
 

 

  

Abstract— One of the most common types of energy absorbers is 
thin-walled structures with square cross-sections. These absorbers 

have extensive applications in energy absorption mechanisms 

because they have great capacity for the energy absorption. In this 

paper, researchers have done scores of analyses on square cross-

section aluminum structures in order to extract formulas with 

appropriate precisions, which can calculate the rate of absorption in 

these absorbers without performing numerous practical experiments. 

The results obtained from the experiments in this research are 

employed to represent a mathematical model based on Adaptive 

neuro-fuzzy inference systems (ANFIS) networks. Genetic algorithm 

(GA) and singular value decomposition (SVD) are deployed for the 

optimal design of both Gaussian membership functions of 

antecedents and the vector of linear coefficients of consequents in 

such networks, respectively.  The aim of such modelling is to show 

how the value of absorbed energy varies with the variation of 

important parameters namely, width of section, thickness and height 

of column. It is demonstrated that SVD can be effectively used to 

optimally find the vector of linear coefficients of conclusion parts in 

ANFIS models and their Gaussian membership functions in premise 

parts are determined by GA. 

 

Keywords— ANFIS, Aluminum, Energy absorber, Genetic 
Algorithm, SVD. 

I. INTRODUCTION 

To prevent or reduce damage in many engineering 
structures, especially in moving components, energy 

absorption systems are employed elaborately. Although the 

application of energy absorption components depends on the 

type of the occurrence and the rate of energy absorption, these 

components can be used in many situations such as in vehicle 

accidents (cars, airplanes, ships, etc.), nuclear reactor safety 

and oil tankers. 

The behavior of thin-walled metal structures under axial load 

pressure as the energy absorber has been studied for many 

years [1- 4]. Low weight and low volume, as well as 

accessibility and economy are the advantages which have 
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made the research on these structures continue for the 

optimization of energy absorption specifications [5, 6].  

Therefore, presentation of a mathematical relationship that 

can represent the rate of energy absorption by an energy 

absorber with specific geometrical specifications is very 

valuable. To obtain such a relationship, modelling based on 

numerical data obtained from experiments can be employed. 

In fact, system identification techniques are applied in many 

fields in order to model and predict the behaviors of unknown 

and/or very complex systems based on given input–output 

data [7]. Theoretically, in order to model a system, it is 

necessary to understand the explicit mathematical input–

output relationship precisely. However, such explicit 

mathematical modelling is very difficult and is not readily 

tractable in poorly understood systems. Alternatively, soft-

computing methods [8], which concern computation in an 

imprecise environment, have gained significant attention. The 

main components of soft computing, namely, fuzzy-logic, 

neural networks, and genetic algorithms (GAs), have shown 

great ability in solving complex nonlinear system 

identification and control problems. Among these 

methodologies, evolutionary methods have been mostly used 

as effective tools for both system identification and optimal 

design of fuzzy and neural network systems [9–12]. Fuzzy 

rule-based systems have been an active research field for their 

unique ability to build models based on experimental data. 

The concept of fuzzy sets that deal with uncertain or vague 

information paved the way for applying them to real and 

complex tasks [13]. 

Indeed, fuzzy logic, coupled with rule-based systems, has 

the ability to model the approximate and imprecise reasoning 

processes that are common in human thinking or human 

problem solving. This results in a policy that can be 

accordingly evaluated mathematically by using fuzzy set 

theory. Therefore, fuzzy systems as universal approximators 

[14–16], can be effectively employed to perform input–output 

mapping. Such fuzzy systems can be iteratively designed 

using different evolutionary search methods [17–19], and such 

genetic-fuzzy systems continue to become more visible [20]. 

In fact, these fuzzy systems are trained by examples 

),...,2,1(),( miyX ii =  in terms of input–output pairs. 

 A combination of orthogonal transformation and 

backpropagation methods has been proposed to train a 

candidate fuzzy model and to remove its unnecessary fuzzy 

rules [21]. In some recent works, it is also shown that singular 

value decomposition (SVD) can be used to enhance the 

performance of both fuzzy and group method of data handling 
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(GMDH) type neural networks models obtained using some 

simple heuristic approaches [22, 23]. In such networks, all two 

input neurons are connected to produce a hidden or output 

neuron using a linear or, more commonly, nonlinear quadratic 

from of function. 

