
 

 

  
Abstract—The principal goal of this paper is to introduce the 

fundamentals of the Fractional Order Calculus (FOC), outline its 
possible application to the field of analysis and synthesis of control 
systems, and present several existing Matlab toolboxes related to 
FOC. The basic theoretical concepts of FOC are followed by 
methodologies for potential fractional order systems description and 
their stability investigation. Furthermore, the paper offers brief 
overview of the fractional order controllers which can be found in the 
scientific literature and highlights the benefits of the fractional 
approach in comparison with the classical integer one. On top of that, 
the Matlab toolboxes, useful for the practical design and analyses 
connected with fractional order control, are also discussed in the 
paper. 
 

Keywords—Fractional order calculus, differintegration, 
fractional order controllers, control theory, control systems, Matlab 
toolboxes.  

I. INTRODUCTION 
HE Fractional Order Calculus (FOC) constitutes the 
branch of mathematics dealing with differentiation and 

integration under an arbitrary order of the operation, i.e. the 
order can be any real or even complex number, not only the 
integer one [1], [2], [3]. Although the FOC represents more 
than 300-year-old issue [4], [5], [6], its great consequences in 
contemporary theoretical research and real world applications 
have been widely discussed relatively recently. The idea of 
non-integer derivative was mentioned for the first time 
probably in a letter from Leibniz to L’Hospital in 1695. Later 
on, the pioneering works related to FOC have elaborated by 
personalities such as Euler, Fourier, Abel, Liouville or 
Riemann. The interested reader can find the more detailed 
historical background of the FOC e.g. in [1]. 

According to [4], [7], the reason why FOC remained 
practically unexplored for engineering applications and why 
only pure mathematics was “privileged” to deal with it for so 
long time can be seen in multiple definitions of FOC, missing 
simple geometrical interpretation, absence of solution methods 
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for fractional order differential equations and seeming 
adequateness of the Integer Order Calculus (IOC) for majority 
of problems. However, nowadays the situation is going better 
and the FOC provides efficient tool for many issues related to 
fractal dimension, “infinite memory”, chaotic behaviour, etc. 
Thus, the FOC has already came in useful in engineering areas 
such as bioengineering, viscoelasticity, electronics, robotics, 
control theory and signal processing [7]. Several control 
applications are available for example in [8]-[10]. The 
information on fractional order Proportional-Integral 
(-Derivative) (PI(D)) controllers can be found e.g. in [11], 
[12] while the works [13]-[17] deal with their classical fixed 
order versions. 

This paper is the extended version of the contribution [18]. 
It is not intended to bring any novel theoretical knowledge nor 
application results. Its main purpose is to aggregate the FOC 
theory and introduce its utilization in control theory on the 
basis of literature from “References” Section. Moreover, the 
paper outlines several toolboxes for fractional order control in 
Matlab environment. 

The work is organized as follows. In Section II, the basic 
theoretical concepts of FOC and various definitions of 
differintegral operator are introduced. The Section III then 
presents the possible ways of description of fractional order 
systems. The Section IV follows the previous one with 
opening the problem of stability investigation for this class of 
systems. Further, the brief survey on existing fractional order 
controllers is provided in Section V. Subsequently, Section VI 
overviews four Matlab toolboxes for problems of fractional 
order control. And finally, Section VII offers some conclusion 
remarks. 

II. BASIC CONCEPTS OF FRACTIONAL ORDER CALCULUS 
The FOC is based on generalization of differentiation and 

integration to an arbitrary order, which can be rational, 
irrational or even complex. This generalization has led to the 
introduction of basic continuous differintegral operator [1], 
[2], [4], [7]: 
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where α  is the order of the differintegration (usually α ∈\ ) 
and a is a constant connected with initial conditions. 

There is an array of definitions of differintegral in the 
literature. The three most frequent definitions bear the names 
of Riemann-Liouville, Grünwald-Letnikov and Caputo. The 
most known and used Riemann-Liouville version has the form 
[4]: 
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under condition ( )1n nα− < < . The term ( )Γ ⋅  represents so-
called Gamma function. 

