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Abstract—We study a problem of reconstruction of seismic wave 

speed distribution from a set of measured first arrival traveltimes in 
presence of strong velocity contrasts, which cause the problem to be 
highly non-linear.  In this context, we make an attempt  to improve   a 
stable iterative reconstruction algorithm by incorporating appropriate 
a variable regularizing parameter and also used it for a simple 
synthetic borehole test after writing its algorithm in a C++ code. The 
simulations results support the effectiveness of the method. 
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I. INTRODUCTİON 
omographic analyses have been applied in many fields, 
with a tomography term that has been used to represent a 

variety of analysis procedures, the most common being 
medical CAT (Computerized Axial Tomography) scanning 
[1]-[2]. In seismic tomography[3]-[5], it refers to the 
measurements of arrival times of travelling seismic waves that 
pass through the subsurface medium. Variations in these 
arrival times of the seismic waves are associated with medium 
velocity or structure. Tomographic experiments that use these 
seismic wave traveltime variations to image structure of the 
subsurface is known more specifically as acoustic traveltime 
tomography.  Variations on this procedure lead to the different 
names of tomographic applications such as attenuation 
tomography, waveform tomography and resistivity 
tomography. Most often, tomography refers to the 
measurements of the traveltimes differences for wave pulses   
transmitted through a medium and the interpreted velocity 
variation is associated with a physical change along the ray 
path as in CAT medical scans.  
  All tomographic techniques rely generally on the 
measurements of variations in some specific parameters in the 
medium between  transmitters and receivers. So,   the     result  
 is an image of physical property variation denoted as a 
tomogram. The objective of this paper is therefore to 
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reconstruct the subsurface velocity structures using the 
principle of seismic wave propagation. 

Let a seismic wave velocity  be a function of the 
position  in a medium and let 

( )v x
x ℘  denote all paths connecting 

a given source and receiver in this medium.  Fermat’s 
principle[3] states that travelling wave will take a shortest path 
in the medium. It actually deals with the shortest time path, 
which may not be straight line at all. Therefore the correct ray 
path between the source and receiver is the one which has the 
least traveltime among the others paths. Let us define pτ  to 
be the functional that yields the traveltime along the Fermat 
ray path p ∈℘: 
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where Ψ  is a nonlinear operator and  denotes the 
differential  length along the ray path

pdl
p . If more than one path 

produces the same minimum traveltime value, the ray path  
denotes any particular member in this set. The task of 
tomography is thus to find a function   

p

( )v x  given the 

integrals pτ  over a family of manifold℘ . One difficulty of 
this approach is that the path of integration, the rays taken by 
seismic energy depends on the unknown velocity structure.  
Moreover, the ray path is required to be known in order to 
evaluate this integral.   

Although the solution to the problem of how to reconstruct 
a velocity function ( )v x  from the line integrals pτ  dates 
back to the paper by Radon[6], its applied importance has 
been made clear by Cormack and Hounsfield[1] in 1972. They 
developed an effective numerical and medical technique for 
exploring the interior of the human body for diagnostic 
purposes. Outside of the field of medicine, it has many uses 
including electron microscopy, acoustic and optical 
tomography and radio astronomy. Aki[7] was first to use 
seismic data in their 3-D study of the earth's crust. After this 
study, seismic tomography has become an important 
geophysical tool for producing internal structures of the 
subsurface using transmitted seismic waves and it has been 
widely studied in the literature[10]-[13].  

  In this work, a reconstruction method is proposed to 
improve on the conventional numerical algorithms by 

T 
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incorporating appropriate weighting matrices and a variable 
regularizing parameter.   