Moreover, SVD has also been applied in combination with 

GAs to optimally design a fuzzy system for modelling 

purposes, which demonstrated its superior performance in 

comparison with previous work [24, 25 and 26]. However, a 

fuzzy model consisting of large number of IF–THEN rules to 

map inputs to outputs is not desired because of the 

phenomenon of overfitting that reduces the generalizing 

property of the fuzzy model to predict the unforeseen data. In 

this way, the Takagi–Sugeno–Kang (TSK) type fuzzy models 

are widely used for control and modelling because of their 

high accuracy and relatively small models [27, 28]. In the 

TSK models, which are also known as neuro-fuzzy systems, 

the consequents of the fuzzy rules are explicit functions, 

usually linear relationships, of the input variables rather than 

fuzzy sets. In other words, the crisp linear relation part in the 

consequents of a TSK fuzzy rule describes the underlying 

model in the local multidimensional region specified in the 

premise part of that fuzzy rule [29]. Therefore, two types of 

tuning procedures are required for proper partitioning of the 

input space and number of fuzzy rules, which is known as 

structural tuning, and for parameters in consequent parts of the 

fuzzy rules, which is known as parametric tuning. Nowadays, 

different approaches have been adopted for optimal tuning of 

such models based on either heuristic search or fuzzy 

clustering for the premise part and least squares for linear 

parameters in the conclusion part of the fuzzy rules [27, 29, 

and 30]. GAs have received much attention for optimal 

selection of the premise part of TSK-type fuzzy rules in recent 

work [21, 28, 29, 30, 32,]. In addition, in order to identify the 

consequents’ parameters, there have been some attempts to 

use SVD as a linear optimization technique [28, 33].  An 

equivalent approach to the TSK models has been proposed as 

an adaptive neuro-fuzzy inference system, ANFIS [34], in 

which a hybrid learning method is used for tuning parameters 

in both antecedents and consequents of embodied TSK-type 

fuzzy rules. The effectiveness of using ANFIS for control and 

modelling has been pointed out in [35, 36]. There has been 

some research effort in the literature to optimally design the 

premise and conclusion parts of such ANFIS or TSK models. 

A backpropagation algorithm is used in conjunction with SVD 

for both nonlinear and linear parameters embodied in the 

antecedent and consequent parts of fuzzy rules, respectively 

[30]. The Levenberg-Marquardt method has been used for the 

same purpose by Jang and Mizutani [37]. A GA together with 

a Kalman filter has been used in [21]. A hierarchical GA has 

been used by Delgado et al. in combination with the least-

squares method and a pruning procedure has been developed 

to avoid redundancy in each rule consequent [28].  

Moreover, in the absence of a well-defined energy 

absorption formula that can be used to model and predict 

energy absorption of metal energy absorbers, extensive tests 

must be carried out for different width, thickness and height of 

Square samples.  

In this paper, a hybrid genetic algorithm and SVD is used 

for the optimal selection of Gaussian membership functions of 

the premise part and linear parameters of the conclusion part, 

respectively, in an ANFIS network for modelling of energy 

absorption value in square section aluminum column as 

energy absorber. In order to reduce the complexity of the rule 

base, the ‘bottom up’ rule-based approach is adopted to search 

for the best structure according to their training or validation 

error versus the number of rules [30]. The obtained results 

demonstrate the superiority of such a learning method in 

comparison with ANFIS hybrid learning method originally 

proposed in [34, 37]. In this way, it is shown that such a 

hybridization of GA and SVD in a cross-validation process 

can effectively design and tune an ANFIS network with a 

reduced number of fuzzy rules for the modelling of complex 

process such as energy absorbers’ folding and deformation 

under abrupt impact loading. 

II. EQUIPMENT AND MANNER OF PERFORMANCE OF THE 

EXPERIMENTS IN THE ENERGY ABSORPTION PROCESS  

The components employed for the performance of the 

experiments were selected from aluminum with different 

production processes. The initial experimental results for 

tension test on the components showed that these components 

had different yield stresses. With regard to this point that the 

aim is to study the effect of geometrical parameters on energy 

absorbers, yield stresses should be equalized before 

performing tension test. For this reason, it was decided to 

lower the higher yield stresses to the lowest yield stress 

present among the cells. To attain this goal, graphs and tables 

related to annealing of different metals were extracted from 

ASM handbook, Heat Treatment section, from which the 

temperature of 3000C was selected for aluminum. For 

lowering the yield stresses annealing method in electric 

furnace was selected. 

