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Two-Phase Flow of Air and Soybeans during
a Silo Discharge Process

W. Chuayjan, W. Jumpen, P. Boonkrong and B. Wiwatanapataphee

Abstract— The paper aims to present mathematical model due to the poor design of the silo has led to a massive
and numerical simulation of a granular material flow during 2 damage as shown in Fig. 2.
silo discharge process. The material flow in the silo is a form of
two-phase flow consisting of particulates and an interstitial fluid.
These two phases are soybeans and air. The homogeneous flow is
assumed. The effect of the bottom design of the silo on the two-
phase flow is investigated. The bottom shape including flat shape
and cone shape and the diameter of outlet width including 0.08
m and 0.12m are chosen for this investigation. The results show
that the mathematical model can capture the granular material
flow in the silo. The bottom design has significant effect on the
velocity, pressure and shear rate in the granular material during
the silo discharge process.

Keywords— cone-bottomed silo, flat-bottomed silo, finite

element method, granular material, mixture model, two-phase
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Fig. 1. Flow problems: (a) Arching; (b) Piping; (c) Segregation

I. INTRODUCTION

ENERALLY, silos have been used to store granular

material such as rice, nuts, coffee, soybean, corn
flakes and fertilizer in agricultural industries. During fill-
ing and discharging processes, arching, piping, segregation
and silo collapse often cause problems for those industries
[1], [2]. As presented in Fig. 1(a), a stable arch is formed
above the outlet. This causes a blockage of any further
discharge. Fig. 1(b) shows a formation of pipe which
occurs when only the bulk solid above the outlet is flowing
out, and the remaining bulk solid which is at the dead
zones stays in place. Fig. 1(c) shows segregation occurring
when particles have different physical properties such as
particle size or shape. During the filling process, large
particles accumulate near the silo walls while the small
particles remain in the middle. This makes a bulk of
small particles flow out before the large particles during
discharging process. Moreover, a silo structure collapse Fig- 2. Collapse of a silo due to a poor design.
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present near the outlet hopper under gravity condition, [l. MATHEMATICAL MODEL

and the velocity of individual particles increased rapidly We deal with an assembly of a large number of
during discharging process. Afterwards, effects of relevant discrete solid components and air inside silos. Thus, the
factors including bottom angle, outlet width, inlet flow  model involves two immiscible phases including soybeans
rate and particle shape have been investigated [6]-[16]. and air. A granular material is then referred to a collection
Yunus et al. (2011) proposed a discrete element model of soybean particles and the air. In this section, governing

to study the flow behavior of powder inside a die shoe,
which is used for die filling [17]. Chuayjan et al. (2009,

2012) proposed a mathematical model based on discrete

element method (DEM) to investigate the flow pattern in
three different designs of silo bottom [18], [19]. It indicate

that the bottom shape has an influence on the flow pattern

in the silo.

It is realized that the granular material in the silo
consists of particulates and an interstitial fluid. Thus,

equations and boundary conditions of the granular mate-
rial flow during the silo discharge process are illustrated.

A. Governing Equations

The granular material flow during the silo discharge
process is focused in this study. The flow is assumed to
be a homogeneous flow of the granular material which
consists of particulates and an interstitial fluid. The gov-
erning equations of the homogenous flow are described as

recent researches have focused on two-phase flow of solid follows:

and liquid phases. Many mathematical models of two-
phase flow in silo have been proposed [20]-[23]. Hamed
(2006) proposed a two-phase flow model to elucidate the
gas-particle flow in a pipe [20]. He focused on three cases
of study including the case of no heat transfer (adiabatic
flow), the case of heat transfer (heating flow) and the case
of heat transfer (cooling flow). He compared his numerical
results with published data and proved that his model
adequately predicted the basic flow at low and high speed.
Zarghami et al. (2005) developed a mathematical model
to analyze the particles-wall contact time in fluidized

beds of sand [21]. The results showed that their model

was adequate to describe experimental data presented in

literature. Thakurta et al. (1998) proposed a mathematical
model of two-phase flow to study the thermophoretic
deposition rate of small particles in the turbulent channel
flow [22]. Sohn et al. (2002) investigated the radiation
effects by both gas and particles on particle transport
due to thermophoresis in an axisymmetric tube [23]. The

results of these studies enhance our basic understanding

of the characteristics of the two-phase flow of liquid
and solid phase. Although these knowledge provide some
guideline for the silo design, many problems still occur
during the filling and discharging processes. Thus, further
development of mathematical model is still required to
study the two-phase flow of granular material in the silo.

