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A modified common set of weights method to
complete ranking DMUs

A. Payan, F. Hosseinzadeh Lotfi, A. A. Noora, M. Khodabakhshi

Abstract— Liu and Peng (Computers & Operations Research,
35[18], 1624-1637, 2008) presented a method for obtaining a
common set of weights in data envelopment analysis (DEA) and they
also provided a system for ranking decision making units (DMUs)
using common set of weights. Their method has two main problems.
At first, their presented model may have alternative optimal solutions
(alternative common set of weights). Alternative optimal solutions
may lead to different ranks for each DMU. Second, all criteria for
ranking, by their suggested system, may be identical for at least two
DMUs and so these DMUs will have the same rank. Therefore, there
is no full ranking for DMUs using the suggested method. The aim of
this paper is surveying these shortcomings and presenting methods to
overcome them. This paper suggests a method to obtain unique
common set of weights which can be applied for all methods used
linear programs for acquiring common set of weights. Moreover, by
definition bad benchmark against benchmark defined by Liu and
Peng, a system for full ranking DMUs is proposed. Numerical
examples are used to illustrate the proposed method.

Keywords—Alternative optimal solutions, Common set of
weights, Data envelopment analysis (DEA), Linear programming,
Ranking.

1. INTRODUCTION

ATA envelopment analysis (DEA) measures the
efficiency of homogeneous decision making units
(DMUs) by using mathematical optimization techniques. In
this approach, by using the definition of production possibility
set (PPS), DMUs are divided into two groups, DMUs lying in
the interior of the PPS are called inefficient units and DMUs
lying on the frontier of the PPS are called efficient units. A
thorough review on DEA up 2009 can be found in Cook and
Seiford [1].
Nowadays, DEA is widely used for analyzing units in various
systems. Asmild et al. [2] utilized DEA for reallocations of
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police personnel. Assessment of universities through DEA was
done by Kuah and Wong [3]. Sancho et al. [4] proposed a
DEA model for determining the efficiency of wastewater
treatment plants in Spanish. A DEA approach was used to
evaluate economical and social roles of NOCs [5]. Assessing
relative performance of water fabrication operations using
DEA was suggested by Chen and Chien [6].

In the main methods of DEA, such as CCR method that is
presented by Charnes et al. [7] and BCC method that is
suggested by Banker et al. [8], efficient units have efficiency
score one, whereas inefficient units have efficiency scores
between zero and one. Using efficiency scores, we have the
ability to rank DMUs. Although efficient units will have same
ranking, they do not have equal performance in actual practice.
To overcome this problem, researchers have presented several
approaches for ranking the efficient units.

The methods for ranking are divided into two groups. In a
group, there are methods that only can rank vertex efficient
DMUs are called super-efficiency methods. The first work of
this kind is presented by Andersen and Petersen [9] and after is
introduced many methods such as Tone [10] and so on. In
another group, all efficient DMUs can be ranked. They are
divided into three basic groups: cross-efficiency methods such
as work Doyle and Green [11], MCDM methods such as work
Jahanshahloo et al. [12] and interval DEA methods such as
work Entani ef al. [13]. For a review of ranking methods, see
Adler et al. [14].

One important stream of ranking methods is utilizing
common set of weights that is extended by MCDM methods.
Interesting research works in this area can be found, for
example, in Cook et al. [15] and Roll et al. [16]. The common
set of weights, which is the normal vector of supporting
hyperplane of PPS, is obtained by solving a multiple objective
program. To rank DMUs, a norm is defined to measure
distance DMUs from the hyperplane. These distances are used
to rank DMUs. However, there are different methods for
finding the normal vector of supporting hyperplane. Also there
are different methods for determining distance DMUs from
this hyperplane. One of these methods is Cook and Zhu’s
method [17].

In this article, a ranking system for efficient DMUs is
introduced based on the work Liu and Peng [18]. In the
proposed method by Liu and Peng [18], there is no guarantee
that the common set of weights is unique. Therefore, the
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weights may not identical. In other words, a specific DMU
may obtain a different rank for each case. Also, all criteria for
ranking some of the DMUs may be equal. The latter case
implies that we cannot obtain a complete ranking for all
DMUs. This paper will propose a method to overcome these
difficulties.

The paper is organized as follows. Section 2 briefly discusses
Liu and Peng’s method [18]. Section 3 introduces our
proposed approach and states some of its properties.
Numerical examples are given in section 4, and section 5
concludes the paper.