The components were tested by metal test device after being 

equalized for their yield stresses. This device contains two 

jaws, the lower one is fixed and the upper jaw can move and 

impose tension and compression force. The speed of the jaw is 

adjustable with a maximum and a minimum speed of 500 

mm/min and 0.5 mm/min, respectively. The upper jaw is 

equipped with a force sensor which transfers the rate of the 

force imposed on the jaw to a computer connected to the metal 

test device. The maximum compression load imposed by the 

device is 100 KN. The speed of loading during the 

performance of semi-static tests is 30mm/min. The intended 

cell is first placed on the lower jaw and then the upper jaw is 

lowered so much that it touches the upper surface of the cell. 

After performing these stages, the computer starts the test and 

imposes the compression force. The data obtained by the force 

sensor is transferred to a computer equipped with Q-Mat 

software.  

The data access by the computer is as follows: 

1- Force-displacement graph such as figure 1: in which the 

force is defined in terms of Newton and displacement is 

defined in terms of millimeter.  

2- The average force rate )(dFave  during the energy 

absorption process calculated by Q-Mat software. 
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Fig.1. Displacement-force graph and displacement-energy absorption 

rate [5]. 

 

3- Energy absorption rate )(dE by the cell (in terms of Joule) 

which is that the area under the force-displacement graph 

dF −   and calculated by Q-Mat software.  

From the above three items, energy absorption rate )(dE is 

intended in this article. 

As it was mentioned earlier, the components tested had 

square cross-sections. For every cross-section the tests were 

performed on energy absorbers with different geometrical 

parameters. These parameters were width (w), the thickness 

(th) and the height of the absorber (h). Geometrical parameters 

in energy absorbers and folded components after performing 

the tests in different dimensions are depicted in figures 2 and 

3. 

 
Fig.2. Geometrical variables in energy absorbers with square cross-

section. 

 

 
Fig.3. Energy absorbers with square cross-section after the test 

 

III. MODELLING USING ANFIS 

 An ANFIS that consists of a set of TSK-type fuzzy IF–

THEN rules can be used in modelling in order to map inputs 

to outputs. The formal definition of such an identification 

problem is to find a function f̂ so that it can be approximately 

used instead of the actual one, f , in order to predict output ŷ  

for a given input vector ),...,,,( 321 nxxxxX =  as close as 

possible to its actual output y . Therefore, given m 
observations of multiple input single-output data pairs so that 

.,...,2,1),,...,,,( 321 mixxxxfy iniiii ==                       (1)  

it is now possible to build a look-up table to be used to train a 

fuzzy system to predict the output values iŷ for any given 

input vector ),,...,,,( 321 iniii xxxxX =  that is, 

.,...,2,1),,...,,,(ˆˆ
321 mixxxxfy iniiiii ==                       (2) 

The problem is now to determine an ANFIS so that the 

difference between the actual output and the predicted one is 

minimized, that is, 

.min]),...,,(ˆ[ 2

32

1

1 →−∑
=

iinii

m

i

i yxxxxf                           (3) 

In this way, a set of linguistic TSK-type fuzzy IF–THEN 

rules is designed to approximate f  by f̂  using 

m observations of n -input–single-output data pairs 

).,...,2,1(),( miyX ii = The fuzzy rules embodied in such 

ANFIS models can be conveniently expressed using the 

following generic form:  

 

∑
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in which },,...,2,1{ rji ∈ and },...,,,{ 021

ll

n

lll wwwwW =  is 
the parameter set of the consequent of each rule. The entire 

fuzzy sets in xi space are given as 

 

}.,...,,,{ )()3()2()1()( ri AAAAA =                                        (5) 

 

These entire fuzzy sets are assume Gaussian shape defined on 

the domains ).,...,2,1(],[ niii =+− βα  In this way, the 

domains are appropriately selected so that all the fuzzy sets 

are complete; that is, for any ],[ iiix βα +−∈  there exist 

)( jA  in Eq. (5) such that the degree of membership function 

is nonzero, 0)()( ≠iA
xjµ . Each fuzzy set 

)( jA in which 

},...,2,1{ rj∈  is represented by Gaussian membership 
functions in the form  

 

