
 

 

 
Abstract—The requirement for improved efficiency and safety 

induce the need for sophisticated control systems. Model predictive 
control represents such control method which makes explicit use of a 
model of the process to obtain the control signal. The performance of 
control algorithm depends on the quality of the derived model. A 
possible approach is to decompose the nonlinear dynamics into 
multiple linear models and switch or interpolate them based on the 
current operating conditions. Multiple models structure for modeling 
and control allow the transfer of many methods from the linear 
control theory to the nonlinear systems. The process operations are 
partitioned into several operating regions and within each region, a 
local linear model is developed to approximate the process. To save 
on computational load, a linear model is obtained by interpolating 
these linear models at each sample point and then obtained model is 
used in a Generalized Predictive Control (GPC) framework. The 
manipulated variable adjustments are computed through optimization 
at each sampling interval. The proposed identification and control 
method is illustrated by the simulation study on a nonlinear process. 
 

Keywords—clustering, fuzzy modeling, multiple models, 
nonlinear control,  optimization , predictive control.  

I. INTRODUCTION 
ODEL predictive control (MPC) [1], [2] has been a major 
research topic for the last 30 years. The reason for this 

is the ability of MPC to optimally control multivariable system 
under various constraints. The main idea of the MPC is to 
calculate the actual and the subsequent control signals by 
minimizing the quadratic deviation of a reference signal and 
an output signal in a given future horizon. The solution to this 
optimization problem is the optimal input signal to the system 
at that particular time. According to the receding horizon 
control strategy, only the first control signal is used at the 
process input, and in the next sampling point the procedure is 
repeated. Conventional MPC techniques are based on the use 
of linear models. Linear MPCs can yield a satisfactory  
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performance if the process is reasonably linear, or is operated 
close to the nominal steady state. However, a linear model is 
not sufficient to capture the properties of chemical 
engineering processes. 

The poor performance of linear MPCs for processes with a 
strong degree of nonlinearity (for example pH control or batch 
reactors) has motivated the development of nonlinear model 
predictive control (NMPC), where a more accurate (nonlinear) 
model of a plant is used for prediction and optimization. Qin 
and Badgwell [3] presented a survey of nonlinear model 
predictive control applications in industry. In NMPC, the 
importance of having an accurate process model is crucial, 
and several nonlinear models that have been utilized for 
NMPC can be found in the literature. In Ref. [4], a Wiener-
type nonlinear black box model was developed for capturing 
the dynamics of open loop stable Multiple Input Multiple 
Output (MIMO) nonlinear systems with deterministic inputs. 
The last decade has shown an increase in the use of local 
model representations of non-linear dynamic systems [5]. A 
multimodel approach has advantages in controlling industrial 
processes, especially those with inherent nonlinearity, a wide 
operating range, or load disturbances. Based on a divide-and-
conquer strategy, multimodel approaches can be used to 
develop local linear models or controllers corresponding to 
typical operating regimes. The comparison of fuzzy model, 
Wiener model and nonlinear model predictive control can be 
found in [6]. Different nonlinear model-based predictive 
control algorithms   Galan et al. [7] reported the real-time 
implementation of a multilinear model based control strategies 
for a bench top–scale pH neutralization reactor. In [8] the 
Takagi-Sugeno-Kang fuzzy-based predictive control of the 
heat exchanger is presented for control of the heat-exchanger. 
However, the model is obtained by solving the partial 
derivative equations with parameters that generally does not 
have to accurately reflect the properties of the controlled 
system. The approach developed in [9] uses a bank of local 
models developed in different operating conditions and 
switching based on linear differential inclusion. The neural 
network trained from the input-output data was used in the 
predictive control scheme to control a continuous stirred tank 
reactor in [10]. Multiple model predictive control strategy in 
[11] relies on the use of a bank of linear models to describe 
the dynamic behavior over a wide operating range. A 
recursive Bayesian scheme assigns weights to each model. 
The combined-weighted model is then used for the design of 
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Fig. 1 A local model network scheme 
 
controller. Robust Multiple-Model Adaptive Control 

strategy proposed by Athans and Pekri [12] uses a bank of 
Kalman Filters and bank of local robust compensators and 
relies on stochastic processes that provide sufficient excitation 
for identification. All these approaches used local linear 
models for controller design. The paper is aimed at the 
development of such model that combines local models and 
also optimization  of its structure. 