II. LU AND PENG’S METHOD

Assume that there are n DMUs to be evaluated, each DMU
with  m inputs and § outputs. We denote by
x,(i=12,.,m) and y_ (r=12,..,s) the values of the

inputs and outputs of DMU ;(j = 1,2,..., n) , which are all

known and positive. According to the implication of
efficiency, the absolute efficiency of DMU i is defined as:

S

2 1Yy
0, == ’

sz-xij

i=1

where U, ,V; are the weights assigned to the 7 th output and

the i th input, respectively. In order to determine the efficiency
of DMU ; in relation to the other DMUs, Charnes et al. [7]

developed the following well-known CCR model as:

Zuryro

Max 6, = =—
m

Zvixio
i1

2y

st 0,=r——<1, j=12,.n,
Zvixi/
i=1
u 2¢, r=L12,.,s,

&)

where the subscript zero represents the DMU under evaluation
and & is the non-Archimedean number. The optimal value of
this problem is considered as the relative efficiency of

DMU, .
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In the proposed method by Liu and Peng [18], they considered

m S
virtual DMUs (Z VX, ,Zuryrj )(j € E) (E is the set of
i=1 r=l1
indices of efficient DMUs) and introduced the score unity as a
benchmark  for these virtual DMUs such that

(Zuryr_//Zvixg) <I(jeE). As a geometrical
r=1 i=1

m N
interpretation, (Z VX z u.y, )(j € E) are points in
i=1 r=1

R?and the benchmark is a straight line that passes through the
origin with gradient one. Then
(v1 s Vo seres Vs Uy Uy yun U ) must be determined such that
the distance between these points and the benchmark line be as
small as possible. This distance is measured by vertical and

horizontal gaps A° and A]]. as shown in Fig. 1, in which

J

m N
M = (o vix;. 2 u,3,),
i=1 r=1

M'= (ZIVixjj —AIJ.,Zluryrj + A?) .

Slope One
s At
[=3 6\({‘
= o
o) -
-.-_=u
£ v
=
o
&J-
I i
flj-
>
Virtual Input

Fig. 1 Analysis of gaps between virtual DMUs and the benchmark

Liu and Peng [18] presented a model as:

Min Y (AT +A)

JjeE

Zur Vi +A€
st E——=1,

m

I
Zvi x; —A;
i=1

1144



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

(2)A920, A >0, jeE,

and with appropriate changes, an equivalent model can be
made as:

S m
Max Zu,yr - ZV,-X,-
r=1 i=1

s.t iu,yrj —ivixy <0, jeE,
r=1 i=1

QB)vize, i=1L2,...,m,

The performance of the evaluating DMU with inputs

X, = le.j (i=12,..,m)

JeE

and outputs

y, = Zyrj(r =1,2,...,5) is measured with the above
JjeE

model. The optimal solution of the problem (3), that is

(vl*,v;,..., v;,u;,u;,..., u:) , is considered as the common

weights. For ranking the DMUs, Liu and Peng [18] presented a

system as follows:
S

£
U.yy
* —
First define g ; = ';l—

n

*
ZVI- Xij
i=1

D If g: > gi* , then the performance of DMU | is better than

, JeE.

that DMU,.
2) If g; = gf <1 and A*j < At then the performance of DMU ,

1S better than that DMU ,, where

1

mn S

* * *

A i = E VX, — E u,y,; is horizontal gap between virtual
i=1 r=1

DMU | and benchmark line.
3) Ifg; = g; =1 and ﬂ; > 72':, then the performance of

DMU | is better than that DMU,, where 77 (j € E) are the

shadow prices of the problem (3).

As mentioned before, this method has two difficulties. First,
we do not know whether the problem (3) has a unique
optimal solution, and if it has alternative optimal solutions,
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which common set of weights must be considered? Of course,
this imperfection exists in all common set of weights methods.
Second, for ranking DMUs that have the same absolute
efficiency equal to one, Liu and Peng [18] used shadow prices
that may be equal for at least two DMUs. So, these DMUs
cannot be differentiated. For overcoming the first difficulty,
they considered the optimal solution of the following problem
as the common weights.

S m
Min Zu, —Zvi
r=1 i=1
S m
st Zu,yrj —Zvl.xl.j +A, =0, jeE,
r=1 i=1

DA =A,

JjeE

(4)Aj >0, jekE,

where A" is the optimal value of problem (2). But there is not
any guarantee that the optimal solution of the problem (4) is
unique. If we submit that the problem (4) has unique optimal
solution, the difficulty using of shadow prices for ranking still
exists. In the next section, these problems are considered and
methods to overcome them are proposed.

