
 

 

  

Abstract—The effects of material’s porosity on the fluid flow 

behavior were studied numerically in detail. The method of 

alternative finite different scheme was employed to calculate the 

velocity and flow profile with high order of accuracy. The 

numerically calculated velocity profiles for the pure shear-driven 

cavity flow were compared with the benchmark solutions for the 

purpose of method validation. To explore the effect of material’s 

porosity, prediction of fluid flow were made at various values of 

porosity and a Reynolds number in a shear-driven cavity. The 

numerical results of velocity profiles and plots of streamline agree 

well with other reported results indicated the multidisciplinary 

applications of the present scheme. 

 

Keywords—Navier-Stokes, porosity, cubic polynomial, 

numerical method, shear-driven cavity.  

I. INTRODUCTION 

LUID flow through porous media for many different kinds 

of porosities are of great importance because of their 

existence in industrial applications. These existences have 

motivated extensive research on the fluid flow characteristics 

due to the presence of material’s porosity.  

On the other hand, the 2D fluid flow inside a square cavity 

filled with porous medium, which is related to a number of 

natural phenomena and industrial applications [1][2], is also an 

interesting subject. A lot of numerical simulations have been 

conducted to investigate the effect of porosity on fluid flow 

behavior. Cheng [3] provides an extensive review of literature 

on flow structure in fluid saturated porous media with regard 

to applications in geothermal systems. Nield and Bejan [4] 

gives an excellent summary of the subject. Other works are [5-

6] and [7]. Due to the complexity of porous structure and fluid 

interaction with the boundaries, most of the mentioned 

researchers preferred numerical approach to understand the 

fluid flow behavior in the system. Interestingly, many of them 

applied conventional numerical schemes based on 

discretizations of the semiempirical models as their numerical 

tools.  

A review of the available literature shows that the effects of 

the medium porosity on the flow structures have not been well 

discussed by the previous researchers. To gain better 

understanding on the problem in hand, the fundamental flow 

solution must be known. Therefore, it is the purpose of this 

 
 

 

present study to investigate the vortex dynamics of the two-

dimensional flow manifold of such fluid flow problem.  

II. MATERIALS AND METHODS 

 

 
Fig. 1 Schematic geometry for shear driven fluid flow through porous 

media. 

 

The physical domain of the problem is represented in Fig. 1. 

The top lid was constantly moved to the right direction at 

different constant velocity Uwall  to give the Reynolds 

Re=UwallH υ( ) number of 400. The aspect ratio was set at 
unity. In the present analysis, the computations are conducted 

on a two-dimensional plane as shown in Fig. 1. This two 

dimensional approximation was undertaken based on a 

physical assumption that the behaviour of the shear driven 

vortex is relatively unaffected by the three dimensionality of 

the flow.  

In present study, the governing equation of the Brinkmann-

extended Darcy formulation is considered [8]. Therefore, the 

governing continuity and x-and y-momentum equations can be 

expressed as follow 

 

∂u
∂x

+
∂v
∂y
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An accurate numerical prediction of fluid flow 

through porous media 

Nor Azwadi C. Sidik, and Mohd Irwan M. Azmi 
azwadifkm@gmail.com,   mohdirwan@utem.edu.my  

F

INTERNATIONAL JOURNAL OF GEOLOGY Issue 2, Volume 4, 2010

36



 

 

ε
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −
ε 2

ρ
∂p
∂x

+ευ f

∂ 2
u

∂x 2
+

∂2
u

∂y 2
 

 
 

 

 
 

                                −
ε 2υ f

K
u −

ε 2
F

K
v u

                     (2)

 

 

ε
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −
ε 2

ρ
∂p
∂y

+ευ f

∂ 2v

∂x2
+

∂ 2v

∂y 2
 

 
 

 

 
 

                               −
ε2υ f

K
v −

ε 2F

K
v v

                      (3) 

 

In this work, the pressure term in the eqns. (2) and (3) are 

eliminated and rewrite in terms of vorticity function as follow 
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In terms of stream function, the equation defining the 

vorticity becomes 

 

ω = −
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                      (5) 

 

Before considering any numerical solution to the above set 

of equations, it is convenient to rewrite the equations in terms 

of dimensionless variables. The following dimensionless 

variables will be used here 
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In terms of these variables, Eqns. (4) and (5) become 
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where the dimensionless parameters of Darcy number, Da and 

Reynolds number, Re are defined as 

 

Da =
K

H 2
                       (9) 

 

Re =
u∞H

υ f

                      (10) 

and F = 1.75 150ε 2
 is the geometric function.  

In this section, we begin by recalling Eqn. (7) and it’s 

spatial derivatives, and split them into advection and 

nonadvection phases as follow 

Advection phase:  
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Nonadvection phase: 
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where Ωx = ∂Ω ∂x  and Ωy = ∂Ω ∂y . 

