and analytical 

investigation on dryout heat flux in inductively heated beds for 

the both top and top-and-bottom fed conditions considering the 

heat flux as a function of a saturation by solving the mass, 

momentum and energy conservation equations. But no 

satisfactory correlation with experimental data was achieved. 

Several experimental and analytical studies on hydrodynamic 

aspects of two-phase flow through porous media were 

summarized by Schulenberg and Mueller [11].  

    Unfortunately these studies were mostly done for a 

one-dimensional homogeneous porous layer, whereas those 

encountered in actual practice are multi-dimensional and often 

with varying permeabilities and heating conditions.  

    Tsai [12] measured dryout heat fluxes in axisymmetric 

porous layers with partial volumetric heating. But his 

numerical solution obtained with ''pseudo stream functions'' 

exists only for a certain distribution of a volumetric heating in 

the porous layers.  

    The hydrodynamic model by Tung and Dhir [13] predicts 

void fractions and pressure gradient for one-dimensional 
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two-phase flow in porous media with a particle-gas, 

particle-liquid and liquid-gas interfacial drag evaluated for the 

different flow regimes. This mechanistic model was then 

modified and solved numerically [14]. The numerical finite 

element model allowed the existence of several subdomains 

with different permeabilities. A multi-dimensional 

mathematical model was developed by Stubos and Buchlin 

[15] assuming a local thermal equilibrium between the solid 

and liquid phases, which may not be satisfactory for the early 

stages of the transport processes when the fluid and particle 

temperatures differ. This is also important during the later 

stages of the transport processes in high speed flows in which 

the fluid-solid interaction time is not enough to bring the 

temperatures of the phases to equilibrium state.  

II. STATEMENT OF THE PROBLEM 

A.  Non-thermal equilibrium  flow in a porous medium 

Non-thermal equilibrium flow through a porous medium is 

of special interest. Nigmatulin [16] derived the equations of a 

saturated monospherical particle layer in a heterogeneous 

non-thermal equilibrium approach, with account of the 

deformable properties of the layer. Based on his equations, 

two-dimensional mathematical model and numerical algorithm 

were developed by Kazachkov [4] for the steam flow in a 

particle layer surrounded by the impermeable medium. The 

model was applied for the numerical simulation of a non-

stationary non-isothermal filtration in geothermal systems.  

Kazachkov and Konovalikhin [1] modified the model to 

describe the dryout location by introducing the initial 

thermodynamic perturbations, which may lead to abnormal 

temperature escalation in a local subdomain. An analysis of the 

steam thermal behavior in the two-dimensional homogeneous 

and stratified porous beds with temperature dependent thermal 

conductivity has been performed, which revealed the 

reasonable agreement of the model with experimental data.  

B. Other non-thermal equilibrium models 

Sözen and Vafai [17] presented a general set of the 

volume-averaged governing equations for the non-thermal 

equilibrium condensing forced flow through a latent heat 

storage porous media. And a comprehensive numerical study 

of the phenomenon has been carried out.  

    Kuznetsov [18] has performed analysis based on solution, 

by the perturbation technique, of the full energy equations for 

incompressible fluid and solid phases. He showed that the 

temperature between fluid and solid phases in a semi-infinite 

packed bed forms a spatially localized wave. Later on, he 

investigated [19, 20] a thermal behavior of a three-dimensional 

porous bed in a non-thermal equilibrium flow through it 

assuming the constant thermal, physical and transport 

properties.  

C. Nuclear power safety problemss 

A detail study of a two-dimensional non-stationary non-

isothermal gas (steam) filtration through a monospherical 

particle layer under internal heat generation, with a particular 

emphasis on the non-thermal gas/particle local equilibrium and 

a real non-linear properties of the media has been performed 

both theoretically and experimentally in [1, 2, 4, 21-24].  

III. DEVELOPMENT OF THE MODEL EQUATIONS 

A. Basic equations 

Mathematical model for the numerical simulation of a 

compressible fluid (gas/steam) flow through the volumetrically 

heated porous bed with particular consideration of the 

non-thermal local equilibrium is formulated. Fig. 1 depicts 

schematically the physical problem considered. A two-

dimensional self-heated porous packed bed, which consists of 

homogeneous spherical particle layer (in general, K 

monolayers may be considered as well) is filled with a gas 

(steam), which moves from the bottom to the top, and is 

initially at the known temperature distribution. 