II. A MATHEMATICAL PROBLEM 
The basic tomographic experiment depends on a suit of 

source-receiver combinations that record signals that have 
sampled a region of interest between two boreholes. To 
reconstruct subsurface velocity structure shown in Fig. 1, we 
first place the sources in one borehole and the receivers in the 
other. Secondly, we divide the rectangular region enclosed by 
our sources ( ) and receivers ( ) into 

rectangular cells of constant slowness , which is a 
reciprocal of wave velocity .  The cells are numbered 
from 1 to .  Then the slowness model is defined by the 
vector 

, ,...,1 2S S Sm

1 2( , ,..., ),n

, ,...,1 2R R Rm
( )s x
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n

T s s s
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3,... )m
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( 1,i

 where  represents the slowness of 

the  cell. A measured data vector is defined as 

, where the transmitter-receiver pairs and 

is the first arrival traveltime along the  
ray path through the medium. The superscript T represents 
transposing.  

js
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By using (1), in general, the relationship between ( )s x  and 
 can  be given in the following formula: t
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where  represents observation errors in the measurements. 

If  is denoted as the length of the  ray path passing 

through the  cell and defined by  

ie

ijl thi
thj

                        ,                          (3) min
pil pij i p cell ji

= ∫
∩

Therefore, (2) can be reduced to a system of equations in the 
following form: 

                    .               (4) , ( 1, 2, ..., )
1

n
t l s e ii ij j ij

= + =∑
=

In the vector- matrix notation,  

                                 ,                                        (5) = +t Ms e

where the matrix  is a matrix whose entries  are 

described by  (3). Note that for any given ray path , the ray 

path lengths  are zero for most cells

M (m n× ijl
i

ijl j , as the given ray path 
will, in general, intersect only a few of the cells in the model. 
This is the basic equations of forward modeling for the ray 
equation analysis.  In other words, it can be considered as a 
numerical approximation to (2). Then, the mathematical 
problem is simply to find the slowness  and the ray path 
matrix from the measurements .  More precisely, given 

the first arrival data, our aim is to reconstruct the slowness 
distribution of the medium between boreholes shown in Fig 1. 
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 Fig. 1 simulated target slowness model of subsurface enclosed by 

two boreholes.  

    
Generally, the tomographic reconstruction problem[31]-

[34] is ascribed to solve a system of linear equations derived 
about some reference model. However, for the most 
tomographic problem, the ray path matrix is ill-
conditioned and direct solution may lead to unstable results. 
The system is usually ill-posed and inconsistent due to some 
sources of limited and noisy projection data and ray bending. 
Therefore, it is very important to guarantee a reasonable 
solution to the system equations existing at each linearized 
step. So, standard techniques for solving inverse problems 
cannot directly be applied. To stabilize the solution, some 
regularization schemes should be applied. A complete survey 
of the various regularization strategies and the available 
methods for the estimation of the optimal regularization 
parameter can be found in [14]- [20]. 

M

III. RAY TRACING 
The ray tracing is based on the concept that seismic energy 

follows a trajectory determine by tracing equations which 
physically describe how energy continues in the same 
direction until it is refracted by the velocity variations. This is 
an important step for the forward problem and it is also carried 
in the each iteration.  A good choice of ray tracing algorithm 
would be needed for the calculation of ray travel times 
between two known end points through given velocity 
structure and it is often called the forward modeling. 
Therefore, many researchers[10]-[12] have developed 
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different ray-tracing techniques.  However, we shall only 
consider here to follow a bending ray method, suggested by 
Prothero[25], which involves bending of ray path by velocity 
perturbations until it satisfies a minimum traveltime criterion. 

 

Briefly, the coordinates  and , known as a 
source-receiver pair respectively, are assumed to be known. 
The  ray path  that connects the source - receiver pair 
shown in Fig. 2, can be found by using Fermat’s principle. If 
the horizontal distance between two vertical boreholes is , 

the initial ray path for the   ray travelling from the source to 
the receiver is taken to be a straight line: 

( )SS yx ,

thi

( RR yx , )

ith ip
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The perturbation is to be a harmonic series of the form:   
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where 1 2{ , ,..., }T
Kc c c=c
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 is a vector of the coefficients of 
the harmonic series. Only sine and not cosine terms are used 
because the end points of the ray remain unperturbed. The  
traveltime along the  perturbed ray path, defined by 

thi
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The problem is now reduced to the determination of the 
coefficients of  that minimise the traveltime functionalc iτ : 

