
 

 

  

Abstract— Liu and Peng (Computers & Operations Research, 

35[18], 1624-1637, 2008) presented a method for obtaining a 

common set of weights in data envelopment analysis (DEA) and they 

also provided a system for ranking decision making units (DMUs) 

using common set of weights. Their method has two main problems. 

At first, their presented model may have alternative optimal solutions 

(alternative common set of weights). Alternative optimal solutions 

may lead to different ranks for each DMU. Second, all criteria for 

ranking, by their suggested system, may be identical for at least two 

DMUs and so these DMUs will have the same rank. Therefore, there 

is no full ranking for DMUs using the suggested method. The aim of 

this paper is surveying these shortcomings and presenting methods to 

overcome them. This paper suggests a method to obtain unique 

common set of weights which can be applied for all methods used 

linear programs for acquiring common set of weights. Moreover, by 

definition bad benchmark against benchmark defined by Liu and 

Peng, a system for full ranking DMUs is proposed. Numerical 

examples are used to illustrate the proposed method.                                               

 

 

Keywords—Alternative optimal solutions, Common set of 

weights, Data envelopment analysis (DEA), Linear programming, 

Ranking.  

I. INTRODUCTION 

ATA envelopment analysis (DEA) measures the 

efficiency of homogeneous decision making units 

(DMUs) by using mathematical optimization techniques. In 

this approach, by using the definition of production possibility 

set (PPS), DMUs are divided into two groups, DMUs lying in 

the interior of the PPS are called inefficient units and DMUs 

lying on the frontier of the PPS are called efficient units. A 

thorough review on DEA up 2009 can be found in Cook and 

Seiford [1]. 

  Nowadays, DEA is widely used for analyzing units in various 

systems. Asmild et al. [2] utilized DEA for reallocations of 
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police personnel. Assessment of universities through DEA was 

done by Kuah and Wong [3]. Sancho et al. [4] proposed a 

DEA model for determining the efficiency of wastewater 

treatment plants in Spanish. A DEA approach was used to 

evaluate economical and social roles of NOCs [5]. Assessing 

relative performance of water fabrication operations using 

DEA was suggested by Chen and Chien [6]. 

  In the main methods of DEA, such as CCR method that is 

presented by Charnes et al. [7] and BCC method that is 

suggested by Banker et al. [8], efficient units have efficiency 

score one, whereas inefficient units have efficiency scores 

between zero and one. Using efficiency scores, we have the 

ability to rank DMUs. Although efficient units will have same 

ranking, they do not have equal performance in actual practice. 

To overcome this problem, researchers have presented several 

approaches for ranking the efficient units.  

  The methods for ranking are divided into two groups. In a 

group, there are methods that only can rank vertex efficient 

DMUs are called super-efficiency methods. The first work of 

this kind is presented by Andersen and Petersen [9] and after is 

introduced many methods such as Tone [10] and so on. In 

another group, all efficient DMUs can be ranked. They are 

divided into three basic groups: cross-efficiency methods such 

as work Doyle and Green [11], MCDM methods such as work 

Jahanshahloo et al. [12] and interval DEA methods such as 

work Entani et al.  [13]. For a review of ranking methods, see 

Adler et al. [14].  

  One important stream of ranking methods is utilizing 

common set of weights that is extended by MCDM methods. 

Interesting research works in this area can be found, for 

example, in Cook et al. [15] and Roll et al. [16]. The common 

set of weights, which is the normal vector of supporting 

hyperplane of PPS, is obtained by solving a multiple objective 

program. To rank DMUs, a norm is defined to measure 

distance DMUs from the hyperplane. These distances are used 

to rank DMUs. However, there are different methods for 

finding the normal vector of supporting hyperplane. Also there 

are different methods for determining distance DMUs from 

this hyperplane. One of these methods is Cook and Zhu’s 

method [17]. 