  

Gas inlet into the particle layer 

Outflow  

from the layer 

Monolayer  

of spherical particles 

Impermeable  

surroundings 

 
Fig. 1. Structural scheme of the heterogeneous particle-gas media 

 

By a development of the mathematical model, the following 

assumptions were employed: 

• The flow is single phase and is compressible (gas, steam) 

• The particles’ sizes are significantly larger than 

molecular-kinetic scales, but they are significantly less 

than the characteristic scale of the system 

• The physical properties of the media such as thermal 

conductivity, viscosity, density, etc. are temperature 

dependent 

• Solid particles are immovable and porosity is constant in 

each monolayer. 

    Based on the equations of the saturated granular layer 

introduced by Nigmatulin [16] in heterogeneous approach, the 

mathematical model for the above-described system, presented 

schematically in Fig.1, was developed by Kazachkov [4] for 

the mathematical simulation of the non-stationary non-

isothermal gas (steam) filtration processes. In a two-
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dimensional case, the mathematical model of the gas filtration 

in a spherical particle monolayer can be presented as follows. 

Continuity equation for the compressible gas flow is  
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Dynamic equilibrium equation for the immovable particles 

( 0
2
v =
�

) of the layer and the momentum equation for the gas 

flow are, respectively: 
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where 
0
1

ρ  is a gas real density and 1
ρ  is its partial density in 

the heterogeneous mixture, 
0K  is a permeability of the layer, 

∇  is gradient, 
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kσ  are the interfacial 

viscous force and the “effective” stress tensor in the layer [16], 

respectively. Here { }111 ,wuv =
�

 is gas velocity, which contains 

the horizontal and vertical components, 
1µ  is the gas dynamic 

viscosity, 10α  is the porosity of the layer by given temperature 

10T . Under the assumptions made, the solid particles are 

immovable and the porosity is constant, so that here must be 

stated that 0=kσ  and const== 101 αα .  

    The density of the two-phase mixture is 
22

0

11 ραραρ += , 

where 
1α  is the gas volume component and 

2α  is the volume 

component of particles in the saturated layer. Thus obviously 

the equation 121 =+αα  should be satisfied. The other 

parameters of two-phase system are calculated in a similar 

way, e.g. temperature of the mixture in the layer is 

2211 TTT αα += . The first, inertial term in the equations (2), (3) is 

written with account of the associated mass for the spherical 

particle in a non-stationary flow, and the interfacial viscous 

force term 
µf
�

 expresses the viscous force acting between the 

particle and gas flow.  

    The energy conservation equations are written for two 

phases of the saturated particle layer (for the fluid and 

particles) and the non-permeable surrounding medium (heat 

conductive medium) separately: 

 
0

2 21 1 1
1 1 1 1 1 1 1 1 1 1( ) ( ) ( )v V

T
c v T RT k T Q Q u w

t t K

ρ α
ρ α µΣ

∂ ∂
+ ∇ = +∇ ∇ + + + +

∂ ∂
� ,  (4) 

Σ−+∇∇=
∂

∂
QjTk

t

T
c jj

j

jj )3()(ρ ,                                       (5) 

 

where are: nKK )/( 1010 αα= - permeability of the layer (here it is 

constant due to constant porosity), Pr/111 pck µ=  ( ,/ 11 aν=Pr  

)/( 1111 pcka ρ= , 
111 / ρµν = ), m

TT )/( 101101 µµ = . The Prandtl 

number Pr is taken at 
101 TT = , and m is some constant, which 

is different for the different gases [25], [26], e.g. for the steam 

it is normally in the range: m=0.5–1.0. But it must be noted 

that such empirical correlations are working only in the narrow 

temperature intervals by a high gas pressures.  

    The equation of state [25] has been used in (4): 
111 RTp ρ= , 

which is used at the temperatures and pressures characteristic 

of many compressible flow applications. Here R  is the specific 

gas constant, which is a different value for different gases (and 

steams far from the condensation point). Using this equation of 

state makes possible, by numerical solution of the full 

boundary problem for the equation array (1)-(5), to calculate 

the some parameter, for example, gas density 0

1ρ  twice: from 

the equation of state and from the mass concervation equation 

(1) as well. This is good opportunity to control the accuracy of 

the numerical solution, which was done in the mathematical 

simulation described further in this paper. 

    In the equations (5) there are j=2, 3, so that by j=2 it is the 

energy equation for the solid particles and by j=3 (5) it is the 

energy equation for the surrounding heat conductive medium. 