                           1 2( , ,..., )K imin c c cKτ
∈ℜc

.                     (10) 

The number of the coefficients in calculating the traveltime of 
the ray in (10) depends on the resolution of our tomographic 

model. For a relatively low resolution, it is necessary to seek a 
general bend in rays, so we only need to determine a few 
coefficients of . However, the determination of these 
coefficients is difficult since they are connected nonlinearly to 
the traveltimes

c

iτ . To simplify this problem, we chose to  
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X  
Fig. 3 mapping ray paths on the area of being imaging between 

two boreholes. Seismic wave escapes from low velocity regions and 
excites for passing through high velocity regions. 

ignore the Snell’s law[10] at cells boundaries and assumed 
that 2K = . Then, the problem is simply reduced to minimise 
the traveltime functional given in (9) with respect to two 
coefficients  and . In this context, we used a 
multidimensional search algorithm, which is known as the 
Simplex method[23]-[24]  to find optimum ray paths shown in 
Fig. 3 for a given slowness model.  Basically, starting with  
three points whose  corresponding calculated traveltimes 

are , and , respectively the algorithm seeks to 
replace the point with the largest traveltime by a smaller one 
and then other moves are made such as checking values 
between the original vertex and the reflected vertex or 
expansion (contraction) of the  triangle. When an improved 
vertex is found, the vertices are relabelled and the process 
starts over for the new triangle. If no improvement (or 
improvement less than a preset threshold) is attained or some 
fixed number of iterations is executed, the process terminates 
for this ray path. 

1c 2c

1τ τ 2 3τ
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IV. RECONSTRUCTION METHOD 
Following Berryman’s works[8]-[11], the forward problem 

in (5) can be replaced with the feasibility constraints:   

                      .                   (11) ( ) , ( 1,2,..., )ii
t i m≥ =Ms

This arises from Fermat’s principle and implies that the first 
arrival rays follow the path with a minimum traveltime for a 
given model .  Thus, if s  is a true model then any ray path 
matrix  must satisfy these constraints. Therefore, any 
model that violates the constraints in (11) along any ray path 
matrix  is called a nonfeasible set. Moreover, for the -
feasible constraints the limiting equality is an equation for the 
hyperplane in the -dimensional model space. The feasible 
region is therefore bounded by these hyperplanes and by the 
planes determined by the constraints from the positivity of 
slowness in all cells,  

s
M

M m

n

                         0, ( 1,2,3,..., ).s jj > = n                   (12) 

It can easily be shown that the constraints in (11) and (12) 
imply that the feasible region of the model space is convex. 
Hence, for a fixed ray path matrix  the set of all feasible 
models includes  models either inside of the feasible region or 
on the feasibility boundary determined by M  and t . For any 
combination of the ray-path matrix , slowness vector  and 
the measured traveltimes , the number of rays violating those 
constraints in (11) can easily be calculated and it is called the 
feasibility violation number (

M

M s
t

fvn ), determined by 

                        ,              (13) ( ) ( )
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m

i i
i

fvn tδ
=

⎡= −⎣∑s ⎤⎦Ms
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where the step function is defined by δ

                             .                             (14) ( )
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0 0

x
x

x
δ
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   Following Lanczos[12], a generalized eigenvalue problem 
with the appropriate weighting matrices can be implemented 
in the form: 

                   ,             (15) 
0 0

0 0T

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

M u L u
M v C

where  and  are m  and n  vectors of ones, respectively. 
The matrix on the right is defined in terms of diagonal 
matrices  and C , whose diagonal elements are the row sum 

 and the column sum of the matrix , respectively. 