III. METHODOLOGY

In this section, we consider a new insight of the Liu and Peng’s
method [18]. To reduce distance between virtual DMUs and

S
the benchmark line, we have to increase Zuryrj (jekE)

r=1

and decreaseZvix (j € E). So, for having the total gap

i=1
for all units as small as possible, we can maximize

S m
Z ZLtryrj and minimizez Zv[x[j. However, the

JjeE r=l JjeE i=1

i

obtained problem is a multiple objective linear program that is
not easy to solve. Equivalently, we use fractional programming

S m
maximize Z Zuryrj Z ZV[x[j.

JjeE r=1 JjeE i=1

problem to

Therefore, we have the following problem for finding common
set of weights as:
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Z Zuryrj zur yr

jeE r=1 =l
Max ( - )
> S, sz- X
JjeE i=l i=1
S
2, Yy
=
st =——<1, jekE,
Vv X;
i=l
u . z2¢, r=12,.,s,
vize, i=12,..,m, ®))

The value of the objective function of the problem (5) can be
considered as the weighted sum of the absolute efficiencies of
efficient DMUs. The problem (5) is equivalent to a linear
programming problem as below:

Max iu,y,

r=l1

st vai =1,

ey 1, (6)

The optimal value of the objective function of this problem is

the relative efficiency of a DMU with inputs x; = Z)cl.j
JjeE

= Zyrj (r=12,...,9).

JjeE

,..y/) and outputs Yy

The optimal solution of the problem (6) is considered as the
common weights.

A. Unique Common Weights

The problem (6) may have alternative optimal solutions. To
obtain the unique optimal solution of the problem (6), we
suggest the following method. This approach can be applied
for all the methods that use linear programming models for

Min cx
st Ax=b, (7)
x>0,

Max wb
st wA<ZLc,

®)

w free,

where A is an mXxXn matrix and rank (A) = m. All
definitions and theorems are taken from Murty [19].
Definition 1 A basic feasible solution of the problem (7) is
degenerate if at least one of its basic variables be zero. A basic
feasible solution is nondegenerate if it is not degenerate.
Definition 2 The linear programming problem (7) is totally
nondegenerate if each basic feasible solution is nondegenerate.
Theorem 1 The linear programming problem (7) is totally
nondegenerate iff each feasible solution has at least m non
Zero components.

Theorem 2 If a linear programming problem has alternative
optimal solutions, its dual has a degenerate optimal solution.
So, from the mathematical standpoint, alternative optimal
solutions of the primal cause the degeneracy in the optimal
solution of the dual problem. Therefore, if we avoid the
degeneracy in optimal solutions of the dual, we can remove the
alternative optimal solutions of the primal model. To do so, we
proceed as follows.

Theorem 3 For each b€ R"there is a positive real
number &, such that for all & and 0 < & < &, the problem

Min cx

SI Ax=b(g)=(by+&',...,b, +E™),x 20, 9)

is totally nondegenerate.

By contra positive of theorem (2), if a linear programming
problem does not have a degenerate optimal solution, then its
dual does not have alternative optimal solutions (has unique
optimal solution).

Result 1 The problem (9) is a nondegenerate linear
programming problem, so it does not have a degenerate
optimal solution and therefore the dual of problem (9) does not
have alternative optimal solutions.

Now, consider the dual of problem (6) as:

Min G—E(is;+2s:)
i=1 r=1
Z/Ix +5; =

b, i=12,.,m,

obtaining common set of weights. Consider a linear jek
programming problem and its dual as:
Issue 7, Volume 5, 2011 1146



Z/ijrj_s: =y, r=L2,.s,

jeE
/1j >0, jekE,
s 20, i=12,..,m
5020, r=L2,.,s,
0 free, (10)

Using theorem (3), there is an &, , such that for all0 < & < g,

, the following problem does not have a degenerate optimal
solution.

Min 0- g(isi’ + is:)
i=1 r=1

Z/Ix +s; -6k =¢', i=12,.,m,
Z/ijrj —s =y, +2" r=12,..5,
JjeE

4,20, jekE,
s; 20, i=12,..,m,
>0, =1,2,...
0 free,

(11)

So, the dual of the problem (11) does not have alternative
optimal solutions. The dual is as:

N m S
=i —m+r
Max E uy, + E v, €+ E u.e
r=1 i=l1 r=1

m
s.t. Zvixl. =1,
i=1

m

2y, =2 V% <0, jEE
i=1

u,2¢, r=12,..,s,

v.zeg, i=12,.,m,

(12)

Now, the unique optimal solution of this problem is considered
as the unique common weights. But this is the theoretical part
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of the issue. To solve the problem (12), m + s +1 phases
must be considered. In the first phase, the problem (6) is

solved. If 8" be the optimal value of the problem (6), then the
following m problems must be solved.