  In this article, a ranking system for efficient DMUs is 

introduced based on the work Liu and Peng [18]. In the 

proposed method by Liu and Peng [18], there is no guarantee 

that the common set of weights is unique. Therefore, the 

ranking results corresponding to alternative common set of 
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weights may not identical.  In other words, a specific DMU 

may obtain a different rank for each case. Also, all criteria for 

ranking some of the DMUs may be equal. The latter case 

implies that we cannot obtain a complete ranking for all 

DMUs. This paper will propose a method to overcome these 

difficulties.  

  The paper is organized as follows. Section 2 briefly discusses 

Liu and Peng’s method [18]. Section 3 introduces our 

proposed approach and states some of its properties. 

Numerical examples are given in section 4, and section 5 

concludes the paper. 

II. LIU AND PENG’S METHOD 

Assume that there are n  DMUs to be evaluated, each DMU 

with m  inputs and s  outputs. We denote by 

),...,2,1( mix ij =   and ),...,2,1( sry rj =  the values of the 

inputs and outputs of   ),...,2,1(DMU j nj = , which are all 

known and positive. According to the implication of 

efficiency, the absolute efficiency of 
jDMU  is defined as: 

,

1

1

∑

∑

=

==
m

i

iji

s

r

rjr

j

xv

yu

θ

 

 where ir vu ,  are the weights assigned to the r th output and 

the i th input, respectively. In order to determine the efficiency 

of 
jDMU  in relation to the other DMUs, Charnes et al. [7] 

developed the following well-known CCR model as: 
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                ,,...,2,1, srur =≥ ε                                                                                                    

                
,,...,2,1, mivi =≥ ε
                            (1) 

where the subscript zero represents the DMU under evaluation 

and ε  is the non-Archimedean number. The optimal value of 

this problem is considered as the relative efficiency of 

0DMU . 

In the proposed method by Liu and Peng [18], they considered 

virtual DMUs ))(,(
1 1

Ejyuxv
m

i

s

r

rjriji ∈∑ ∑
= =

 (E is the set of 

indices of efficient DMUs) and introduced the score unity as a 

benchmark for these virtual DMUs such that 
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. As a geometrical 

interpretation, ))(,(
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are points in 

2R and the benchmark is a straight line that passes through the 

origin with gradient one. Then 

),...,,,,...,,( 2121 sm uuuvvv must be determined such that 

the distance between these points and the benchmark line be as 

small as possible. This distance is measured by vertical and 

horizontal gaps 
O

j∆
 
and 

I

j∆  as shown in Fig. 1, in which 
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Fig. 1 Analysis of gaps between virtual DMUs and the benchmark 

 

Liu and Peng [18] presented a model as: 
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             ,,...,2,1, srur =≥ ε 

             
,,...,2,1, mivi =≥ ε
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and with appropriate changes, an equivalent model can be 

made as: 
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The performance of the evaluating DMU with inputs 

),...,2,1( mixx
Ej

iji == ∑
∈

 and outputs  

),...,2,1( sryy
Ej

rjr == ∑
∈

 is measured with the above 

model. The optimal solution of the problem (3), that is 

),...,,,,...,,( **

2
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1 sm uuuvvv  , is considered as the common 

weights. For ranking the DMUs, Liu and Peng [18] presented a 

system as follows: 
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1) If
**

ij gg >  , then the performance of DMU
j
 is better than 

that DMU i.  

2) If 1** <= ij gg  and **
ij ∆<∆ then the performance of DMU

j
 

is better than that DMU i, where 

∑∑
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ijij yuxv
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**
is horizontal gap between virtual 

DMU
j
 and benchmark line. 

3) If 1** == ij gg   and 
**

ij ππ > , then the performance of 

DMU
j
 is better than that DMU i, where )(

*
Ejj ∈π  are the 

shadow prices of the problem (3). 