All the values with “0” indexes are taken at the fixed 

temperature Tj0, α  is volume fraction of the corresponding 

phase, 1vc , 1pc  and jc  are specific heat capacity for gas by 

constant volume and constant pressure, and for solid phases, 

respectively. Thus the heat conductivity and viscosity of the 

gas are the same temperature dependent functions. 

    The terms 
ΣQ  and 

VQ  in the equations (4), (5) are specific 

solid-liquid interfacial heat flux and volumetric heat source, 

correspondingly. If particles are producing internal heat (e.g. 

they are electroconductive and current passes through the 

particles), then the heat sources like 
VQ  should be excluded 

from the equation (4) and placed in the equation (5). In 

general, both of them can have their own heat sources, so that 

the terms like 
VQ  are present in both equations. In 

correspondence with [16], here are: 
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where b  is the characteristic particle radius, 
1β  is the heat 

exchange coefficient between gas flow and Σ - phase, which is 

intermediate molecular scale layer between gas and particle 

with avaraged properties. For the Nusselt number by particles, 

it was supposed that 22 ≈Nu . For the Nusselt number by gas 

the Frosling law was used: 
vRePrNu

3/1

1 6.02 += , where 

1010 /νbwv =Re  is the Reynolds number by pores in the layer, 

1b , 0w , 10ν  are the characteristic pore radius in the layer, 

vertical gas filtration velocity and kinematic viscosity by given 

temperature 
101 TT = , respectively. 

B. Boundary conditions  

System is considered symmetrical relatively to a vertical axis: 

 

0=x ,         0// 21 =∂∂=∂∂ xTxT .                                           (6)      
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    The normal velocity is zero at the non-permeable boundary, 

where the continuity of the temperature profiles and heat 

fluxes must be satisfied: 

 

Lxx = ,    01 =u ,   idemT j = ,    
2 2 3 3/ /k T x k T x∂ ∂ = ∂ ∂ .            (7)      

 

It was assumed 
21 kk << , therefore a heat flux from particles to 

surrounding impermeable medium prevails the one from gas 

flow. The temperature in surrounding impermeable medium 

has to be stable far from the boundary of a permeable layer: 
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where 
Lxx >>∞   is. 

    The temperatures of a media at the inlet in a particle layer 

and bottom surface of impermeable medium is known: 
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jHj TT = ,   j=1, 2, 3.                                            (9)        

 

At the outlet of the layer, the heat transfer with surrounding 

medium is considered. And it is also assumed that the gas 

pressure is known and temperature gradient at the outlet (the 

top surface of the layer) is constant. Thus the boundary 

conditions are: 
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where 
topT  is the temperature of a surrounding gas medium at 

the top of the layer, j=2, 3, top

jβ  is a heat exchange coefficient 

for particles (j=2) and impermeable medium (j=3).  

 

C. Initial conditions 

0t = ,      ),(0

11 zxpp = ,     ),(0 zxTT jj = ,                             (11) 

 

where is j=1, 2, 3 for the gas, particles and impermeable 

surrounding medium, respectively. If the gas state equation is 

used, the initial gas pressure spatial distribution ),(0

11 zxpp =  

in (11) can be identically replaced by the gas density 

distribution ),(0

10

0

1 zxρρ = .  

    The initial temperature distribution for the surrounding 

medium, ),(0

33 zxTT =  is normally chosen as uniform, at least 

by one coordinate, or constant in the whole domain. The 

surroundings may do the heat release from the saturated 

particle layer or perform the thermal isolation of the layer. In 

the last case, the energy equation for the surroundings is 

omitted and the temperature at the sidewall is kept constant, 

which simplifies the problem. 

IV. SIMPLIFICATION OF THE MODEL 

A. Estimation of the parameters in the basic equations  

The gas pressure at the inlet in the particle layer supposed to 

be constant with small fluctuations (e.g. of the same order as 

the ones caused by temperature fluctuations). Therefore the 

inertial forces in the equations (2), (3) can be neglected. The 

vertical pressure gradient is mainly due to the gravity while the 

horizontal pressure gradient is caused only by the temperature 

gradient. Thus the vertical gas velocity exceeds the horizontal 

one a lot. Now the vertical velocity and pressure gradient are 

calculated from the equations (2), (3) as follows: 
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    The equations (12) simplify the problem analyzed further in 

detail. For the accuracy estimation the equation (12) can be 

even more simplified assuming that 
12 ρρ +  is constant. Then 

the approximate solution yields: )()( 1

0

1121 xPpgzp +++−= ρρ . 