The pH neutralization process was chosen as a benchmark 
for control algorithms in several studies as it exhibits 
significant nonlinear behavior.  

II. MULTIPLE LINEAR MODELS 
Modeling nonlinear dynamic systems from observed data 

and a priori engineering knowledge is a major area of science 
and engineering. In recent years a great deal of work has 
appeared in new areas, such as fuzzy modeling and neural 
networks. Local Model Networks were first introduced by 
Johansen and Foss [13] to describe a set of submodels, each of 
which was valid for a specific regime in an operating space, 
weighted by activation function. A LMN is a generalization of 
a radial basis function (RBF) network, in which individual 
neurons are replaced by local submodels with basic functions 
defining the regions of validity of individual submodels, 
according to the expected operating regions of a plant.  

 The LMN output is given by: 

 
1

( ) ( ( )) ( )
M

i i
i

y k k y kρ
=

= ∑� �ψ  (1) 

where ( )kψ   is a vector of scheduling variables,  ( )i kρ   is 

a normalized validity function, and  ( )iy k�  is the output of the 
i-th model. The network that is described by Equation (1) is 
shown in Fig. 1. The blending of local models is calculated 
using weighting or validity functions. Although any function 
with a locally limited activation may be applied as a validity 
function, a common choice for this function takes the 
Gaussian form. The validity function for the i-th model is 
given by: 

 ( ) ( )1 2( ( )) exp
2

T
k c ci i i iρ σ −= − − −

⎛ ⎞
⎜ ⎟
⎝ ⎠

� ψ ψ ψ  (2) 

where the parameters ,i ic σ , define the Gaussian centre and 
width, respectively, and the scheduling variable ( )kψ can be a 
system state or any system variable. 
 

Basically, there are two ways to design controllers for local 
model structures: the linearization-based and local model-
based approaches (Fig. 2). In the linearization-based 
approach, the local model network is linearized at the current 
operating point, and the linear controller is designed. The 
linearization of the LMN is very simple due to the structure of 
the model. A linear model is obtained by interpolating these 
linear models at each sample point. In the second approach a 
local controller is designed for each local model, and the 
control output is then calculated as an interpolation of the 
local controller outputs according to the current operating 
point. 

III. PH NEUTRALIZATION PROCESS 
The system chosen for this study is a pH neutralization 

process model developed in [14]. The model is used in many 
studies to test the nonlinear control strategies [15],[16]. The 
process was modeled using a nonlinear first-principles model, 
which was computationally too demanding for MPC 
computations. Therefore it is a good benchmark example for 
local modeling and control. Based on the time constants of the 
process the sampling period was chosen to be 15 s. The 
process consists of an acid (HNO3) stream, a buffer 
(NaHCO3) stream and a base (NaOH) stream being 
continually mixed in the tank (Fig. 3). The model is based on 
the assumptions that the streams are perfectly mixed, and the 
density is constant throughout the entire tank. The process is 
aimed at controlling the pH value of the outlet stream by 
varying the inlet base stream. The outlet flow rate is 
dependent on the fluid height in the tank as well as the 
position of the valve. 
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Fig. 2 Controller design using linearization and local models 
(LLM = local linear model, LLC = local linear controller)  

 
 A differential equation that describes the total mass balance 

of the tank is:   

 ( )1 2 3
1dh Q Q Q c h

dt A
= + + −  (3) 

where c is a valve constant, A is the tank cross-sectional area, 
and h is the tank level. The differential equations for the 
effluent reaction invariants aW   and bW   can be derived as 

 

( ) ( )1 1 1 2 2
( )3 3

( ) ( )1 1 21 2
( )3 3

Q W W Q W Wa adW a aa
Q W Wdt Ah aa

Q W W Q W WdW b b b bb
Q W Wdt Ah b b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

− + −
=

+ −

− + −
=

+ −

 (4) 

where Wai and biW are the chemical reaction invariants of the 

i-th stream. The variables are defined in Table 1. 
 