As mentioned before, this method has two difficulties. First, 

we do not know whether the problem (3) has a unique   

optimal solution, and if it has alternative optimal solutions, 

which common set of weights must be considered? Of course, 

this imperfection exists in all common set of weights methods. 

Second, for ranking DMUs that have the same absolute 

efficiency equal to one, Liu and Peng [18] used shadow prices 

that may be equal for at least two DMUs. So, these DMUs 

cannot be differentiated. For overcoming the first difficulty, 

they considered the optimal solution of the following problem 

as the common weights.  

∑ ∑
= =

−
s

r

m

i

ir vuMin
1 1 

,,0.
1 1

Ejxvyuts
s

r

j

m

i

ijirjr ∈=∆+−∑ ∑
= = 

       

,*∑
∈

∆=∆
Ej

j

 

          ,,...,2,1, srur =≥ ε 

           
,,...,2,1, mivi =≥ ε

 

          ,,0 Ejj ∈≥∆                                          (4) 

where 
*∆  is the optimal value of problem (2). But there is not 

any guarantee that the optimal solution of the problem (4) is 

unique. If we submit that the problem (4) has unique optimal 

solution, the difficulty using of shadow prices for ranking still 

exists.  In the next section, these problems are considered and 

methods to overcome them are proposed. 

III.  METHODOLOGY 

In this section, we consider a new insight of the Liu and Peng’s 

method [18].  To reduce distance between virtual DMUs and 

the benchmark line, we have to increase )(
1

Ejyu
s

r

rjr ∈∑
=

 

and decrease )(
1
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m

i

iji ∈∑
=

. So, for having the total gap 

for all units as small as possible, we can maximize 
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m

i
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. However, the 

obtained problem is a multiple objective linear program that is 

not easy to solve. Equivalently, we use fractional programming 

problem to maximize ∑∑∑∑
=∈=∈

m

i
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s

r
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xvyu
11
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Therefore, we have the following problem for finding common 

set of weights as:  
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 The value of the objective function of the problem (5) can be 

considered as the weighted sum of the absolute efficiencies of 

efficient DMUs. The problem (5) is equivalent to a linear 

programming problem as below: 
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The optimal value of the objective function of this problem is 

the relative efficiency of a DMU with inputs ∑
∈

=
Ej

iji xx  

),...,2,1( mi =
 
and outputs ),...,2,1( sryy

Ej

rjr == ∑
∈

. 

The optimal solution of the problem (6) is considered as the 

common weights. 

  

A. Unique Common Weights  

The problem (6) may have alternative optimal solutions. To 

obtain the unique optimal solution of the problem (6), we 

suggest the following method. This approach can be applied 

for all the methods that use linear programming models for 

obtaining common set of weights. Consider a linear 

programming problem and its dual as: 
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where A is an nm ×  matrix and rank (A) = m . All 

definitions and theorems are taken from Murty [19]. 

Definition 1 A basic feasible solution of the problem (7) is 

degenerate if at least one of its basic variables be zero. A basic 

feasible solution is nondegenerate if it is not degenerate. 

Definition 2 The linear programming problem (7) is totally 

nondegenerate if each basic feasible solution is nondegenerate. 

Theorem 1 The linear programming problem (7) is totally             

nondegenerate iff each feasible solution has at least m  non   

zero components. 

Theorem 2 If a linear programming problem has alternative 

optimal solutions, its dual has a degenerate optimal solution. 

So, from the mathematical standpoint, alternative optimal 

solutions of the primal cause the degeneracy in the optimal 

solution of the dual problem. Therefore, if we avoid the 

degeneracy in optimal solutions of the dual, we can remove the 

alternative optimal solutions of the primal model. To do so, we 

proceed as follows. 

Theorem 3 For each 
mRb ∈ there is a positive real 

number 1ε , such that for all ε  and 10 εε <<  the problem  

 Min cx   

 ts.  ,0),,...,()( 1
1 ≥++== xbbbAx m

m εεε                (9)  

is totally nondegenerate. 