Here 0

1p  is constant, )(1 xP  is some initial pressure fluctuation 

by x, which can be zero. 

Gas density 0

1ρ  (and, consequently,
1ρ ) is small comparing to 

the particle density (
2

0

1 ρρ << ) but it is kept in the equations 

(12) because it is spatially and temporary variable and may 

cause fluctuations of the other parameters in the system. The 

other peculiarity of the model is that the equations (2), (3) 

result in the following formula for the horizontal gas velocity 
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which contains the physical contradiction: flow with positive 

pressure gradient. This may be explained as follows. The 

heterogeneous model for the gas saturated particle layer [16] 

was obtained as limit case of the multiphase gas-particle flow 

when the solid particles become immovable ( 02 =v
�

). And our 

assumption made seems to be too rough as concern to the 

horizontal gas flow. Namely, it was stated that 

tutu ∂∂<<∂∂ // 1122 ρρ . But, though it was assumed that 

02 =u , and hence 
21 uu >>  supposed to be, nevertheless 

21 ρρ <<  is. Therefore the inertial gas flow and “immovable” 

solid particle forces can be nearly of the same order because 

the horizontal gas flow is only due to the thermal convection 

caused by temperature gradient. 

 

B. Darcy law  

    The following way is proposed to avoid the above-

mentioned contradiction. The equation (12) corresponds, with 

accuracy to the third term in the brackets, to the Darcy’s law. 

Since the horizontal gas flow velocity 
1u  is small in 

comparison with the vertical one (
11 wu << ), the Darcy’s law 

can be also employed: 
1 0 1 1( / ) /u K p xµ= − ∂ ∂ .  

 

C. Further simplification of the model  

Now let us estimate the second term of the equation (1) 

comparing to the third and fourth ones. Since 
11 wu <<  is, one 

can analyze only the terms with 
1w , except the case of a 

narrow porous layer, which is not considered here. So that 
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    Hence the equation (1) is simplified as follows: 
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V. NONDIMENSIONALIZATION OF THE MODEL 

A. Dimensionless equation array  

The mathematical model obtained includes the equation array 

(4), (5), (12), (13) with the initial and boundary conditions (6)-

(11). Now for the numerical solution of the boundary problem 

stated and further analysis of the results, it is more convenient 

to consider the boundary problem stated in a dimensionless 

form. For this purpose, the following length, time, velocity, 

pressure and temperature scales are introduced: H , 0

2
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Ha /0
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210 /Kaµ  and T∆  as the characteristic temperature in 

a system. Thus the equation array is presented as follows: 
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B. The initial and boundary conditions 

The initial and boundary conditions (6)-(11) have the 

following dimensionless form: 
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Here are the following dimensionless criteria: 0
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Peclet number, )/(2
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velocity, a  is the heat diffusivity coefficient, e.g. 
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12 /bHs=ξ  (parameter of the structure of the 

granular layer), 
12s  is the specific interfacial area, 

ππ )3/2(21 −=bb  is the character pore radius, b - particle 

radius (constant in each monolayer), 
22 TTβ∆=∆ , 

2Tβ  is the 

particle thermal expansion coefficient. 

The system considered is multiphase, an interactions of 

three different processes occur: non-thermal equilibrium 

between gas and solid particles in the layer, non-linear 

processes’ mutual influence and non-linearity of the physical 

properties of gas and particles (mainly, gas properties are 

strongly dependent on the temperature pressure). The first 

above-mentioned peculiarity is touched with the term 

)( 21 TT −ξ , which describes the local heat transfer between 

particles and flow.  

From the mathematical point of view it causes some 

limitation on the parameter ξ  because the term )( 21 TT −ξ  in 

the energy equations for solid particles and gas flow appears to 

be huge by very small particles. And these energy equations 

have terms like “ 0•∞ ” because by small particles the 

temperature difference )( 21 TT −  is going fast to zero. 

Therefore as far as the temperature difference between 

particles and gas flow is going to zero, in limit there is the 

homogeneous mixture. Then heterogeneous model considered 

should be replaced with a homogeneous one to avoid this 

peculiarity causing numerical inaccuracy.  

The most important new phenomenon is a localization of 

the dissipate processes due to non-linear heat conductivity. 

This phenomenon was studied at first by Samarskii et. al. [27] 

for quasilinear parabolic equations, e.g. one-dimensional heat 

conductivity equation with a non-linear heat conductivity 
mTkk 0=  (m=0.5–1.0). Some gases and steam follow this law 

under certain range of the temperature and pressure. In our 

case all these phenomena are interconnected. 