Table 1 Parameters of the pH neutralization plant 
 

Symbol

. 

Variable Nom. value 

A Tank area 207 cm2 

h Tank level 14 cm 

Q1 Acid flow rate 16.6 ml/s 

Q2 Buffer flow rate 0.55 ml/s 

Q3 Base flow rate 15.6 ml/s 

c Valve constant 8 /ml s cm  

Wa1 [ ]3 1
HNO  0.003 mol 

Wa2 
3 2NaHCO− ⎡ ⎤⎣ ⎦  -0.03 mol 

Wa3 [ ]
[ ]

3 3

3

NaHCO

NaOH

− −  -0.00305 mol 

Wb1 [ ]3 1
NaHCO  0 mol 

Wb2 [ ]3 2
NaHCO  0.03 mol 

Wb3 [ ]3 3
NaHCO  0.00005 mol 

pKa1 -log10Ka1 6.35 

pKa2 -log10Ka2 10.33 

pKw -log10Kw 14 

 
The pH can be determined from the values of aW   and bW  

using an implicit equation: 

   

 

21 1 2
2

1 1 21 2

K K Ka a a
H HKwW H Wa b K K KH a a a

H H

++⎡ ⎤ +⎡ ⎤⎣ ⎦ ⎣ ⎦+⎡ ⎤= − −⎣ ⎦ +⎡ ⎤⎣ ⎦ + ++⎡ ⎤ +⎡ ⎤⎣ ⎦ ⎣ ⎦

 (5) 

Solving the equation for  H+⎡ ⎤⎣ ⎦  , the pH can be computed 

from  
 log10pH H⎡ ⎤

⎣ ⎦
+=  (6) 

The implicit expression of the pH value in the Equation (5) 
disallows the possibility of application of the first principle 
model in the nonlinear predictive control scheme.  

IV. MODELING THE PROCESS USING STEADY-STATE ANALYSIS 
 

The steady state analysis (Fig. 4) shows the nonlinearity of 
the process. Five operating areas with almost linear behavior 
can be clearly identified on the steady-state plot. To obtain 
models relating to the pH, the base flow rate was perturbed 
about their nominal values. 
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Fig. 4 Steady-state plot of the process 
 
 Due to the relationship of the pH value to the base flow-

rate only the pH value at the time instant k-1 is used for 
scheduling the local models. A local model network that 
describes the nonlinear plant was constructed using local auto-
regressive with exogenous input (ARX) models of the first 
order. The local models had the form of a first-order ARX 
model:      

 ( 1) ( ) ( )y k ay k bu k+ = +  (7) 
This open loop data was used to construct 5 local models at 

the operating point at the centers of the linear parts. The local 
least squares cost function for the i-th model can be written as 
follows:  

 2

1

( ) ( ( ) ( , ))
N

i i i i
k

J y k y kθ θ
=

= −∑ �  (8) 

The local cost function can be rewritten into a matrix form: 
 ( ) ( )( ) T

i i iJ θ = − −Y YΨΘ ΨΘ  (9) 
where Y is the output vector and regression matrix  Ψ  is 
given as:  

 (1) (2) ( )
TT T T N⎡ ⎤= ⎣ ⎦…Ψ Φ Φ Φ  (10) 

Knowledge about the process gain, stability and settling time 
could be translated into the form of inequality constraints. 
Thus optimization in the form of quadratic programming (QP) 
can be used to obtain model parameters, instead of 
conventional least-squared method. If the system to be 
identified is assumed stable there exist several limits on the 
parameters of local models. For example, for the system of the 
second order given by 