Alternatively, the Grünwald-Letnikov definition is given by 
[4], [9]: 
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and where h is the time increment and [.] means the integer 
part. 

Finally, Caputo has defined the differintegral as [5], [6]: 
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Each of the definitions of an interpolation of the integer order 
operations sequence has its advantages and drawbacks and the 
user choice depends mainly on the purpose and the area of 
application [3], [11]. 

The control theory widely exploits the Laplace transform 
for the sake of analysis and synthesis simplicity. The Laplace 
transform (denoted as L) of the differintegral can be written as 
[4], [9]: 
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where integer n lies within ( )1n nα− < ≤ . 

III. DESCRIPTION OF FRACTIONAL ORDER SYSTEMS 
A fractional order continuous-time linear time-invariant 

dynamical system can be described by a fractional order 
differential equation [3]-[6]: 
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where u(t) is the input signal, y(t) is the output signal, 

0 tD Dγ γ≡  represents fractional derivative, ka  with 

( )0, ,k n= …  and kb  with ( )0, ,k m= …  denote constants, and 

kα  with ( )0, ,k n= …  and kβ  with ( )0, ,k m= …  are arbitrary 
real numbers. According to [4]-[6], one can assume 
inequalities 1 0n nα α α−> > >"  and 1 0m mβ β β−> > >"  
without loss of generality. 

Another option for fractional order system description is in 
the form of incommensurate real orders transfer function [3], 
[5], [6]: 

 
1 0

1 0

1 0

1 0

( )( )
( )

k m m

k n n

m m

n n

B s b s b s b sG s
A s a s a s a s

β β β β

α α α α

−

−

−

−

+ + += =
+ + +

"
"

 (8) 

 
The symbols in (8) have the same meaning as in (7). 

It has been shown (e.g. in [5], [6], [19]) that every 
incommensurate order system (8) can be expressed as a 
commensurate one by means of a multivalued transfer 
function. The domain of such multivalued functions can be 
seen as a Riemann surface with Riemann sheets. Graphical 
interpretations of several functions via Riemann surface are 
visualized in [5], [6]. 

If the transfer function (8) is supposed for k kα α= , 

k kβ β= , 0 1α< < , k ∈] , it represents the specialized case 
of commensurate order system. Then the corresponding 
transfer function is: 
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The analytical solution of fractional order differential 

equations in time domain (e.g. for the purpose of step or 
impulse responses computation) can be expressed for example 
with the assistance of functions of Mittag-Leffler type [3], [5], 
[6]. 

IV. STABILITY OF FRACTIONAL ORDER SYSTEMS 
Obviously, the closed-loop stability represents the very 

fundamental and critical requirement during control system 
design. It is widely known that an integer order continuous-
time linear time-invariant system is stable if and only if all 
roots of its characteristic polynomial have negative real parts. 
In other words, the roots must lie in the left half of the 
complex plane. Investigation of stability of the fractional 
order systems represents the more complicated issue [5], [6], 
[20]. 

 
 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 5, 2011 1163



 

 

For example, the stability of commensurate fractional 
order systems can by analyzed via the theorem of Matington 
[20] or the definition from [5], [6], which describes the way 
of mapping the poles from sα -plane into the w-plane. An 
interesting result is that the poles of the stable fractional 
order system can be located even in the right half of such 
complex plane. This fact is illustrated e.g. in Fig. 1 where the 
stability region for a commensurate fractional order linear 
time-invariant system with order 0 1α< <  is depicted [4]-
[6].  

 

 
Fig. 1 region of stability for the commensurate fractional order 
system with 0 1α< <  [4]-[6] 

 
The situation for 1α =  is then visualized in Fig. 2. In this 

case, the region of stability corresponds to the classical s-
plane [5]-[6]. 