 

VI. NUMERICAL SOLUTION OF THE BOUNDARY PROBLEM 

A. Numerical algorithm 

For the numerical solution of the boundary problem (14), (15), 

the method of fractional steps (МFS) developed by Janenko 
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[28] was employed as effective and simple one. The strategy 

of the method is in a split of a basic equation into several 

equations each of those is one-dimensional equation. The 

basics of this method can be explained on the example of a 

two-dimensional diffusion equation.  

The numerical scheme considered below could be 

generalized from two to three spatial variables, therefore a 

two-dimensional equation is considered just for simplicity: 
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By the method of fractional steps, instead of this equation, the 

following equation array is introduced: 
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so that the full approximation is achieved at a whole time-step. 

Each equation is discreted and solved consequently by 

each time step using the well-known one-dimensional 

numerical schemes. The implicit method of fractional steps 

(MFS) when applied for the equation array using Crank-

Nicolson scheme yields in the following approximation 
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The system results in an algebraic equation array with a block 

tridiagonal matrix along the numerical grid lines. Thus the 

solution at each half-step is found using the Thomas’s 

marching algorithm [29]. This scheme has an accuracy order 

of ( )222 )(,)(,)( yxtO ∆∆∆≈  and is absolutely stable by the proper 

boundary conditions both for the two-dimensional as well as 

for the three-dimensional cases.  

 

B. Split procedure 

Numerical solution of the boundary problem (14), (15) has 

been performed using the method of fractional steps. Splitting 

between the spatial variables transformed the two-dimensional 

problem to the two separated one-dimensional problems. On 

the lower half-step (the first temporal semi-step): 
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   On the upper half-step (the second temporal semi-step): 
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where [ ]1;0∈α  is the scheme approximation parameter. By 

choosing this parameter between 0 and 1 the term with phase 

heat exchange has different influence in first and second half-

step. It allows controlling the properties of numerical scheme.  

 

C. Finite-difference approximation of derivatives 

Derivatives inside two-dimensional numerical domain are 

approximated by the second-order central differences: 
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At the boundary of domain a 3-point approximation is applied: 
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With regards to a coordinate z approximation of the 

derivatives are performed similarly.  

The temporal derivatives are approximated at each point 

(i,j) of a numerical domain by first-order forward differences: 
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where τ∆  is a time step on the numerical grid chosen. 

Thus the boundary problem (15)-(17) should be solved 

numerically. The boundary conditions (15) are splitted for the 

equation arrays (16) and (17) by x and z, correspondingly. 

 

D. Finite-difference scheme for the boundary problem 

The finite-difference scheme for the numerical solution of 

the boundary problem (15)-(17) with account of the above-

mentioned consists of two steps. On the first half-step by time 

the boundary problem (15), (16) is solved in the following 

finite-difference form: 

 

[ ]))(1()(
2

)()()( ,1

,1

,1

,11

,1

5.0,1

,1

5.0,11

,0

,1

,0

,1

,0

5.,1

ji

n

ji

n

ji

n

ji

n

x

ji

n

ji

n

ji

on uuuu
h

+−+
+

−
++ −−+−+= ββ

τ
ρρρ , 

[ ]












−−∆+−+= −+
ji

n

ji

nji

nz

ji

n

ji

n
T

p
TThpp

,

,1

,

,12

*1

,

,22021

1,

,1

1,

,1 )(1)1(2 RePe αα ,     

m

ji

nx

ji

n

ji

nji

n
T

T

h

pp
u 









−
=

+−

,

,1

10

,1

,1

,1

,1,

,1
2

,                                                     (18) 

INTERNATIONAL JOURNAL OF GEOLOGY Issue 4, Volume 3, 2009

106



 

 