By contra positive of theorem (2), if a linear programming 

problem does not have a degenerate optimal solution, then its 

dual does not have alternative optimal solutions (has  unique 

optimal solution). 

Result 1 The problem (9) is a nondegenerate linear 

programming problem, so it does not have a degenerate 

optimal solution and therefore the dual of problem (9) does not 

have alternative optimal solutions.  

Now, consider the dual of problem (6) as: 
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Using theorem (3), there is an 1ε  , such that for all 10 εε <<  

, the following problem does not have a degenerate optimal 

solution.  
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So, the dual of the problem (11) does not have alternative 

optimal solutions. The dual is as: 
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Now, the unique optimal solution of this problem is considered 

as the unique common weights. But this is the theoretical part 

of the issue. To solve the problem (12), 1++ sm  phases 

must be considered. In the first phase, the problem (6) is 

solved. If 
*θ  be the optimal value of the problem (6), then the 

following m problems must be solved. 
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and then, the following s  problems are solved. 
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According to the models (13) and (14), the smaller index for 

weight of input, the preferable weight of input for optimization 

and  the smaller index for weight of output, the preferable 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 5, 2011 1147



 

 

weight of output for optimization. Also weights for inputs have 

preference to weights for outputs. These preferences can be 

changed by the suggestions of decision maker.  

 

B.  A System for Ranking 

The aim of solving the problem (6) is to 

find ),...,,,...,,( 2121 sm uuuvvv such that the points    
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can be as close to the 

benchmark line, as possible. Then DMUs are ranked according 

to their gaps from the benchmark line. But observe that there 

are often more than one virtual DMU on the benchmark (such 

that this case happens in the work of Liu and Peng [18]). In 

other words, the gap between virtual DMUs and the 

benchmark line is zero. So, these DMUs have the same rank, 

which is not desirable from managerial view point. In what 

follows, we try to remove this difficulty.  

The benchmark line is a good benchmark, because the virtual 

DMUs try to reach it. On the contrary, a bad benchmark can be 

defined, which the DMUs try to keep away from it. 

Geometrically, a good benchmark is a line with gradient one 

that passes through the origin and all virtual DMUs are below 

it. We define bad benchmark as a line that passes through the 

origin with a gradient such that all virtual DMUs are lie above 

it. In Fig. 2, four DMUs A, B, C and D exist which all of them 

are below the good benchmark and over the bad benchmark.   

 

Fig. 2 Analysis of bad benchmark against good benchmark 

 

As we know, each movement toward the good benchmark is 

equivalent to reducing the distance from it, and is equivalent to 

increasing the distance from the bad benchmark. We use the 

gaps between the virtual DMUs (vertical or horizontal gaps) 

and the bad benchmark for ranking DMUs that have the same 

distance from the good benchmark. In Fig. 3, we consider the 

two virtual DMUs M and N that are on the good benchmark, 

where ),( MM yxM =
 
and ),( NN yxN = . Mγ

 
and 

Nγ are the horizontal gaps from the bad benchmark and g is 

the gradient of the bad benchmark line. We have 
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and NNN xy
g
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γ  and MN γγ > . 

The gap between virtual DMU N and the bad benchmark is 

greater than that of virtual DMU M, so DMU N rank above 

DMU M. As shown in Fig. 3, DMU N has higher position than 

DMU M on good benchmark and so output DMU N is more 

than that of DMU M. This means that the value of virtual 

output is a criterion for ranking DMUs that their 

corresponding virtual DMUs are on good benchmark. From 

the economical point of view, this criterion is justifiable. 

 

Fig. 3 Comparing two DMUs that are on the good benchmark 

 

Definition 3 Suppose virtual DMU
j
and DMU i are on the 

good benchmark. If the gap between virtual DMU
j
and the 

bad benchmark is more than that of virtual DMU i , then the 

performance of DMU
j
is better than that of DMU i .  