)/))((2/1(
22

)( ),;()( jji

j

cx

jjiiA
ecxGaussianx

σ
σµ

−−
==   (6) 

where jjc σ,  are adjustable centers and variances in 

antecedents, respectively. It is evident that the number of such 

parameters involved in the antecedents of ANFIS models can 

be readily calculated asnr , wheren  is the dimension of input 
vector and r  is the number of fuzzy sets in each antecedent. 
The fuzzy rule expressed in Eq. (4) is a fuzzy relation in 
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RU ×  in which 
)(iA  are fuzzy sets in iU  so that 

nUUUUU ××××= ...321  and 

yAAAARule njjjj →××××= )()()()( ...321 . It is evident 

that the input vector 

UxxxxX T

n ∈= ),...,,,( 321
and Ry∈ . Using Mamdani 

algebraic product implication, the degree of such a local fuzzy 

IF–THEN rule can be evaluated in the form  

 

),...,,( 321 nURule xxxx
l

µµ =                                         (7) 

Where 
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In these equations )()( iA
x

ij

l

µ represent the degree of 

membership of input ix  regarding their l th fuzzy rule’s 

linguistic value, 
)( ij

l
A . Using a singleton fuzzifier, product 

inference engine, and finally aggregating the individual 

contributions of rules leads to the fuzzy system in the form  
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when a certain set containing N  fuzzy rules in the form of 

Eq. (4) is available. Eq. (9) can be alternatively represented in 

the following linear regression form:  
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where D  is the difference between )(Xf  and 

corresponding actual output, y , and 
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It is therefore evident that Eq. (10) can be readily expressed 

in matrix form for a given m  input–output data pairs 

),...,2,1(),( miyX ii = in the form 

 

DWPY +=                                                                     (12) 

 

where 
ST

s RwwwW ∈= ],...,,[ 21
, )1( += nNS  and, 

SmT

s RpppP ×∈= ],...,,[ 21
. It should be noted that each 

)1( +n  components of vector iw  corresponds to the 

conclusion part of a TSK-type fuzzy rule. Such firing strength 

matrix P  is obtained when input spaces are partitioned into 
certain number of fuzzy sets. It is evident that the number of 

available training data pairs is usually larger than all the 

coefficients in the conclusion part of all TSK rules when the 

number of such rules is sufficiently small, that is, Sm ≥ . 

This situation turns the Eq. (12) into a least-squares estimation 

process in terms of unknowns, 
T

swwwW ]...,,,[ 21= , so that 

the difference D  is minimized. The governing normal 
equations can be expressed in the form 

 

.)( 1 YPPPW TT −=                                                      (13) 

 

Such modification of coefficients in the conclusion part of 

TSK rules leads to better approximations of given data pairs in 

terms of minimization of difference vectorD . However, such 
a direct solution of normal equations is rather susceptible to 

round-off error and, more importantly, to the singularity of 

these equations.  

Therefore, in this work SVD is used as a powerful numerical 

technique to optimally determine the linear coefficients 

embodied in the conclusion part of the ANFIS model to deal 

with probable singularities in Eq. (12). However, a 

hybridization of GA and SVD is proposed for the optimal 

design of an ANFIS to model the energy absorption of square 

section aluminum absorbers. Such a combination of GAs and 

SVD is described in Sections 4 and 5, respectively. 

 

 

IV. APPLICATION OF GENETIC ALGORITHM TO THE DESIGN OF 

ANFIS 

    The incorporation of GA into the design of such ANFIS 

models starts by representing the )1( +nN  real-value 

parameters of },{ jjc σ  as a string of concatenated substrings 

of binary digits. Thus, each such substring represents the fuzzy 

partitioning of antecedents of fuzzy rules embodied in such 

ANFIS models in binary coded form. The fitness (Φ ) of each 

entire string of binary digits that represents an ANFIS system 

to model energy absorption is readily evaluated in the form of  

 

e1=Φ                                                                               (14) 

 

Where e  is the objective function given by Eq. (3) and is 
minimized through an evolutionary process by maximization 

of the fitness,Φ . The evolutionary process starts by randomly 

generating an initial population of binary strings, each 

candidate solution representing the fuzzy partitioning of the 

premise part of rules. Then, using the standard genetic 

operations of roulette wheel selection, crossover, and mutation 

[38], entire populations of binary string are caused to improve 

gradually. Simultaneously, the linear coefficients of the 

conclusion parts of TSK rules, corresponding to each 

chromosome representing the fuzzy partitioning of the premise 
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parts, are optimally determined by using SVD. Therefore, 

ANFIS models of energy absorption with progressively 

increasing fitness,Φ , are produced with their premise and 

conclusion parts determined by GAs and SVD, respectively. 