= Max v,

vize, 1=L2,.,m, (13)
(i=12,.,m)
and then, the following § problems are solved.
u, = Max u,
S.lZVl.xl. =1,
i=l
S m
Zuryrj—ZvixijSO, jeE,
r=1 i=1
S
duy, =
r=l1
vV, =V, i=12,..,m,
ul:u;’ 121,2, ,r—l,
u, ¢, r=12,..,s, (14)
(r=12,...,5)

According to the models (13) and (14), the smaller index for
weight of input, the preferable weight of input for optimization
and the smaller index for weight of output, the preferable
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weight of output for optimization. Also weights for inputs have
preference to weights for outputs. These preferences can be
changed by the suggestions of decision maker.

B. A System for Ranking
The
find (V) V5 5ee0sV,, 5 Uy 5 Uy .. ) such

aim of solving the problem (6) is to

that the  points

(Zvixl.j,Zuryrj) (jeE)can be as close to the

i=1 r=l1

benchmark line, as possible. Then DMUs are ranked according
to their gaps from the benchmark line. But observe that there
are often more than one virtual DMU on the benchmark (such
that this case happens in the work of Liu and Peng [18]). In
other words, the gap between virtual DMUs and the
benchmark line is zero. So, these DMUs have the same rank,
which is not desirable from managerial view point. In what
follows, we try to remove this difficulty.

The benchmark line is a good benchmark, because the virtual
DMUs try to reach it. On the contrary, a bad benchmark can be
defined, which the DMUs try to keep away from it.
Geometrically, a good benchmark is a line with gradient one
that passes through the origin and all virtual DMUs are below
it. We define bad benchmark as a line that passes through the
origin with a gradient such that all virtual DMUs are lie above
it. In Fig. 2, four DMUs A, B, C and D exist which all of them
are below the good benchmark and over the bad benchmark.

Slope One

Sy
-

Virtual Output
%00,

Virtual Input

Fig. 2 Analysis of bad benchmark against good benchmark

As we know, each movement toward the good benchmark is
equivalent to reducing the distance from it, and is equivalent to
increasing the distance from the bad benchmark. We use the
gaps between the virtual DMUs (vertical or horizontal gaps)
and the bad benchmark for ranking DMUs that have the same
distance from the good benchmark. In Fig. 3, we consider the
two virtual DMUs M and N that are on the good benchmark,

where M =(x,,,vy,,) and N=(x,,Yy). 7y and

1
Yu = Vu Xy and}/N:EyN_xN and ¥y > 7).

The gap between virtual DMU N and the bad benchmark is
greater than that of virtual DMU M, so DMU N rank above
DMU M. As shown in Fig. 3, DMU N has higher position than
DMU M on good benchmark and so output DMU N is more
than that of DMU M. This means that the value of virtual
output is a criterion for ranking DMUs that their
corresponding virtual DMUs are on good benchmark. From
the economical point of view, this criterion is justifiable.

=
=
£ Slope One
=
s &
vy
3 &
£ 2
= 6006
707 E— slope g
! .
y I\f'/ ‘."_/_/_/_/—/—’_’_;;:1 Beﬂchmar j
7 , — ' [
Xy X 1 1 Virtual Input
N p—
— ¥y Y
& £

Fig. 3 Comparing two DMUs that are on the good benchmark

Definition 3 Suppose virtual DMUjand DMU ;are on the
good benchmark. If the gap between virtual DMUj and the

bad benchmark is more than that of virtual DMU;, then the

performance of DMU | is better than that of DMU ;.

Note that between virtual DMU j and i, the greater the DMU
to the benchmark line, the better the input-output combination.
In fact, input for the DMU that is closer to the benchmark line
is increased, whereas its output is decreased

According to this definition, the proposed ranking system by
Liu and Peng [18] is modified as follows:

First define

S %
2 Yy
— r=l1

*

g =", JEE,
v, X,
i=1
O<g<Min{g;},
JeE

*

* * * * *
where  (V; ,V, 5.V, U Uy ..Ul ) is the optimal

sVm »

solution of the problem (12) and g € (0, Min{g; }) can be
JjeE

vy are the horizontal gaps from the bad benchmark and g is  ¢onsidered as the bad benchmark. Also,
the gradient of the bad benchmark line. We have
Issue 7, Volume 5, 2011 1148
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m S 1 S m
A* _ * _ * * _ * _ *
i = Z"t Xij Zuryrf’ V= Z”ryr/ Z"t Xij >
i=1 r=1 &g =1 i=1

* *
where 7 ; ,A ; are the horizontal gaps between virtual

DMU ;and the bad and good benchmarks, respectively.
Now, the ranks of DMUSs are determined as follows:
Hifg; >g;.

then the performance of DMU]. is better than

that of DMU.,.