[ ]
m

ji

n

ji

n

ji

nji

n

ji

n
T

T

T

p
TTw 























−−∆+−=
,

,1

10

,

,1

,

,12

*

,

,22021

,

,1 )(1)1( RePeα ,  

[ ][ ]+−−+−−+
−

=
− −+−

+
+

++
+

))(1()()1(
2

1 ,1

,1

,1

,11

,1

5.0,1

,1

5.0,11

,

,1

,

5.0,1
1

,

,1

,

5.0,1 ji

n

ji

n

ji

n

ji

n

ji

n

ji

n

x

ji

n

ji

n
uuuuTT

h

TT
ββββ

γ
τ

[ ][ ]+−−+−−−+ −+−
+

+
++ ))(1()()1(

2

1 ,1

,1

,1

,1

,1

5.0,1

,1

5.0,1

,

5.,11

,

,11

ji

n

ji

n

ji

n

ji

n

ji

on

ji

n

x

TTTTuu
h

ββββ

[ ] [ ]
[ ] +

−+

−+
−+−+

+

+

+
+ mji

n

ji

n

mji

n

ji

nji

n

ji

n
Tpp

TT
uu

10

,

,12

,

5.0,12

1,

,1

,

5.0,12,

,11

2,

5.0,111
)1(

)1(
))(1()()1(

ββ

ββ
ββγ

[ ]
[ ] [ ]{ [ +−−+

−+

−+
+ +

+
++

+

+ ji

n

ji

n

ji

n

ji

nmji

n

ji

na

mji

n

ji

n
TTTT

Tpp

TT
,

5.0,1

,1

5.0,1

,

,12

,

5.0,12

10

,

,12

,

5.0,12

2

*1

,

,1

,

5.0,11
2()1(

)1(

)1(
βββ

ββκκα

ββγ

ρRe

Pe

] [ ] +−−+−++−−++ −+−
+

+
+

−+−
+

2,1

,1

,1

,12

,1

5.0,1

,1

5.0,1222

,1

,1

,

,1

,1

,1

,1

5.0,1 ))(1()(
4

1
)2()1() ji

n

ji

n

ji

n

ji

n

xx

ji

n

ji

n

ji

n

ji

n TTTT
h

m

h
TTTT βββ

[ ][ ]}jinji

n

ji

n

ji

n

ji

n

ji

n TTTTTT ,

,15

,

5.0,15

,

,25

,

5.0,25

,

,12

,

5.0,121 )1()1()1( −+−−+−++ +++ ββββββαξNu ,       

[ ]{ } [ +−=−+−∆+−
−

+
+

++
+ ji

n

ji

n

x

ji

n

ji

n

ji

n

ji

n
TT

h
TTT

TT
,

5.0,2

,1

5.0,22

,

,24

,

5.0,242021

,

,2

,

5.0,2
2(

1
)1(1)1( βββα

τ

]
m

k

ji

n

ji

n

ji

n

ji

n
T

TTTT
10

1,1

,2

,

,2

,1

,2

,1

5.0,2 )2()1()
κ
αξ

β
Nu

++−−++ −+−
+

[ ] ⋅−+ ++

mji

n

ji

n TT ,

5.0,13

,

5.0,13 )1( ββ  

[ ]))(1()( ,

,2

,

,15

,

5.0,2

,

5.0,15

ji

n

ji

n

ji

n

ji

n TTTT −−+−⋅ ++ ββ , 

[ ])2)(1()2(
,1

,3

,

,3

,1

,3

,1

5.0,3

,

5.0,3

,1

5.0,32

32

,

,3

,

5.0,3 ji

n

ji

n

ji

n

ji

n

ji

n

ji

n

x

ji

n

ji

n
TTTTTT

h

aTT −+−
++

+
+

+ +−−++−=
−

ββ
τ

, 

where τ , hx  and hz  are the steps by time (Fourier number) 

and two spatial variables x, z, respectively. And the indeces n, 

i, j are used with respect to the corresponding numerical grid 

points for all above-mentioned variables. The first bottom 

index has been retained the same as previously for all 

variables. The second bottom index is temporal grid point (n). 

The top indeces are the spatial numerical grid points by x (i) 

and z (j), respectively. 

    Then the finite-difference equation array on the upper 

temporal semi-step may be got similarly to (18). Here the 

constants β , jβ  (j=1-5) are weighting coefficients of the 

numerical scheme like the above-mentioned α . They are 

introduced for the controlling possibility in numerical scheme.  

 

E. The finite-difference boundary and initial conditions  

    Initial and boundary conditions (15) in a finite-difference 

representation yield 
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Here are: [ ]Ii ,1=∈ , [ ]Jj ,1∈  so that the numerical grid contains 

I  nodes by x in the particle layer and in the impermeable 

surrounding medium, which are numbered from the left to the 

right, and J  nodes by z numbered from the top to the bottom.  

 

F. The Thomas’ marching procedure   

The finite-difference boundary problem (19), (19) was 

solved numerically using the Thomas’ marching procedure 

[29]. Two three-point scalar marching were applied by x and z. 

The non-linear terms were computed iteratively: first by the 

parameters of the previus temporary layer and then the values 

from the previous iteration were used. The iterations were 

performed before the two consequent iterations differed less 

than the control level stated.  