In the proposed method, the advection phase of the spatial 

quantities in the grid interval are approximated with 

constrained polynomial using the value the it’s spatial 

derivative at neighboring grid points as follow 

 

Fi, j X,Y( )= a1
˜ X + a2

˜ Y + a3( )˜ X + a4
˜ Y + Ωx[ ]˜ X 

                  + a5
˜ Y + a6

˜ X + a7( )˜ Y + Ωy[ ]˜ Y + Ω
           (17) 

 

where ˜ X = X − X i, j  and 
˜ Y = Y −Yi, j . The coefficients of a1 , 

a2 ,… a7  are determined so that the interpolation function and 

its first derivatives are continuous at both ends. With this 

restriction, the numerical diffusion can be greatly reduced 

when the interpolated profile is constructed. The spatial 

derivatives are then calculated as  

 

Fx, i, j X,Y( )= 3a1
˜ X + 2a2 ˜ Y + a3( )˜ X + a4 + a6

˜ Y ( )˜ Y + Ωx    (18) 

 

Fy, i, j X,Y( )= 2a2
˜ Y + a3( )˜ X + 3a5

˜ Y + 2a6 ˜ X + 2a7( )˜ Y + Ωy  (19) 

 

In two-dimensional case, the advected profile is 

approximated as follow 

 

Ω i, j
n = Fi, j X + η,Y +ξ( )                    (20) 

 

Ωx, i, j
n = Fx, i, j X + η,Y +ξ( )                 (21) 

 

Ωy, i, j
n = Fy, i, j X + η,Y +ξ( )                 (22) 

 

where η = −U∆τ  and ξ = −V∆τ . The newly calculated 
spatial quantities are then be used to solve non-advection 

phase of Eqns. (14) to (16) and vorticity formulation of Eqn. 

(8). In present study, the explicit central finite different 

discretisation method is applied with second order accuracy in 

time and space. For example, the treatment for eqn. (8) is  
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    (24) In summary, the evolution of the proposed scheme consists 

of three steps. The initial value of Ω i, j
n , Ω x, i, j

n  and Ω y, i, j
n  are 

specified at each grid point. Then the system evolves in the 

following steps;

 1. Since the pre-advected value of Ω i, j
n , Ω x, i, j

n  and Ω y, i, j
n  

are known on each grid, the constrained interpolation process 

can be completed according to Eqs. (20), (21) and (22). 

 

2. After the interpolation, advection takes place, and Ω i, j
n* , 

Ωx, i, j
n*  and Ωy, i, j

n*  are obtained. 

 

3. The values of Ω i, j
n+1, Ω x, i, j

n +1  and Ω y, i, j
n +1  on the mesh grid 

are then computed from the newly advected values in step 2 by 

solving the nonadvection phase of the governing equation. 

Then the interpolation and the advection processes are 

repeated. 

III. RESULTS AND DISCUSSION 

In this section, we begin with the validation of code written 

in MATLAB language for the present method. For this 

purpose, we carried out prediction of fluid flow in a square 

cavity driven by shear force at the top boundary without the 

present of porous media. This type of flow configuration has 

been used as a benchmark problem for many numerical 

methods due to its simple geometry and complicated flow 

behaviours. It is usually very difficult to capture the flow 

phenomena near the singular points at the corners of the 

cavity.  

In the simulations, two values of Reynolds number, 100 and 

400 were set up defined by the height of the cavity and 

constant velocity of the top lid of the cavity. Benchmark 

solutions provided by Ghia et. al [9] were brought in for the 

sake of results comparison.  

Fig. 2 show plots of stream function for the Reynolds 

numbers considered. It is apparent that the flow structure is in 

good agreement with the previous work of Ghia et. al [9]. For 

low Re ( Re=100), the center of vortex is located at about 
one-third of the cavity depth from the top. As Re increases, the 

primary vortex moves towards the center of cavity and 

increasing circular. In addition to the primary, a pair of 

counterrotating eddies develop at the lower corners of the 

cavity. 
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                           (a)                                                 (b) 

Fig. 2 Plots of streamlines for (a) Re = 100 and (b) Re = 400. 

 

The two velocity components u and v along the vertical and 

horizontal lines through the cavity center together with the 

benchmark solution are shown in Fig. 3. Good agreement 

between the current approach and the benchmark solutions are 

observed. It is noted that, the proposed approach is able to 

capture the critical points for the case in hand. 

 

 
Fig. 3 Comparisons of velocity profiles between benchmark solutions 

(symbol) [9] and present method (solid lines) 

 

        

                           (a)                                               (b) 

       

                    (c) 

Fig. 4 Plots of streamline at Re = 400 and (a)ε = 0.4  (b) ε = 0.6  and 

(c) ε = 0.9  

 

 

(a) 

 

 

                                             (b)                                                                                                                                  
Fig. 5 Comparisons of plots of (a) horizontal and (b) vertical velocity 

profiles between the proposed scheme (solid line) and finite different  

(symbol) for Re = 400. 

 

In Figs. 4 and 5, the streamline plots and velocity profiles 

through the cavity center are plotted for different values of 

porosity. For comparison, the flow is also solved by a finite-

difference scheme based on a 50× 50 mesh size. Clearly, the 
proposed solutions agree well with the finite-difference 

solutions for these cases. It is also seen that as value of 

porosity increase decreases, the boundary layer near the 

moving lid becomes thinner, and the vortex in the cavity 

becomes weaker. 

IV. CONCLUSION 

Numerical computations of fluid flow through porous media 

were performed using the proposed extended constrained-

interpolated profile method. The results of the computations of 

the fluid flow in a shear driven cavity filled with porous media 

were compared with the finite different solutions to the flow 

configuration and the scheme demonstrated excellent 

agreement at various values of medium porosity. Future works 

would focus on the extension to three-dimensional scheme and 

prediction of fluid flow through heterogeneous porous media. 
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