In this paper, we proposed a mathematical model of
homogeneous flow of granular material during the silo
discharge process. The effect of the bottom design of the
silo on the two-phase flow is investigated. The rest of
the paper is organized as follows. Section Il presents the
mathematical model of the granular material flow in the
silo during discharging process. Numerical investigations
are presented in section Ill. In this section, the effect
of bottom design including the bottom shape, and the
diameter of the outlet width on the velocity field, pressure
field and shear rate of the granular material in the silo is
discussed. Some conclusions are given in section IV.
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where two unknowm and ¢, denote the mixture velocity
and the volume fraction of the solid phase,p. and

pq are respectively densities of the mixture, air phase
and granular phaseg is the gravity, andmg. is the
mass transfer term. In equation (2), mixture dengitis
determined by [24]

p= pc(]- 7¢d) +pd¢da
and the dynamic viscosity is defined by [25]
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where . is the dynamic viscosity of the air phase, and
Omaz 1S the maximum packing concentration.

B. Boundary Conditions
At the inlet of the silo, constant pressure of the

mixture is set to the atmospheric pressure and insulation
condition of the solid phase is used, i.e.,

P=po, )

U;-n=20.

(6)

At the outlet of the silo, the solid phase is assumed
to flow out smoothly, and no viscous stress of the mixture
is applied, i.e.,

[n(Vu+vuT)]n=0. ()
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On the silo wall, slip condition of the mixture veloc-
ity, and insulation condition of the solid phase are applied.

u-n=0, ug-n=0. (8)

I11. NUMERICAL RESULTS

The numerical example in this study is the air-
soybeans flow during the silo discharge process. Two types
of silo including a flat-bottomed silo and a cone-bottomed
silo are used in this study. Geometries of both silos and
their domain meshes in two dimension are shown in Fig.3
and Fig.4, respectively.

—— 0.dm—> —— (0.4m —>

bottomed silo.

13m
13m

T 008m
@ (b)

Fig. 3. Geometries of the two silos having different bottom design: (a)
flat shape; (b) hopper shape.

Both silos are made of steel sheet and have the same Fig. 5.
dimension, i.e., 13n in height, 0.4m in width and 0.08
m in outlet diameter. Soybean is assumed to be spherical
and its diameter is 6nm. The cone angle of the silo
as shown in Fig. 3(b) ig5°. There is no mass transfer
between both phases because of immiscible property of
the air and soybeans. The parameter values used in the
simulation are listed in TABLE I.

The COMSOL MULTIPHYSICS version 4.2a. is used
in this simulation. The effect of the bottom design of the
silo on the two-phase flow is investigated. The bottom

(@)

TABLE |

Fig. 4. Domain mesh of the two silos: (a) flat-bottomed silo; (b) cone-

Volume fraction of soybeans at initial time= 0s in the
flat-bottomed silo and the cone-bottomed silo, respectively.

locations of soybeans and air are set randomly in both
computational domains as shown in Fig. 5.
Firstly, we investigate the effect of different outlet

PARAMETER VALUES USED IN SIMULATION

. . . Parameter  Definition Value
shape mcludlpg fl_at shape and cone shape, and the diame- o Density of gas phase T184hg/m?
ter of outlet width including 0.08: and 0.12m are chosen Ne Viscosity of gas phase 1.965x10° Pa - s
for this investigation. The process starts with setting the pd Density of solid phase 1,033kg/m?
S . . 00 Atmospheric pressure 101,325Pa
initial volume fraction of the soybeans. In this study, we g Gravity 9.8m)s?
assume that at= 0s silo is full of soybeans, and the air Pmazx Maximum packing concentration 0.2
is filled space between each particle inside the silo. The Mdc Mass transfer term 0 kg/m? - s
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width on the pressure distribution and shear rate. Two sizes
of outlet width of 0.12m and 0.08m are used in this
investigation. High pressure and high shear rate appear
near the orifice as shown in Fig. 6 and Fig. 7. The results
also show that the outlet width has significant effects on
the pressure and shear rate at the bottom part of the silo.
The longer the outlet width, higher pressure and higher
shear rate are present at the bottom part of the silo.
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0.339 0.301
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0.283 0.252
0.256 0.227
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10.033 —0.029
—0.005 —0.004

(@)

(b)

Fig. 6. Contour plot of pressure (Fa) at¢t = 1s in the granular
material at the bottom part of the flat-bottomed silo with two different
outlet widths: (a)0.012m; (b) 0.08m.
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Fig. 7. Contour plot of shear rate (P&) att = 1s in the granular
material at the bottom part of the flat-bottomed silo with two different
outlet widths: (a)0.012m; (b) 0.08m.