The three-point finite-difference boundary problem has 

been solved on the lower half-step by time using the equations: 
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On the upper half-step the following equations were used: 
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The finite-difference equations on the lower half-step yield 

in a three-diagonal form:  
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where are: [ ]1,2 −∈ Ii , 3,2,1=l  (for gas, particles and 

impermeable medium, respectively). The coefficients 

FGE ,,,Γ  are cumbersome, therefore they are omitted. 

Similarly on the upper half-step: 
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where are: [ ]1,2 −∈ Jj , 3,2,1=l . 

The equations (20), (21) with the boundary and initial 

conditions (19) give the following marching coefficients: 
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where the boundary values of the coefficients calculated by the 

boundary conditions are: 

 

INTERNATIONAL JOURNAL OF GEOLOGY Issue 4, Volume 3, 2009

107



 

 

1,2

5.0, =+
j

nlA ,   0,2

5.0, =+
j

nlB ,  2,1=l ;    1,

5.0,3 =+
jI

nA ,  0,

5.0,3 =+
jI

nB ; 

( )jI

n

j

n

j

n

jI

njI

n

jI

nl
AkA

BBk
TT

,

5.0,223

,2

5.0,3

,2

5.0,3

,

5.0,223,

5.0

,

5.0,
11 ++

++
++ −+−

+
=≡ ,   .3,2,1=l         (25) 

The marching is going to the right with 2,1=l  and to the left 

with .3=l  

    On the upper temporal half-step all the marching is right: 

 

ji

nl

ji

nl

ji

nl

ji

nlji

nl
CE

G
C

,

1,

,

1,

,

1,

,

1,1,

1,

+++

++
+ −Γ

= ,    
ji

nl

ji

nl

ji

nl

ji

nl

ji

nl

ji

nlji

nl
CE

FDE
D

,

1,

,

1,

,

1,

,

1,

,

1,

,

1,1,

1,

+++

++++
+ −Γ

+
= ,                (26)  

 

where are: 
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The relations (24)-(27) finalize the numerical solution. 

 

VII. COMPUTER SIMULATION OF THE GEOTHERMAL SYSTEM 

A. Parameters of the geothermal system 

    The model obtained was implemented for numerical 

simulation by the following parameters for steam flow through 

the geothermal underground layer: 

K0=1.5*10
-14

m
2
, H =10

3
m, T∆ =200K, 0

10ρ =0.58kg/m
3
, 

0
20ρ =2.6*10

3
kg/m

3
, 0

1a =2.04*10
-5

m
2
/s, 0

2a =6.3*10
-7

m
2
/s,  

0
1k =24.1*10

-3
W/(m*K), 0

2k =1.58W/(m*K), 
2Tβ =10

-5
K

-1
, 

1γ =1.28, 10µ =1.24*10
-5

N*s/m
2
, 1α =0.26, 10T =1.865, 

Hp1 =1.52*10
5
N/m

2
, 

2
*

Re =0.113, Pe =5*10
4
, Da =1.5*10

-20
, 

Pr =1.05*10
-3

, *
Ra =47.7, 1Nu =2.01, Gr =9.35*10

22
, 

zcTzxT jjj −= 0
0

0 ),( , where 
jc =const. 

 

B. Results of computer simulations for geothermal system 

    The results of computations are presented in Figs 2, 3:  
 

 
Fig. 2. Vertical velocity, pressure and density of steam on the grids 

11x6 (to the left) and 21x11 (to the right) 

 

The grid 11x6 is too robust but 21x11 gives attainable results 

of computations, so that more fine grids are not needed in a 

majority of computations. Fig. 2 shows the difference between 

the numerical solutions on those two grids applied. 

Computations on the grids 41x21 did not show remarkable 

difference with 21x11. 

 
     a                                                 b 

 

 
c 

Fig. 3. Steam temperature (a), particles temperatures (b) and 

temperature of the surroundings (c) on the grid 21x11 

 

The numerical simulations show that two consecutive 

temporal iterations at each temporal step completely coincide 

with accuracy up to five digits if time step is below 10
-8

. In the 

case considered Fourier number (dimensionless time) Fo=10
-5 

corresponds to approximately one year. Only horizontal steam 

flow velocity may differ but it is too small comparing to the 

vertical one (no more than 1%, mainly 4-6 order less than 

vertical depending on permeability of particle layer).  