In other words, each chromosome representing the fuzzy 

partitioning of antecedents is related to the corresponding 

linear coefficients of consequents obtained by the SVD 

method. Pseudocode for such a design process is given in 

Figure 4, which is also schematically represented in Figure 5. 

The following section describes a summary of the detailed 

application of SVD to optimally determine the linear 

coefficients in the linear equations. 

 

 
Fig. 4. The pseudocode of the hybrid GA/SVD design method. 

 

 

 
Fig. 5. A schematic diagram of the hybrid GA/SVD design method. 

 

 

V. APPLICATION OF SVD TO THE DESIGN OF ANFIS 

 

In addition to the genetic learning of antecedents of fuzzy 

sets involved in ANFIS networks, SVD is also deployed for 

the optimal design of consequents of such fuzzy systems. SVD 

is the method for solving most linear least-squares problems 

for which some singularities may exist in the normal 

equations. The SVD of a matrix,
SMRP ×∈ , is a factorization 

of the matrix into the product of three matrices, a column-

orthogonal matrix
SMRU ×∈ , a diagonal matrix 

SSRQ ×∈ with non-negative elements (singular values), and 

an orthogonal matrix 
SSRV ×∈ ,such that 

 

.TVQUP =                                                                   (15) 

 

The most popular technique for computing the SVD was 

originally proposed in [39]. The problem of optimal selection 

of W  in Eq. (12) is firstly reduced to finding the modified 

inversion of the diagonal matrix Q  [40], in which the 

reciprocals of zero or near zero singulars (according to a 

threshold) are set to zero. Then, such optimal W values are 

obtained using the following relation:  

 

( )[ ] .1 YUqdiagVW T

j=                                                           (16) 

VI. GENETIC/SVD BASED ANFIS MODELLING OF ENERGY 

ABSORPTION IN ALUMINUM ENERGY ABSORBERS  

The parameters of interest in this multi-input single-output 

system are width (w ), thickness ( th ) and height of profile     
( h ). Accordingly, there has been a total number of 44 input–
output experimental data considering three input parameters, 

namely, the width, the thickness and the height of profile, in 

three different groups. In this work, the output parameter has 

been the energy absorption value of such aluminum profiles    

(E ). In order to model such a three-input single-output set of 
data as shown in Figure 6, an ANFIS with two linguistic terms 

in each antecedent, which is equivalent to two Gaussian 

membership functions for each input variable, was considered, 

that is, n = 3 and r = 2. It should be noted that the number of 
parameters in each vector of coefficients in the conclusion part 

of each TSK-type fuzzy rule is four, according to the assumed 

linear relationship of input variables in the consequents.  

 

 
Fig. 6. A conceptual ANFIS model of the absorbed energy. 

 

Consequently, 823 =  TSK-type fuzzy rules were 

identified using the ANFIS given in MATLAB fuzzy-logic 

toolbox. In order to demonstrate the prediction ability of such 

an ANFIS model, the data are divided into two different sets: 

training and prediction. The training set, which consists of 31 

out of 44 input–output data pairs, is used for training the 
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ANFIS model. The prediction set, which consists of 13 

unforeseen input–output data samples during the training 

process, is merely used for prediction to show the prediction 

ability of such an ANFIS model during the training process. 

Figure 7 demonstrates the training and prediction behavior of 

the ANFIS model obtained using the MATLAB fuzzy-logic 

toolbox. In this case, the corresponding mean squares of errors 

are calculated as 42.8 and 184405.3 for both training and 

prediction sets, respectively. 

 

 
Fig. 7. The variation of energy absorption with input data samples 

(ANFIS of MATLAB with 8 rules). 

 

To demonstrate the effectiveness of the hybrid design 

method using a GA and SVD, which was developed in this 

work, the same procedure of training and/or predicting 

discussed above was applied for the modelling of three-input–

single-output set of data of energy of aluminum absorbers. 