The quantity  is the total length of the ray path. The 

quantity C  is the total ray path segments passing through the 

u v

Li

L

j

Li

th

C j M

thi

j cell.  It is called the coverage of cell j . Any cell with 
 is uncovered and therefore lies outside the span of the 

data for the current choice of ray paths. We retain only 
covered cells in the reduced slowness vector with

0C j =

s~ n n≤% . 

By deleting the corresponding columns in the matrix , the 
size of the ray path matrix  is thus reduced.  For the 
simplicity, we assumed 

M
M

nn =~

0

in the following discussions. 
 In agreement with Berryman[4], an analogous to the 

eigenvalue problem[21] providing for high contrast 
reconstruction can be given in the following form: 
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where for 1=λ , w u=1 ,  and the diagonal weighted 
matrices are as follow 
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By writing (15) in the canonical form, we get  
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Thus, the problem given in (16) can be transformed[33] into 
the following form: 

                                                       (20) 
0
T

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

y y
z zA

As we have seen above, with normalisation the current 
slowness model s  gives rise to the unique eigenvector with 
the highest eigenvalue and  that eigenvalue is unity. Given a 
set of transmitter-receiver pairs and any model slowness  
Fermat’s principle can then be used to find the ray-path 
matrix M  associated with  and with any slowness 

,s

γ s  
( ) in the same direction as s . If the normalised data is 
given by 

0>γ

                                             
1

2
−

=y T t                                (21) 

then the first problem is to find a value of γ such that the 
following functional  

                      ( ) ( ) ( )Tφ γ γ γ= − −z y A zy A ,                (22) 

achieves its minimum at the value:    

                       
T T T T

T T Tγ = =
z A z z A y .                         (23) 

z A z zAz
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Because . Having found optimal slowness TA Az = z γ γ=s s  
in the given direction , the second problem is to find another 
direction in the slowness vector space that gives better fit to 
the measured traveltimes by minimizing the following 
functional: 

s

   ( , ) ( ) ( ) ( ) ( )T Tϕ μ μ γ γ= − − + − −z y Az y Az z z z z ,        (24) 

where μ  is a regularizing parameter and controls the relative 

importance between the constrained norm
2γ−z z and 

residual norm
2

−y Az . The minimum of (24) occurs at  

                                (25) arg min ( , ), 0nμ ϕ μ μ
∈ℜ

=
z

z z >

T

where  satisfies the following system of the linear 
equations: 

μz

           ( ) ( )T μ μ γ γ+ − = −A A I z z A y z .         (26) 

So long as the matrix ( )μ+TA A I   for any  is non-
singular, there is a unique solution.  Hence, the problem is 
reduced to solve a (large) system of simultaneous equations 
with a symmetric positive definite coefficient matrix. For  
each iteration, the conjugate-gradient (CG) algorithm[24], 
which   is known as one of the most effective algorithm can 
successfully be applied to solve the resulting set of linear 
equations in (26) for

0>μ

μz  for a given μ . It is terminated when 
the relative change in the solution is less than 0.001%. What 
makes the conjugate gradient method so effective, especially 
for sparse problems, is that the matrix appears only through 
matrix-vector products, and the search vectors are also 
calculated recursively and not stored.  

The big question now is "how to choose the regularizing 
parameter μ "? If μ  is chosen to be too small the 
reconstruction is dominated by large, high frequency noise 
components. If μ  is chosen to be too large the effect of the 
regularization term will dominate the solution and important 
information in the data will be lost. Many approaches to 
choosing an appropriate value for μ    have been presented in 
the literature by different researchers [26]-[30]. Of particular 
interest for this work are methods based on what is called the 
L-curved. Briefly, when we plot the logarithmic value of semi 
norm 2μ γ−s s  versus the logarithmic value of 2μ−d Ms  

we get the characteristic L-shaped curve with a (often) distinct 
corner separating vertical and horizontal parts of the curve. In 
the vertical part of the curve the solution semi norm is a very 
sensitive function of the regularization parameter because the 
solution is undergoing large changes with μ ¸ in an attempt to 
fit the data better. On the horizontal part, the solution is not 
changing  very much as μ  is changed. So it is desirable to 
choose a solution which lies not too far to the right of the 
corner. However,  computation of  the L-corner requires many 
repeated solutions of the corresponding regularization problem 
for different values of μ , a potentially very costly task. 