Note that between virtual DMU j and i, the greater the DMU 

to the benchmark line, the better the input-output combination. 

In fact, input for the DMU that is closer to the benchmark line 

is increased, whereas its output is decreased 

According to this definition, the proposed ranking system by 

Liu and Peng [18] is modified as follows: 
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where
** , jj ∆γ  are the horizontal gaps between virtual 

jDMU and the bad and good benchmarks, respectively. 

Now, the ranks of DMUs are determined as follows: 

1) If
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ij gg > , then the performance of DMU
j
 is better than 

that of DMU i.  

2) If
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ij gg = and 
**

ij ∆<∆  , then the performance of DMU
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is better than that of DMU i. 
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performance of DMU
j  
is better than that of      DMU i.  
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ij gg = , our 

proposed method will produce the same ranks as those of the 

Liu and Peng’s method [18]. But, only when 1** == ij gg and 
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Theorem 4 Two DMUs have equal rank iff their 

corresponding virtual DMUs have the same position. 
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If  0* =γ , we have ∑∑
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of  0* =∆ , from equations B, we have 
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that 10 << g . It means that 

0* ≠γ , and so ∑∑
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Conversely, suppose that virtual DMUs be coincide. So, 
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that equations A, B and C are hold. Consequently, using the 

proposed ranking method, DMU
j
 and DMU k have equal 

rank. 

Using this theorem, two DMUs have the same ranks when the 

position of their corresponding virtual DMUs in 
2R is 

coincide. From the probabilistic point of view, the probability 

of this event is very poor. Thus, this method can be considered 

as a complete ranking method. 

 

 

IV. NUMERICAL EXAMPLES 

In example 1, using the data provided in Table I, the 

difficulties of Liu and Peng’s method [18] are shown. 

However, our method ranks units with data reported in Table I, 

respectively.  In example 2, using the data listed in Table IV, 

our method is compared to some of earlier methods in the 

literature. Then, in empirical example 3, using our proposed 

method, real world banking data is evaluated. The data was 

previously analyzed by Jahanshahloo et al. [20] and is listed in 

Table VII. 

A. Example 1 

In order to survey the performance Liu and Peng’s method 

[18], the following example is provided. Ten DMUs with three 

inputs and two outputs are presented in Table I. The model (3) 

with data in Table I has alternative optimal solutions. Two 

optimal solutions of this model are considered as common set 

of weights that are presented in the first row of Table II. The 

proposed system by Liu and Peng [18] for ranking is applied 

with these two common set of weights. The results of applying 

this method are presented in Table II. 

  Table I Data for example 1   

                            
According to Table II, for 

weights

)01.0,095.0,015.0,01.0,0125.0(),,,,( 21321 =uuvvv , we 

have 79510841362 DDDDDDDDDD ffffffff≈ . We 

cannot rank 2D  and 6D using Liu and Pong’s method [18]. 

As shown in Table II, 2D  and 6D
 
have efficiency one and so 

distance to benchmark is zero for these DMUs. Also, shadow 

prices for these DMUs are equal to one. We see that all criteria 

to compare 2D  and 6D  are the same. Thus, Liu and Peng’s 

method [18] fails to rank 2D  and 6D . This is one of the 

serious weaknesses of this method.  

For weights 

)01.0,08.0,0125.0,01.0,01.0(),,,,( 21321 =uuvvv , we 

have

79510816432 DDDDDDDDDD fffffff≈≈

. Comparing these two ranking, we see that DMUs utilizing 

different common set of weights have different ranks. This is 

another imperfection of this method. 