 

 
Fig. 2 region of stability for the commensurate fractional order 
system with 1α =  [5]-[6] 

 
Finally, Fig. 3 shows the region of stability under 

assumption of 1 2α< <  [5]-[6]. 

 
Fig. 3 region of stability for the commensurate fractional order 
system with 1 2α< <  [5]-[6] 

 

V. FRACTIONAL ORDER CONTROLLERS 
The nice survey on fractional order control is given e.g. in 

[21]. This paper has distinguished among four typical 
combinations of integer/fractional order controlled system vs. 
integer/fractional order of controller and shown that the 
fractional algorithms have better results from many points of 
view. 

Usually, the four basic approaches to fractional order 
control, i.e. four different fractional order controllers are 
reviewed in the literature [4], [7], [22]. Their overview can be 
found in the following subsections. 

A. Tilted Proportional and Integral (TID) Controller 
First, the TID controller has the same structure as classical 

PID controller, but the proportional gain is replaced with a 
function s α−  with α ∈\ , which allows wider tuning options 
and better control behaviour in comparison with the integer 
order PID controller [23]. 

B. CRONE 
Next popular controller is CRONE [24]-[30]. The 

abbreviation CRONE stands for French “Commande Robuste 
d'Ordre Non Entier” (non-integer order robust control) and 
represents approach inspired by the fractal robustness. 
Presently, it has been developed three generations of the 
CRONE methodology [27]: 

 
• The first generation CRONE control – “control of plant 

with an uncertain magnitude and constant phase with 
respect to frequency around the desired open loop gain 
crossover frequency” [28] (real fractional order for 
controller definition) [27] 

• The second generation CRONE control – “control of 
plant with an uncertain magnitude around the desired 
open loop gain crossover frequency” [28] (real fractional 
order for open-loop definition) [27] 

 

Re 

Im 

α(π/2) 

α(π/2) 

Unstable 
Area Stable 

Area 

Re 

Im 

α(π/2) 

α(π/2) 

Unstable 
Area Stable 

Area 

Re 

Im 

α(π/2) 

α(π/2) 

Unstable 
Area Stable 

Area 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 5, 2011 1164



 

 

• The third generation CRONE control – the most general 
CRONE methodology (complex fractional order(s) for 
open-loop definition) [27] 

 
The CRONE controllers have been already applied to many 

real plants. Besides, the approach has its own Matlab toolbox 
[28]-[30] which will be briefly introduced in the Section VI-
A. 

C. Fractional Order PID Controllers 
The elegant and efficient fractional order modification of 

conventional PID controllers has been introduced in [11]. 
They are known as PI Dλ μ  controllers and can be described 
by transfer function: 

 
( ) P I DC s K K s K sλ μ−= + +  (10) 
 

where λ  and μ  are positive real numbers, and PK , IK  and 

DK  denote the proportional, integral and derivative constant, 
respectively. This embellishment of PID algorithm offers 
much wider selection of tuning parameters as can be seen in 
Fig. 4 [31]. 
 

 
Fig. 4 plane of PI Dλ μ  controllers [31] 
 
Obviously, this variety of controller parameters can 
consequently improve the control performance. However, 
there is a relative lack of rigorous tuning techniques for this 
type of controllers so far. 

D. Fractional Lead-Lag Controller 
Finally, the paper [32] has introduced the extension of 

classical lead-lag controllers to its fractional version. 
Furthermore, self-tuning approach for fractional lead-lag 
compensators can be found in [33]. 

VI. MATLAB TOOLBOXES FOR FRACTIONAL ORDER CONTROL 
The calculations and simulations of problems related to 

fractional order control can be advantageously performed by  
means of some toolbox in Matlab and Simulink environment.  
 

Several of them are going to be introduced under the scope of 
this Section. 

A. CRONE Toolbox 
The popular CRONE Matlab Toolbox is dedicated to 

fractional order calculus and applies the original theoretical 
and mathematical concepts developed by the CRONE 
research group [24]-[30]. The CRONE toolbox has been 
developed progressively since the nineties of the last century 
[29]. 