2)Ifg; =g, and A; <A, , then the performance of DMU
is better than that of DMU.,.

3) If g,=g/and A, =A, andy; >y, then the
performance of DMU | is better than that of ~ DMU,.

* *
Note that, when g j > g, ,or A*j < Aj in the case g; = gf, our

proposed method will produce the same ranks as those of the

Liu and Peng’s method [18]. But, only when g; = g: =land

therefore Aﬂ; = A, =0, we consider a bad benchmark ¢ that

0<g<Min{g;}, and a DMU has a better rank than
JjeE

another when it has a larger distance than another to the bad

benchmark.

Theorem 4 Two DMUs have equal rank

corresponding virtual DMUs have the same position.

iff  their

*

* * *
Proof Let (V; ,V, ,...,V,, »U, ,u2 ,esU ) be the optimal

solution of the problem (12). First, consider DMU]. and

m 2

DMU , have equal ranks. According to our proposed ranking

system, we have:
S S
* *
: ‘,ur yiy' : ‘,ur yrk
_ r=l

* __ =l
4) g =+, .
*
Zvi Xik
i=1

*
Zvi Xjj
i=1

m s m s
% % % % %
B) A :zvi xif _Zu"y’j :zvi Xik _Zuryrk
i=l r=1 i=1 r=1

* 1 5 * 2 *
C) 7 :gzuryij_zvi xlj :_z yrk Z
r=1 i=1

Regarding equations B, we have

Issue 7, Volume 5, 2011

s m
* *
DYy =DV = A
r=1 i=1
N m
* *
Zuryrk _zvi Xig —
r=1 i=1
m m
* * *
Z\/i xij—A Z\/i X, —A
i=1 _ =l
: N - s
* *
DY, DY
r=l1 r=1
S m S
* * A* * _
= Zuryrkzvi xij - Zuryrk -
r=1 i=1 r=1
S m S
* * A* *
Z“ryrjzvf Xk — Z”ryrj
r=1 i=1 r=1

Sfrom A

= A (Z” Yy~ 2” Vi) =0

S S
If Zur Yy = Zur Y. » then, from equations A, we have

r=1 r=l1

m m
% *
=i,
i=l i=l1
m S m S
* * * * .
So, O v x;, > ur )= v X, D uy ) Inthis
i=1 r=1 i=1 r=1

. . * .
case, proof is completed. Otherwise, A = 0. According to
equations C, we have

1S - L .
E;uryrj = ;vi X+
I < - L .
g;uryrk = ;Vi Xy +Y
m m
Ddvixg+y dvixu+y
= i=1 - — i=1 -
DUy, DUy
P P
s m s
= Zu:yrkzv: X; + 7/*2”:yrk =
Zu yr,zv X+ Zu Yy

from A

=y (Zu Yy~ Zu y,)=0
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If ]/* =0,wehave g = Zur*yr/‘ ZV[*X[/ . As a result
r=l1 i=1
of A" =0, from equations B, we have

(Zur*yrj ZVi*xy.) =1. Therefore, g =1 and this

r=1 i=1

contradicts the definition of g that 0 <g <1. It means that

S S
7" #0,and so Zu:y” = ZM:yrk . Using this result and

r=1 r=1

m m
. * *
equations A, we have E v, X, = E v; X, . Thus,
i=1 i=1

m " S N m . s .
(Zvi xi/’zuryrj) = (zvi xik’zuryrk) and the
= r=l i=1 r=l

proof is completed.
Conversely, suppose that virtual DMUSs be coincide. So,

m S m S
(zvi Xjj ’zuryrj) = (Zvi Xik ’zuryrk) - It results
i=1 r=1 i=1 r=1

that equations A, B and C are hold. Consequently, using the
proposed ranking method, DMU ; and DMU ; have equal

rank.
Using this theorem, two DMUs have the same ranks when the

position of their corresponding virtual DMUs in R%is
coincide. From the probabilistic point of view, the probability
of this event is very poor. Thus, this method can be considered
as a complete ranking method.