 

Table II Results of ranking with Liu and Peng’s method 

 

 
 

We can rank DMUs using the position of their virtual DMUs 

in 
2R . The greater the gradient of the line passes through the 

origin and virtual DMU, the better the DMU. Figs. 4 and 5 

show the position of the virtual DMUs in 
2R using different 

weights. From these Figures, it is obvious that the position of 

the virtual )10,...,2,1( =jDMU j
 is changed according to 

weights. This difference in position of the virtual 

)10,...,2,1( =jDMU j
 is reflected on 

rank )10,...,2,1( =jDMU j
 . For example, 7D has the last 

rank, in Fig. 4, using the position of its virtual DMU. On the 
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other hand, using another set of weights, the last rank is 

devoted to 9D which is shown in Fig. 5.   

 

Fig. 4  Positions of DMUs using 

)01.0,095.0,015.0,01.0,0125.0(),,,,( 21321 =uuvvv
 

                     

 

Fig. 5 Positions of DMUs using 

)01.0,08.0,0125.0,01.0,01.0(),,,,( 21321 =uuvvv
 

 

As mentioned in Liu and Peng’s method [18], because the 

model (3) has alternative optimal solutions, the optimal 

solution of the model (4) is considered as common weights. 

For this example, the common set of weights is 

)01.0,08.0,0125.0,01.0,01.0(),,,,( 21321 =uuvvv . As 

shown in Table II, with this common weights 2D
 
and 3D  

and 4D  have equal ranks. Although, common set of weights is 

unique, we cannot have full ranking for the DMUs. So, this 

ranking system using common weights is failed.
 

In continue, our proposed ranking system with common set of 

weights is applied for data in Table I. Numerical Results of 

this method are presented in Table III. The unique optimal 

solution of the problem (12) for data in Table I is 

)001.0,085.0,012.0,004.0,017.0(),,,,( 21321 =uuvvv  

that is considered as common weights. Using our proposed 

ranking system, we have a full ranking for DMUs 

as

79845311026 DDDDDDDDDD fffffffff

.  

 

Table III Results of ranking with our proposed method 

 
As a result, DMUs can be ranked by the position of their 

virtual DMUs in 
2R .This is an intuitional aspect of the Liu 

and Peng’s method [18], but there is no this aspect for units 

that their virtual DMUs are on a line. For units that the 

corresponding virtual DMUs are on a line, the more distance 

virtual DMU from the origin, the better DMU. As shown in 

Fig. 6, all DMUs except 2D , 6D
 
and 10D can be ranked 

according to the gradients of their corresponding lines. 2D
 
, 

6D  and 10D can ranked using the distances of their 

corresponding virtual DMUs from the origin and so we have 

1026 DDD ff .  

 

 

Fig. 6  Positios of DMUs using 

)001.0,085.0,012.0,004.0,017.0(),,,,( 21321 =uuvvv  

 

B. Example 2 

In Table IV, there are six DMUs A, B, C, D, E, and F with two 

inputs and two outputs.  Using the CCR method, the 

efficiencies of DMUs are obtained that are shown in the 

second column of Table V. Using CCR efficiency, units A, B, 

C, and D are efficient. Using Maximin efficiency ratio and 

MOLP Minimax and MOLP Minsum methods, the 

performance of these DMUs are measured that are presented 

in the last three columns of Table V, respectively. In MOLP 

Minimax and MOLP Minsum methods, the efficiency scores 

of units A and D are equal to one, and so there is not 

distinction between performances units A and D. Other units 

can be ranked according to their efficiency scores. Using 
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MOLP Minmax method, we have 

CDMUBDMUEDMUDDMUADMU fff≈  

FDMUf . Using MOLP Minsum method, we have 

BDMUFDMUEDMUDDMUADMU fff≈  

CDMUf . According to the efficiency scores of DMUs 

using Minimax efficiency ratio that are presented in the third 

column of Table V, we have 

BDMUADMUEDMUCDMUDDMU ffff  

FDMUf , and so unit D has the best performance. Using 

efficiency scores obtained by our proposed method which are 

provided in the second column of Table VI, units A, B, and D 

are efficient. These units can be ranked by their distance to bad 

benchmark that is presented in the third column of Table VI. 