Therefore, an alternative criterion is that the value of μ  is 
chosen so as  to place the solution  on the edge of the set as 
defined by a Chi-squared  statistics[27] 2

0( )μ
2χ χ≤s .  The 

value of 2
0χ   is selected such that the probability of exceeding 

this value due to chance alone is smaller than some threshold, 
say one percent. However, an inaccurate characterization of  
the forward problem in the ray tracing  process  can sometimes 
lead to under-regularization. 

Another point 
1
2

μ μ

−
=s D z  in the slowness vector space can 

thus be obtained. Although the point  μs  gives a better fit to 
travel time data, this fit is certainly spurious to some extent 
because it is based on the wrong ray path matrix  used in 
the computation of

M

μs . Thus, both of the points we have 
found, lie in the nonfeasible part of the vector space. If the 
solution of (5) exists, in agreement with Berryman, it must lie 
on the boundary of the feasible region. So γs μs and  may be  
used to find an optimum point on this boundary  in the sense 
that it is  as consistent as possible with the ray path matrix, 
with the travel time measurements and with the feasibility 
constraints. Because of the convex property of the feasible 
region, there exists a point s  between points γs μs and  that  

 

feasible re

non feasible region

sμ
s γ

s f

s
2

gion

s1
        

Fig.  4 stopping criterion of the algorithm. 
 

is closer to the feasible region than the either of two end 
points. This can easily be found by computing the feasibility 
violation number and choosing the model that gives a 
minimum violation number[6]-[14] when we move in the 
direction ( )μ γ−s s  from γs .  Then, we get 

                                                (27) (γ μ γα= + −s s s s$ ).
As α  gets smaller, it is expected that the inversion method is 
not providing any further improvement so that a threshold for 

α  of 0.25  is used to stop searching.  Once we find  and 
then scale it up to the point, denoted as

s$

fs  in the same 
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direction lying in the feasibility boundary. It is not hard to see 
that these three points , and fγ μs s s  are distinct unless we 
found the exact solution of the inverse problem in (5). 
Otherwise, these three points, shown in Fig 4 form a triangle 
and its area may give us an estimate how far we are from the 
solution.  

Finally, the iterative reconstruction algorithm that uses the 
above ideas is thus coded by using C++ programming 
language and tested for artificially generated traveltime data. 
The results are given in the following section. 

V. COMPUTER SIMULATIONS 
For a comparison with Berryman’ results, we took a similar 

model slowness structure shown in Fig. 5(a). Two boreholes 
on either side of the region contain an array of seismic sources 
and receivers and the region of imaging is divided into 

 cells. In according to Berryman, both on the upper 
half and the lower half of the medium there is a cross anomaly 
area respectively. The slowness of the upper anomaly area is 
larger than the background slowness and the slowness of the 
lower anomaly area is less than the background slowness. If 
the background slowness is taken as one, we then 
parameterised the model slowness by

(8 16)×

β , where the slow 
region had a slowness of 1 β+  and the fast region had a 
slowness of  1 β−  ( 0.2, 0.5)β = . Thus, variations in the 
value of β  will provide variations in the contrast of the model 
slowness. We first chose 0.2β =  for the low contrast and 
generate the traveltime data by using the ray tracing method 
described in the paper.  As mentioned before, the simplex ray 
path is constrained by the use of two coefficients in the sine 
series expansions to be quite smooth, perhaps smoother than it 
should be for such high contrast media.  Traveltime data, 
shown in Fig 5(b), consists of 320 rays, including 256 