IV. NUMERICAL EXAMPLES

In example 1, using the data provided in Table I, the
difficulties of Liu and Peng’s method [18] are shown.
However, our method ranks units with data reported in Table I,
respectively. In example 2, using the data listed in Table 1V,
our method is compared to some of earlier methods in the
literature. Then, in empirical example 3, using our proposed
method, real world banking data is evaluated. The data was
previously analyzed by Jahanshahloo ef al. [20] and is listed in
Table VII.

A. Example 1

In order to survey the performance Liu and Peng’s method
[18], the following example is provided. Ten DMUs with three
inputs and two outputs are presented in Table I. The model (3)
with data in Table I has alternative optimal solutions. Two
optimal solutions of this model are considered as common set
of weights that are presented in the first row of Table II. The
proposed system by Liu and Peng [18] for ranking is applied
with these two common set of weights. The results of applying
this method are presented in Table II.

Issue 7, Volume 5, 2011

Table I Data for example 1

Dnau Inputl Input2 Input3 Cutput 1 Cutput 2

1 2 6 3 1 3

2 1 2 5 1 1.25

3 2 3 4 1 2

4 3 1 4 1 1

5 pa 5 4 1 0.75

[ 2 4 3 1 15

7 2 G 5 1 0.5

8 25 4 4 1 175

9 2 4 5 1 0.25

10 15 G 3 1 1
According to Table 11, for
weights

(Vs Vo V3, 1,)=(0.0125,0.01,0.015,0.095,0.01), we
have D, ~ Dg =Dy > Dy =Dy = Dg > Djy > Ds =Dy =D;. We
cannot rank D, and Dgusing Liu and Pong’s method [18].
As shown in Table II, D, and Dg have efficiency one and so

distance to benchmark is zero for these DMUs. Also, shadow
prices for these DMUs are equal to one. We see that all criteria
to compare D, and Dy are the same. Thus, Liu and Peng’s

method [18] fails to rank D, and Dg. This is one of the

serious weaknesses of this method.
For weights

(v, vy, vy, 1,11,)=(0.01,0.01,0.0125,0.08,0.01),  we
have

D,~D;~D, =D, ~D,~D;~D,, =D ~D, D,
. Comparing these two ranking, we see that DMUs utilizing

different common set of weights have different ranks. This is
another imperfection of this method.

Table II Results of ranking with Liu and Peng’s method

(0.0125,0.01,0.015,0.095,0.01) (0.01,0.01,0.0125,0.08,0.01)

v"u"

DMU a" At " rank a" N " Rank
Dl 0.96 - - 4 0.93 - - 3
Dz 1 o 1 1 1 0 0 1
oy 1 0 0 2 1 0 0 1
D4 0.97 - 3 1 0 0 1
DS 0.75 7 0.72 - a
D5 1 i} 1 1 0.97 2
D7 0.62 a 0.59 8
o, 0.85 5 0.34 a

8 7
5

o, 0.69

E)IU 0.84 - - a 0.80

We can rank DMUs using the position of their virtual DMUs

in R>. The greater the gradient of the line passes through the
origin and virtual DMU, the better the DMU. Figs. 4 and 5

show the position of the virtual DMUs in R’ using different
weights. From these Figures, it is obvious that the position of
the virtual DMU , (j =1,2,...,10) is changed according to

weights. This difference in position of the
DMU ;(j=1.2,..,10) is reflected on

rank DMU ; (j =1,2,...,10) . For example, D, has the last
rank, in Fig. 4, using the position of its virtual DMU. On the

virtual
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other hand, using another set of weights, the last rank is

devoted to 1), which is shown in Fig. 5.

01275

0.1225 oi®
0.1175
0.1125 D6 Da®
0.1075 p2 D10
* *
0.1025 *
0.0975 o Dg® o7*
0.0925
0.0875

00825
0.0825

00925 01025 01125 01225 01325 01425 01525 01625 01725

Fig. 4 Positions of DMUs using
(V15 v2, V3,11, 12)=(0.0125,0.01,0.015,0.095,0.01)

01125
D1

01075

0.1025
D3

D8
0.0075 +

P

Dz
0.0925
D10

+
D5
0.0875 *
D7

D3 *

0.0825 *
0.0825 0.0925 0.1025 0.1125 01225

0.1325 0.1425 0.1525

Fig. 5 Positions of DMUs using
(V1,v5,V3,u1,u5)=(0.01,0.01,0.0125,0.08,0.01)

As mentioned in Liu and Peng’s method [18], because the
model (3) has alternative optimal solutions, the optimal
solution of the model (4) is considered as common weights.
For this example, the common set of weights is

(Vs Vo Vi, 1,)=(0.01,0.01,0.0125,0.08,0.01).  As
shown in Table II, with this common weights D, and D;
and D, have equal ranks. Although, common set of weights is

unique, we cannot have full ranking for the DMUs. So, this
ranking system using common weights is failed.