The rest of the units can be ranked according to their 

efficiency scores. So by applying the proposed method in this 

paper, we have 

FDMUEDMUADMUBDMUDDMU ffff  

CDMUf . Similar to other methods mentioned above, unit 

D has the best rank.  

Table IV DMUs data 

  

 

Table V Ranking DMUs in Table IV using several methods        

  

Table VI Our results from Table V 

 

C. Example 3 

 

In order to have a better understanding of robustness proposed 

method, an empirical study about twenty branches of banks in 

Iran is presented in this section. Six factors are considered for 

evaluation branches, three inputs and three outputs. Staff, 

computer terminals, and area of branch are considered as 

inputs. Deposits, loans, and charge are considered as outputs. 

The data of these twenty branches are presented in Table VII. 

The last column of Table VII reports the CCR efficiency of 

branches. We only consider CCR efficient branches for 

ranking by proposed method. The results of applying our 

proposed method are presented in Table VIII.  

 

 

Table VII DMUs' data (Jahanshahloo et al. [20]) 

 
Using this method, the branches four, seven, twelve, fifteen, 

and seventeen have the same score one and so their 

corresponding virtual DMUs lies on good benchmark. 

According to our proposed method the branch fifteen with the 

highest virtual output has the first rank. Also, branches four, 

seven, twelve, and seventeen can be ranked using the value of 

virtual outputs and so we have 

417127 BranchBranchBranchBranch fff . The 

branches one and twenty with scores 0.738 and 0.632 can be 

differentiated. The branch twenty with score 0.632 has the last 

rank among CCR efficient branches. 

 

Table VIII System for ranking efficient DMUs 

 

V. CONCLUSION 

This research presented a method for ranking all efficient 

DMUs based on the altered version the work proposed by Liu 

and Peng [18]. Liu and Peng’s method [18] has two basic 

problems that we discussed in this paper. At first, there is no 

guarantee that the common set of weights is unique. This is a 

problem, basically, because there is vagueness in choosing one 

common set of weights. In this article, we presented a method 

to overcome this difficulty that can be applied for all methods 

that use linear programming problem to obtain common set of 

weights. Whereas being computationally burdensome, this 

method serves to obtain a unique common set of weights. 

Second,   the proposed ranking system by Liu and Peng [18] 
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cannot fully rank two efficient DMUs when they have equal 

shadow prices. Using definition a bad benchmark, this 

research presented a system for full ranking efficient DMUs 

that have no difficulty using the shadow prices. The proposed 

method was illustrated by several numerical examples. In 

future, we will propose utilizing other norms to measure gap 

between virtual DMUs and benchmarks for further research. 

Also, applying this method for ranking DMUs with imprecise 

data is a good direction for research. 

REFERENCES   

[1] W. D. Cook, L. M. Seiford, “Data envelopment analysis (DEA)-thirty 

years on”, European Journal of Operational  Research, vol. 192, pp. 1-

17, 2009. 

[2] M. Asmild, J. C. Paradi, J. T. Pastor, “DEA based models for 

reallocations of police personnel”, OR Spectrum, doi: 

10.1007/s0029101102436. 

[3] C. T. Kuah,K. L. Wong, “Efficiency assessment of universities through 

data envelopment analysis”, Procedia Computer Science, vol. 3, pp. 

499-506, 2011. 

[4] F. H. Sancho, M. M. Senante, R. S. Garrido, “Energy efficiency in 

Spanish wastewater treatment plants: A non-radial DEA approach”, 

Science of the total environment, doi:10.1016/j.scitotenv201104018. 

[5] A. Xun, B. Hanrui, Z. Xiaoyang, “A DEA approach to evaluate 

economical and social roles of NOCs”, Energy Procedia, vol. 5, pp. 

763-767, 2011. 