Next, we investigate the influence of the bottom
design on the flow behavior in the silof@at 1s. Pressure
distribution and shear rate at the bottom part of both silos
with outlet width of 0.08m are compared. Fig. 8 shows
contour plot of pressure and shear rate of the granular
material at the bottom part of the cone-bottomed silo at
t = 1s. It is found that the highest pressure at the cone-
bottom part as shown in Fig. 8(a) is approximately 0.3
M Pa while the one in the flat-bottom part is about 0.4
M Pa as shown in Fig. 6(b). The highest shear rate at the
cone-bottomed part, as shown in Fig. 8(b), is about 359
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Fig. 8. Contour plot of pressure and shear rate of the granular material
at the bottom part of the cone-bottomed silotat 1s. .

s~ ! while the one in the bottom part of the flat-bottomed
silo is about 22%~! as shown in Fig. 7(b). This indicates
that the cone-bottomed wall induces low pressure and high
shear rate.

Velocity profiles in the flat-bottomed silo and the
cone-bottomed silo are investigated. Fig. 9 shows velocity
vector and stream line of the granular material in both
silos. The results as shown in Fig. 9(a) indicate a dead
zone above the flat-bottomed silo where there is no flow
of the granular material. To investigate the maximal flow
of the granular material, we plot the mixture velocity field
att = 1s at the bottom of both silos as shown in Fig 10.
The results reveal that maximal velocity of the granular
material obtained from the cone-bottomed silo is @.5s
whereas the one obtained from the flat-bottomed silo is
only 1.65m/s. This indicates that the cone-bottomed silo
induces high flow rate.

Volume fractions of soybeans in both silos are illus-
trated in Fig. 11 at various times. Comparing with the flow
inside the flat-bottomed silo, red shading inside the cone-
bottomed silo illustrates that the granular material exits
from the silo very fast. High volume fraction of the air is
on the top part of the silo whereas the high volume fraction
of the soybean is underneath during discharging process.
The mass flow is present in the cone-bottomed silo while
the funnel flow is present in the flat-bottomed silo. The
granular material (bulk solid) in the cone-bottomed silo
flows faster than the one in the flat-bottomed silo.

Fig. 12 and Fig. 13 show velocity vector of solid
phase, mixture and air phase in the flat-bottomed silo and
the cone-bottomed silo at= 1s. The color bar on the left
presents the volume fraction of the soybeans in the silo
while the one on the right shows the volume fraction of the
air phase. Fig. 12(a), Fig. 12(b) and Fig. 12(c) respectively
present the flow direction of the solid phase, the mixture
and the air phase. The results indicate that the soybeans
flow downward as shown in Fig. 12(a) and the air flows
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upward as shown in Fig. 12(c). It also shows that the
granular material (mixture) as shown in Fig. 12(b) flows
downward and flows out at the orifice of the silo. The same
flow behaviors of the soybeans, the mixture and the air are
shown in Fig. 13(a), Fig. 13(b) and Fig. 13(c) respectively.
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IV. CONCLUSION
The model of two-phase flow has been proposed for
studying the effect of the silo-bottom design including the

Fig. 9. Velocity vector and stream line of the granular material in both
silos with the outlet width of 0.08n: (a) the flat-bottomed silo; (b) the
cone-bottomed silo.
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Fig. 10. Maximal velocity (m/s) of the granular material at the
bottom obtained from both silos : (a) the cone-bottomed silo; (b) the
flat-bottomed silo.

are solved by finite element method. Volume fraction of
soybeans, velocity field, pressure distribution and shear
rate are investigated. The results reveal that the way
of the bottom design affects the rate of flow of the
granular material out of the silos. Granular material in
the cone-bottomed silo flows faster than the one in the
flat-bottomed silo, and in the silo with larger outlet width,
pressure distribution and shear rate in the granular material
are higher. The flat-bottomed silo has the less efficiency
in granular draining. The cone-bottomed silo should be
selected for the discharging process.
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