In continue, our proposed ranking system with common set of
weights is applied for data in Table I. Numerical Results of
this method are presented in Table III. The unique optimal
solution of the problem (12) for data in Table I is

(V)3 14;,514,)=(0.017,0.004,0.012,0.085,0.001)

that is considered as common weights. Using our proposed
ranking system, we have a full ranking for DMUs
as

D¢ =D, =D, D, =D, =D, D, D, =D, ~D,

Issue 7, Volume 5, 2011

Table III Results of ranking with our proposed method

oMU g" A P Rank
Dl 0.93 - - 4
D2 1 0 0.03724 2
o 0.91 5
o, 0.32 7
Iy 0.33 6
DG 1 0 0.03737 1
D? 0.71 - - 10
DB 0.80 - - 3
Dg 0.76 - - 9
DID 1 0 0.03715 3

As a result, DMUs can be ranked by the position of their

virtual DMUs in R’ .This is an intuitional aspect of the Liu
and Peng’s method [18], but there is no this aspect for units
that their virtual DMUs are on a line. For units that the
corresponding virtual DMUs are on a line, the more distance
virtual DMU from the origin, the better DMU. As shown in
Fig. 6, all DMUs except D,,Ds and Djycan be ranked

according to the gradients of their corresponding lines. D, ,

Dg and Djgcan ranked using the distances of their

corresponding virtual DMUs from the origin and so we have

D, > D, =D,.

0.0895
Dl.
0.0885

D3
00875 D6 *

*Z

Dz o5
0.0865 o * D7

D3 *
0.0855

0.0845

0.0835

00825
0.0825

0.0875 0.0925 0.0975 0.1025 0.1075 0.1125 0.1175 01225

Fig. 6 Positios of DMUs using
V1,2, Vv3,11,u5)=(0.017,0.004,0.012,0.085,0.001)

B. Example 2

In Table IV, there are six DMUs A, B, C, D, E, and F with two
inputs and two outputs. Using the CCR method, the
efficiencies of DMUs are obtained that are shown in the
second column of Table V. Using CCR efficiency, units A, B,
C, and D are efficient. Using Maximin efficiency ratio and
MOLP Minimax and MOLP Minsum methods, the
performance of these DMUs are measured that are presented
in the last three columns of Table V, respectively. In MOLP
Minimax and MOLP Minsum methods, the efficiency scores
of units A and D are equal to one, and so there is not
distinction between performances units A and D. Other units
can be ranked according to their efficiency scores. Using
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MOLP Minmax method, we have
DMU A~ DMU D -~ DMU E - DMU B >~ DMU C

> DMU F. Using MOLP Minsum method, we have
DMU A= DMU D -~ DMU E -~ DMU F -~ DMU B
> DMU C . According to the efficiency scores of DMUs

using Minimax efficiency ratio that are presented in the third
column of Table V, we have

DMU D >~ DMU C -~ DMU E -~ DMU A -~ DMU B
> DMU F', and so unit D has the best performance. Using

efficiency scores obtained by our proposed method which are
provided in the second column of Table VI, units A, B, and D
are efficient. These units can be ranked by their distance to bad
benchmark that is presented in the third column of Table VI.
The rest of the units can be ranked according to their
efficiency scores. So by applying the proposed method in this
paper, we have

DMU D - DMU B - DMU A~ DMU E - DMU F
= DMU C . Similar to other methods mentioned above, unit
D has the best rank.

Table IV DMUs data
DMU Input1 Input 2 output 1 Output 2
A 150 0.0200 14000 3500
B 400 0.7000 14000 21000
C 320 1.2000 42000 10500
D 520 2.0000 28000 42000
E 350 1.2000 19000 25000
F 320 0.7000 14000 15000

Table V Ranking DMUs in Table IV using several methods

MU CCR Maximin MOLP- minimax ~ MOLP-min sum
efficiency ratio
A 1.0000 0.7110 1.000 1.000
B 1.0000 0.6500 0.953 0.864
C l.0000 0.9990 0.883 0.830
D l.0000 1.0000 1.000 1.000
E 097380 0.9210 0.974 0.977
F 0.5630 0.648 0.864 0.867

Table VI Our results from Table V

DMU Efficiency score Distance from bad benchmark

A 1000 0.010

B 1.000 0.031

C 0.829 -

o 1000 0.001

E 09738 -

F 0.564

C. Example 3

In order to have a better understanding of robustness proposed
method, an empirical study about twenty branches of banks in
Iran is presented in this section. Six factors are considered for
evaluation branches, three inputs and three outputs. Staff,
computer terminals, and area of branch are considered as
inputs. Deposits, loans, and charge are considered as outputs.
The data of these twenty branches are presented in Table VII.
The last column of Table VII reports the CCR efficiency of
branches. We only consider CCR efficient branches for
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ranking by proposed method. The results of applying our
proposed method are presented in Table VIII.