The difference in results of computations on the numerical 

grids 11x6 and 21x11 reveal remarkable only near the upper 

and bottom boundaries of the layer being mainly neglegible 

inside the layer (less than 5%). The computations with using 

the grids 21x11 and 41x21 are practically coinciding.  

Data presented in Figs 2, 3 show that the system studied is 

inertial so that the non-stationary effects reveal approximately 

starting from Fo=10
-7

. The maximal temperature difference 

between the particles and steam is observed near the upper and 

bottom boundaries of the layer, while inside the layer all 

parameters are close to some linear functions of vertical 

coordinate z.  

With the stated here initial temperature distributions, which 

depend only on z, the numerical simulation has showed no 

remarkable changes of parameters by coordinate x with further 

evolution of the system in time, except narrow region close to 

the interfacial boundary between particle layer and 

impermeable medium. In these narrow regions the flow 
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velocity exceeds the one in the rest of numerical domain about 

5-15% with increase near the bottom boundary z=-1. A 

variation of the steam density is the most intensive (0-30%), 

and influence of particle layer on the impermeable medium is 

negligible. Its temperature is varying only near the interfacial 

boundary rapidly decreasing far from boundary, so that in 

many applications it may be neglected. Thus, only a heat flux 

from particle layer into the impermeable medium must be 

taken into account in boundary conditions omitting the heat 

conductivity equation for surroundings. This simplification of 

the problem can be made in all situations when impermeable 

medium has substantial thermal resistance working as insulator 

for the particle layer. If impermeable medium serves for the 

heat removal (its thermal conductivity is higher than thermal 

conductivity of particle layer), then the above-mentioned 

model is appropriate for numerical simulation. 

 

C. Perturbation  of  the system  

Now let us consider more complex case when the initial 

state of the system in substantially non-uniform as it is 

normally observed in engineering practice. For example, the 

initial temperature of steam is perturbed [1, 4]: 

 

zmxkzxTT 111
0

10
0

1 sinsin),( θ+= ,                                            (28) 

 

),(
0

10 zxT  is an initial unperturbed temperature distribution, 
1

θ  

is amplitude of perturbation, and 
11 ,mk  are the wave numbers 

of perturbations by x and z, respectively.  

 

D. Blow-up regimes  

    The results of computer simulation for porosity 26.01 =α , 

4104 ⋅=ξ  (particles of the layer are nearly 1m in diameter for 

the layer of H=10
3 
m) are given in Figs. 4-6: 

 

  

 
 
 Fig. 4. Temperature evolution in steam flow T1 and surrounding T3  

          for 0Fo = , 
7

2 10Fo
−

= ⋅ , 
6

2 10Fo
−

= ⋅  and 5102 −⋅=Fo , 

respectively, computed by 8102 −⋅=∆Fo . 

Fig. 4 shows temperature evolution in a domain. 

Temperature distribution for particles in the permeable particle 

layer does not change so much as the temperature of a steam, 

therefore it is not shown in figure. Then the related evolution 

of a steam density and its vertical flow velocity is presented in 

Figs 5, 6: 

 

                      0Fo =  

                    5102 −⋅=Fo  
 

Fig. 5.  Evolution of a steam flow velocity in particle layer 

 

 

                      0Fo =  

                   5102 −⋅=Fo  
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Fig. 6.  Evolution of a steam density in particle layer 

 

The non-linear interaction of the perturbations in a system 

may cause strongly non-uniform evolution of the parameters in 

the domain. The other case of simulation performed for the 

same physical situation but with the ten times larger particles 

in the layer ( 2104 ⋅=ξ ) is presented in Fig. 7 for 5102 −⋅=Fo , 

where from follows that with increase of particle size the 

heterogeneous properties and localization of abnormal heating 

reveal more definitely: 

 

 
 

Fig. 7.  Local abnormal heating in particle layer and non-linear 

interaction of parameters 

 

VIII. CONCLUSION 

With a local abnormal heating due to non-linear heat 

conductivity of steam temperature escalation in some narrow 

regions causes local vicosity increase, which, in turn, leads to 

decrease in steam flow velocity. Therefore heat conductivity 

becomes higher while convective heat transfer falls down. 

Inversely, in the local regions with lower temperature viscosity 

is lower, thus, velocity of steam flow grows and convective 

heat transfer dominates, so that in such localities temperature 

is lower. Local abnormal heating due to non-linear 

conductivity and non-linear interaction of parameters results in 

complex non-uniform distribution of the parameters of steam 

flow in particle layer.  
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