 rays travelling from left to right and 64 (8(16 16)× 8)× rays 
travelling from bottom to top.  Given the first arrival time data 
in Fig 5(b), our aim is to reconstruct the velocity structure 
between the boreholes. To achieve this, our computer program 
was run on a Pentium IV personal computer (P.C.). The 
results, shown in Fig. 5(c)-(f) illustrate the convergence of the 
method. It can be seen that as the number of iterations 
increases, the fast anomaly is reconstructed very well while 
the slow anomaly is located well.  As β  increases we get 
higher contrast and expect that the slow anomaly could always 
be harder to reconstruct because few or no first arrivals pass 
through this region. We therefore chose 0.5β =  for the high 
contrast and generated the traveltime data by using the ray 
tracing method. This is illustrated in Fig. 6. For small contrast 
(less than 20%), the method produces uniformly excellent 
results even though the data contain zero-mean random noise 
with a variance less  
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Fig. 5 (a) slowness model having contrast with 20% anomaly. (b) 
Traveltime data.  Reconstructions obtained at (c) the first, (d) 10th, 
(e) 20th and (f) 30th iterations by the method given in this paper.  
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Fig. 6 (a) slowness model having contrast with 50% anomaly. (b) 

Traveltime data. (c) Reconstructed slowness distribution. 
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than . For large contrast, it becomes less accurate. 
However, experimental results show that the reconstructed 
slowness models obtained are closer to the target slowness 
than the obtained by the use of the damped least squared 
method (

0.01

1μ = ). The method converges quite rapidly to a 
definite result unless we force the algorithm to make a 
minimum percentage correction step per iteration as 1-10% of 
the distance along the direction ( μ )γ−z z . In an agreement 
with Berryman, it requires at least 10 iterations for getting 
reasonable results. 
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Fig. 7 area of triangle used as a stopping criterion for the algorithm 

and the root mean square error versus with the number of iterations. 
   
Variations in the stopping criterion used in the algorithm 

with respect to the number of iterations are shown in Fig. 7. It 
is clearly seen that as the number of iterations increases, the 
area of triangle decreases monotonically and subsequently 
oscillates around a small number. On the other hand, a 
quantitative measure of the improvement appears in Fig 7, 
which plots reconstruction error1 as a function of the number 
of iterations. It can be seen that the reconstruction error first 
decreases rapidly and then reduces gradually as the number of 
iteration increases. 

Finally, we assume that  a medium between two boreholes, 
shown in Fig. 8(a), consists of horizontal layers with the 
randomly chosen velocities at the different levels of depth. 
Then, we perform the same experiment to obtain the 
traveltime data in Fig. 8(b). By using this data, we ran our 
computer program on the Pentium IV P.C. and got the result 
shown in Fig 8(c). It is clearly seen that horizontal layers with  
velocities are estimated with an error of a few percent  and  the 
boundaries of the layers are almost recovered well.  
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Fig. 8(a) slowness model varying randomly at the different depths.  

(b) Traveltime data. (c)  Reconstructed slowness distribution after 30 
iterations. 

VI. CONCLUSION 
The results presented here are encouraging us for retrieving 

the slowness distribution of a medium from the first arrival 
traveltimes, which contain the errors made by neglecting ray 
bending effects far more significant than measurements errors. 
Even if the data contain errors less than 1%, it gives very 
stable reconstructions and avoids the large oscillations often 
found in traditional least squared methods. Although Fermat’s 
principle determines the ray path matrix once slowness is 
given, it also determines which slowness vectors are feasible 
and infeasible. Therefore, this plays an essential role in the 
reconstruction algorithm when the data have no noise. On the 
other hand, it requires a large consumption of computer time 
because of the computation of the ray path matrix.  This can 
be reduced by using parallel processing techniques because 
each ray path may be computed independently of the others. If 
we incorporate into above analysis any other geophysical 
information as constraints to guide the imaging or inversion, 
we could get more improvement in the reconstruction. In this 
context, Bayesian  methodology combined with Markov Chain 
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Monte Carlo techniques could be more appropriate for this 
kind of  problems. Therefore, it deserves further investigation. 
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