Presently, there are two versions of the toolbox available – 
a classical and an object oriented one. Both of them can be 
downloaded (after registration) from the Internet [28]. The 
classical version is embellished with a Graphical User 
Interface (GUI) and contains three main modules [28]: 

 
• Mathematical module – implementation of fractional 

calculus algorithm 
• System identification module – identification of 

fractional order models in frequency and time domain 
• CRONE control module – implementation of fractional 

order robust control design 
 

The object oriented version contains various scripts and allow 
overloading some basic mathematical operators and standard 
Matlab routines for the fractional order cases. It assumes user 
who is familiar with the basics of work with Matlab [28]. 

Just for illustration, several windows briefly outlining the 
way of work with the classical CRONE toolbox are going to 
be shown. The main window “CRONE Toolbox – Crone 
Control-System Design Guided Start” which can be launched 
by “crone_control” command is depicted in Fig. 5. 

 

 
Fig. 5 main window of “CRONE Toolbox – Crone Control-System 
Design Guided Start” [28] 

 
The bottom pop-up menu allows selection of the generation 

of the CRONE control design methodology. The Fig. 6 
presents the window related to the first generation. 
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Fig. 6 window for “CRONE Toolbox – First Generation Crone 
Control-System Design” [28] 

 
The window for second generation would look very 

similarly and thus the Fig. 7 shows the main setup window for 
the third generation case. 

 

 
Fig. 7 window for “CRONE Toolbox – Third Generation Crone 
Control-System Design” [28] 

 
Certainly, this paper does not intend to cover all 

functionalities of the toolbox. It would not be possible, 
because the CRONE toolbox is deeply elaborated product 
which includes many functions and tools related to fractional 
order control problems. The interested readers and potential 
users can find the further information, both versions of the 
CRONE toolbox and rich documentation for example in the 
web [28]. 

B. Toolbox “ninteger” for Matlab 
The main purpose of the “ninteger” toolbox for Matlab 

[34]-[35] is to assist with the design of fractional order 
controllers and with their performance assessment. The 
toolbox was developed by Duarte Pedro Mata de Oliveira 
Valério and can be downloaded from [34]. It employs over 

thirty formulas for approximating the non-integer order 
derivatives. Moreover, the toolbox implements non-integer 
PID controllers and second and third-generation CRONE 
controllers. On the top of that, it contains functions for 
computing norms, model identification and frequency 
diagrams. Finally, the toolbox is enriched with a GUI and has 
a Simulink library. 

More specifically, the “ninteger” toolbox for Matlab (in 
version 2.3) consists of the files with following purposes 
[34]: 

 
Approximations of fractional order controllers: 
• nid.m – approximation of a fractional derivative 
• nipid.m – approximation of a fractional PID 
• crone1.m – first-generation CRONE approximation 
• newton.m – generalization of Carlson method 
• matsudaCFE.m – Matsuda method 
 
Functions for controllers assuring a constant phase open 
loop: 
• crone2.m – second-generation CRONE approximation 

(in the frequency domain) 
• crone2z.m – second-generation CRONE approximation 

(in the discrete-time domain) 
 
Functions for controllers assuring a constant slope phase 
open loop: 
• crone3.m – computation of parameters for a third-

generation CRONE 
 
Identification of fractional models from frequency response 
data: 
• hartley.m – identification of a model with unit numerator 

or unit denominator using the method of Hartley-
Lorenzo 

• levy.m – identification of a model using a variation of 
Levy’s method 

• vinagre.m – improvement of the Levy’s method with 
better low-frequency fit 

• sanko.m – iterative improvement of the Levy’s method 
• lawro.m – incorporation of additional data into a pre-

existent model 
 
Functions for analysis of fractional systems: 
• freqrespFr.m – frequency response of a fractional system 
• bodeFr.m – Bode plots of a fractional system 
• nyquistFr.m – Nyquist plot of a fractional system 
• nicholsFr.m – Nichols plot of a fractional system 
• sigmaFr.m – singular values plot of a fractional system 
• normh2Fr.m – 2H  norm of a fractional system 
• normhinfFr.m – H∞  norm of a fractional system 
 