Table VII DMUs' data (Jahanshahloo et al. [20])

Branch Input 1 Input 2 Input 3 Cutput 1 Cutput2  Output3  CCR
staff Computer  Area(m2)  deposits Loans charge efficiency
terminals

1 0.950 0.700 0.155 0.190 0521 0.293 1.000
2 0.796 0.600 1.000 0.227 0.627 0.462 0.833
3 0798 0.750 0.513 0.228 0.970 0.261 0.991
4 0.865 0.550 0.210 0.193 0.632 L.o00 1.000
5 0.815 0.850 0.268 0.233 0722 0.246 0.899
@ 0.842 0.650 0.500 0.207 0.603 0.569 0.748
7 0719 0.600 0.350 0.182 0.900 0.761 1.000
8 07385 0.750 0.120 0.125 0.234 0.298 0.798
9 0.476 0.600 0.135 0.080 0.364 0.244 0.739
10 0.678 0.550 0.510 0.082 0.134 0.049 0.239
11 0711 1.000 0.305 0.212 0.318 0.403 0.604
12 0811 0.650 0.255 0.123 0923 0.628 L.000
13 0.659 0.850 0.340 0.176 0.045 0.261 0.817
14 0.976 0.800 0.540 0.144 0514 0.243 0.470
15 0.685 0.950 0.450 1.000 0.262 0.098 1.000
16 0613 0.900 0.525 0.115 0.402 0.464 0.639
17 L.000 0.600 0.205 0.090 Loo0 0.161 1.000
1a 0.630 0.650 0.235 0.059 0.349 0.068 0.473
19 0372 0.700 0.2328 0.029 0.190 0111 0.408
20 0583 0.550 0.500 0.110 0.615 0.764 1.000

Using this method, the branches four, seven, twelve, fifteen,
and seventeen have the same score one and so their
corresponding virtual DMUs lies on good benchmark.
According to our proposed method the branch fifteen with the
highest virtual output has the first rank. Also, branches four,
seven, twelve, and seventeen can be ranked using the value of
virtual outputs and SO we have
Branch7 > Branch12 = Branch17 >= Branch 4. The

branches one and twenty with scores 0.738 and 0.632 can be
differentiated. The branch twenty with score 0.632 has the last
rank among CCR efficient branches.

Table VIII System for ranking efficient DMUs

Efficient bl : : m * * Ranking
branch > v*;x&. > u*yy,j > M*,y,j > v*zxa. &, i
i =) = =1

1 0.126 0.930 0.738 - - @

4 0.119 0.119 1.000 0.000 0.069 5

7 0.142 0.142 1.000 0.000 0.082 2

12 0.134 0.134 1.000 0.000 0.077 3

15 0.189 0.189 1.000 0.000 0.109 1

17 0.128 0.128 1.000 0.000 0.077 4

20 0.158 0.100 0.632 - - 7

V. CONCLUSION

This research presented a method for ranking all efficient
DMUs based on the altered version the work proposed by Liu
and Peng [18]. Liu and Peng’s method [18] has two basic
problems that we discussed in this paper. At first, there is no
guarantee that the common set of weights is unique. This is a
problem, basically, because there is vagueness in choosing one
common set of weights. In this article, we presented a method
to overcome this difficulty that can be applied for all methods
that use linear programming problem to obtain common set of
weights. Whereas being computationally burdensome, this
method serves to obtain a unique common set of weights.

Second, the proposed ranking system by Liu and Peng [18]
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cannot fully rank two efficient DMUs when they have equal
shadow prices. Using definition a bad benchmark, this
research presented a system for full ranking efficient DMUs
that have no difficulty using the shadow prices. The proposed
method was illustrated by several numerical examples. In
future, we will propose utilizing other norms to measure gap
between virtual DMUs and benchmarks for further research.
Also, applying this method for ranking DMUs with imprecise
data is a good direction for research.
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