The number of Gaussian membership functions for each input 

variable in the premise part of rules was again considered as 

two. In this case, however, the number of TSK-type rules was 

determined in a cross-validation process using the hybrid 

GA/SVD design method developed here. In the cross-

validation process different ANFIS systems in terms of a 

different number of fuzzy rules are compared with each other 

according to their performance, which might be either training 

the MSE or predicting the MSE. It should be noted that each 

of these ANFIS systems is designed using the same procedure, 

which is the so-called hybrid GA/SVD design method. During 

the evolutionary process, the population size, mutation 

probability, crossover probability, and generation number 

were selected as 70, 0.002, 0.6, and 260, respectively. It 

should be noted that 4 bits was chosen as the binary 

representation of each variable, which makes the length of a 

chromosome 48 bits with respect to 3×2×2=12 parameters.  

Similarly, in order to demonstrate the prediction ability of 

GA/SVD designed ANFIS model, the procedure of training 

and prediction has been performed in a cross-validation 

process on the data sets consisting 31 and 13 data samples, 

respectively. The result of this modelling has been shown in 

figure 8. 

 

 
Fig.8 The variation of energy absorption with input data samples 

(ANFIS of this work with 8 rules). 

 

 Moreover, Figures 9 shows training and prediction errors, 

versus the number of rules embodied in such a GA/SVD 

designed ANFIS. In these cases, the measure of performance 

in the cross-validation process is accomplished on the 31- and 

13-data training sets, respectively. 

 

 
Fig. 9. The Ttraining and Prediction errors of GA/SVD-designed 

ANFIS with different number of rules. 

 

Consequently, it is very evident from this figure that the 

phenomenon of overfitting can be readily prohibited when the 

number of rules in such a GA/SVD designed ANFIS is kept to 

four, that means when the number of rules arise higher than 

four, the mathematical formula extracted from model is to 

some extent over qualified and use higher order relation to 

satisfy data and lead to wrong prediction in spite of being well 

on training data set. Figure 10 shows the Gaussian 

membership functions of input variables for which the 

obtained set of TSK-type fuzzy rules for modelling of energy 

value absorbed by aluminum specimens are as follows: 

 

.77582-11124- 55- 

,:1 641

+××= hthwE

thenAishandAisthandAiswIfRule
 

.523942181- 8

,:2 532

++××= hthwE

thenAishandAisthandAiswIfRule

.327086518 108 

,:3 632

++×+×= hthwE

thenAishandAisthandAiswIfRule
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.8361513361 20- 

,:4 542

−+×+×= hthwE

thenAishandAisthandAiswIfRule

 
 

 
Fig. 10. The genetically evolved Gaussian membership functions of 

input variables (GA/SVD-designed ANFIS with four rules). 

 

The very high ability of the ANFIS network designed by 

hybrid GA/SVD with four TSK-type fuzzy rules to model the 

data of energy absorption of square aluminum energy 

absorbers depicted in Figure 11. The architecture of this 

ANFIS model has been shown in Figure 12. 

 

 
Fig. 11. The variation of energy absorption with input data samples 

(GA/SVD designed ANFIS with four rules). 

 

 

 
Fig. 12. Architecture of GA/SVD designed ANFIS with four rules. 

 

 The comparisons of training and prediction errors in both 

ANFIS networks with different numbers of rules have been 

summarized in Table 1 as well. Eventually, the superiority of 

the hybrid GA/SVD design approach presented in this paper is 

clearly evident from these results. 

 

TABLE 1 

TRAINING AND PREDICTION ERROR COMPARISONS 

 

Training error, 

31 data 
samples 

Prediction error, 

13 data samples 

Number of 

Rules 

ANFIS, 

MATLAB 
42.8 184405.3 8, 8 

ANFIS, this 

work 
33.7 870.1  4, 4 

 

VII. CONCLUSIONS 

Hybrid GA/SVD designed ANFIS networks have been 

successfully used for the modelling of the very complex 

process of deformation and related energy absorption in 

aluminum energy absorbers. In this way, it has been shown 

that an ANFIS provides effective means to model and predict 

the energy value according to different inputs. This has been 

achieved by dividing the whole data into two different sets, 

namely, training and prediction sets. The training set has been 

used for learning the parameters of the ANFIS models 

whereas the prediction set has been merely used to 

demonstrate the prediction ability of the optimally designed 

ANFIS networks. In conclusion, it has been demonstrated that 

the methodology of hybrid GA/SVD in the design of the 

ANFIS presented in this work is remarkably effective in terms 

of both training and/or prediction errors and the number of 

rules. 
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