Functions for continued fractions: 
• contfrac.m – computation of a continued fraction     

  expansion of a real number 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 5, 2011 1166



 

 

• contfracf.m – computation of a continued fraction 
expansion of a rational function 

• contfraceval.m – evaluation of a continued fraction 
expansion of a real number 

• contfracfeval.m – evaluation of a continued fraction 
expansion of a rational function 

 
Furthermore, the “ninteger” toolbox contains also the 

Simulink library (namely nintblocks.mdl) and several files 
related to GUI (the main GUI files are ninteger.m and 
ninteger.fig). 

The main window of the toolbox GUI (only with pre-
defined values and parameters), which appears after start of 
the program, is shown in Fig. 8. 

 

 
Fig. 8 empty main GUI of “ninteger” toolbox [34] 

 
The three buttons in the right down corner allow choosing a 

type of controller to devise. The first possibility, hidden 
behind “Fractional PID controller” button, opens the window 
depicted in Fig. 9, where an array of additional options can be 
selected. 

 

 
Fig. 9 window “Fractional PID controller” [34] 

 
Next, the dialogue window which appears after pressing the 

“Second generation CRONE controller” is provided in Fig. 
10. 

 

 
Fig. 10 window “Second generation CRONE controller” [34] 

 
And finally, the Fig. 11 shows the window connected with 

“Third generation CRONE controller”. 
 

 
Fig. 11 window “Third generation CRONE controller” [34] 

 
As in the previous case, the main objective of the part has 

not been to provide the comprehensive description of the 
toolbox facilities, but just the basic overview. The toolbox 
requires Matlab in version 7.0 or above, Control Toolbox, 
Optimisation Toolbox and at least functions rad2deg.m and 
deg2rad.m from the Map Toolbox. Almost 100-page user 
manual is available at [34]. 

C. FOTF Matlab Toolbox 
The Fractional Order Transfer Function (FOTF) Matlab 

Toolbox was presented in the tutorial paper [4]. It utilizes the 
numerical computation of fractional order operators (3). The 
FOTFs are supposed in the form (8). The toolbox consists of 
the functions located in the @fotf folder (in order to define the 
FOTF class). Some files overload the original ones. The 
names of the files and their purposes are as follows: 

 
• foft.m – definition of the FOTF-class 
• display.m – display of the class 
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• mtimes.m – multiplication of two FOTF objects (in serial 
connection) 

• plus.m – addition of two FOTF objects (in parallel 
connection) 

• unique.m – simplification of FOTF model (using 
collection of polynomial terms) 

• feedback.m – calculation of feedback connection transfer 
function 

• minus.m – subtraction of two FOTF objects 
• uminus.m – negation of FOTF object 
• inv.m – inversion of FOTF object 
• isstable.m – stability test 
• lsim.m – simulation of time response of FOTF to 

arbitrary input signal 
• step.m – step response of FOTF 
• bode.m – Bode plot of FOTF 
• nyquist.m – Nyquist plot of FOTF 
• nichols.m – Nichols plot of FOTF 

 
The interested reader can find the full codes of the mentioned 
functions as well as an array of illustrative examples of their 
application in [4]. 

D. Matlab Scripts by Ivo Petráš 
Several useful scripts related to fractional order control can 

be found also at the webpage [36]. They cover for example 
frequency characteristics, step and impulse responses, or 
digital fractional order differentiators/integrators. 

VII. CONCLUSION 
The paper has been focused on introduction to FOC with 

emphasis to potential application to engineering, especially 
analysis and synthesis of control systems. It has offered the 
basic theoretical aspects of FOC, dealt with description and 
stability of fractional order systems, overviewed the possible 
fractional order control approaches, and briefly presented the 
basic facilities and GUIs of several fractional order control 
toolboxes under Matlab + Simulink environment. 
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