[6] W. C. Chen, C. F. Chien, “Measuring relative performance of water 

fabrication operations using DEA”, Journal of Intelligent 

Manufacturing, vol. 22, pp. 447-457, 2011. 

[7] A. Charnes, W. W. Cooper, E. Rhodes, “Measuring the efficiency of 

decision making units”, European Journal of Operational Research, 

vol. 2, pp. 429-444, 1978. 

[8] R. D. Banker, A. Charnes, W. W. Cooper, “Some methods for 

estimating technical and scale inefficiencies in data envelopment 

analysis”, Management Science, vol. 30, pp. 1078-1092, 1984. 

[9] P. Anderson, N. C. Petersen, “A procedure for ranking efficient units in 

data envelopment analysis”, Management Science, vol. 39, pp. 1261-

1264, 1993. 

[10] K. Tone, “A slack-based measure of super-efficiency in data 

envelopment analysis”, European Journal of Operational Research, 

vol. 143, pp. 32-41, 2002. 

[11] J. R. Doyle, R. H. Green, “Efficiency and cross-efficiency in DEA: 

Derivations, meanings and uses”, Journal of the Operational Research 

Society, vol. 45, pp. 567-578, 1994. 

[12] G. R. Jahanshahloo, A. Memariani, F. Hosseinzadeh Lotfi, H. Z. Rezai, 

“A note on some of DEA models and finding efficiency and complete 

ranking using common set of weights”, Applied Mathematics and 

Computation, vol. 166, pp. 265-281, 2005. 

[13] T. Entani, Y. Maeda, H. Tanaka, “Dual models of interval DEA and its 

extension to interval data”, European Journal of Operational Research, 

vol. 136, pp. 32-45, 2002. 

[14] N. Adler, L. Friedman, Z. Sinuany-Stern, “Review of ranking methods 

in data envelopment analysis context”, European Journal of 

Operational Research, vol. 140, pp. 219-265, 2002. 

[15] W. D. Cook, Y. Roll, A. Kazakov, “A DEA model for measuring the 

relative efficiency of highway maintenance patrols”, Information 

Systems and Operational Research,  vol. 28, pp. 113-124, 1990. 

[16] Y. Roll, W. D. Cook, B. Golany, “Controlling factor weighs in data 

envelopment analysis”, IIE Transactions, vol. 24, pp. 1-9, 1991. 

[17] W. D. Cook, J. Zhu, “Within-group common weights in DEA: An 

analysis of power plant efficiency”, European Journal of Operational 

Research, vol. 178, pp. 207-216, 2007. 

[18] F. H. F. Liu, H. H. Peng, “Ranking of units on the DEA frontier with 

common weights”, Computers & Operations Research, vol. 35, pp. 

1624-1637, 2008. 

[19] K.M. Murty, “Linear Programming”, 3 rd edn, Jane Wiley & Sons, New 

York, 2002. 

[20] G. R. Jahanshahloo, H. V. Junior, F. Hosseinzadeh Lotfi, D. Akbarian, 

“A new DEA ranking system based on changing the reference set”, 

European Journal of Operational Research, vol. 181, pp. 331-33, 2007. 

[21] N. E. Mastrokis, “Singular value decomposition in multidimensional 

arrays”, International Journal of System Science, vol. 27, no. 

7, pp. 647-650, 1996.  

[22]  N. E. Mastrokis,”The Singular Value Decomposition (SVD) in Tensors 

(Multidimensional Arrays) as an Optimization Problem. Solution via 

Genetic Algorithms and method of Nelder-Mead”, in Proc. 6th WSEAS 

Int. Conf. Systems Theory & Scientific Computation, Elounda, Greece, 

2006, pp 7-13. 

[23] N. E. Mastrokis, “Genetic algorithms with Nelder-Mead optimization in 

the variational methods of boundary value problems”, WSEAS 

Transactions on Mathematics, vol. 8, no. 3, 2009.  

. 

 

 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 5, 2011 1153