 
1 1

1 1 2( ) 1 21 1 2

b z b z
G z

a z a z

− −+− = − −+ +
 (11) 

the following stability margins for the parameters can be 
introduced if the system is stable 

  

 
2

2 1

1 2

1
1
1

a
a a
a a

≤
− + ≤
− − ≤

 (12) 

which can be translated as the inequality conditions for QP as:
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0 1 1 0 0 12
0 0 0 0 0 01
0 0 0 0 0 0

2

a

a

a

b

b

−
≤− −

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 (13) 

The constrained optimization problem can then be 
formulated as a QP: 

  

 { }1
min

2
T T

θ
+H cΘΘ Θ  (14) 

with matrix H and vector c given by  

 2 , 2T T= = −H Q c YΨ Ψ Ψ  (15) 
and the constraints defined as:   
 inq ≤A bΘ  (16) 

By using the constraints during the training process, more 
accurate model with improved interpretability can be 
identified using the input-output data. The parameters of the 
local models are shown in Table 2. The prediction of the local 
model network is given by: 

 
1

( 1) ( , , ( )) ( , , ( ), ( ))
M

i i i i
i

y k c t f A B u k y kμ σ ψ
=

+ = ∑�  (17) 

The centers of the validity functions were obtained from 
steady-state characteristic and parameters of local models by 
solving the quadratic problem with the data in the vicinity of 
the centre of the operating region. The remaining unknown 
parameter 2

iσ  from (17) is obtained by minimization the 
following criterion using the validation data: 

 ( )
1

2

1

1 ( 1) ( 1)
1

N

k
MSE y k y k

N

−

=

= + − +
− ∑ �  (18) 

The resulting distribution of the local models in the 
operating space of the system is shown in Fig. 5. 

 
Table 2 Local Model parameters 
 
Model 1a  1b  Gain 1c  σ  

1 0.75 0.020 0.08 3 0.13 
2 0.81 0.246 1.29 4.9 0.16 
3 0.89 0.035 0.32 6.4 0.31 
4 0.85 0.319 2.08 8 0.20 
5 0.99 0.003 0.42 10.5 0.22 
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Fig. 5 Distribution of the local models  
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The performance of the model is shown in Fig. 6. The 

model is able to accurately imitate the behavior of the process 
for slow changes of the input variable i.e. the obtained model 
is accurate and valid only at regions closed to steady-state 
points. The off-equilibrium behavior of dynamic system is not 
included in the model. The problem of identifying of off-
equilibrium linear models is caused by the fact that that is 
difficult to gather data of sufficient quality in these regions. 
To overcome the problem the authors in [17] suggested a 
heterogeneous solution with multiple-model around 
equilibrium points and Gaussian process submodels in 
transient areas. Here the global process model is obtained 
from input-output data that sufficiently cover the operating 
space of the process.  

V. GAP METRIC FOR SIMILARITY MEASURE 
To quantify the similarity between two systems a gap 

metric [18] is used. The gap metric is much more suitable to 
measure the distance between two linear systems than a metric 
based on norms. The gap metric between the local models 
associated with the clusters are computed. The gap metric for 
two SISO dynamic models  1 2,M M  is defined as: 

 1 2
1 2 2 2

1 2

( ) ( )
( , )

1 ( ) 1 ( )
sup M j M j

M M
M j M jω

ω ω
δ

ω ω

−
=

+ +
 (19) 

where 0≤ δ ≤ 1,  1( )M jω   and 2 ( )M jω   represent the 
frequency responses of the systems 1M  and  2M , 
respectively. Two models have similar behavior in close-loop 
if the value of δ is close to 0 and behave differently for value 
of δ close to 1.  

 
 
 
 

 
 

Table 3 Distances between the linear models measured 
using the gap metric 
 

M 1 2 3 4 5 
1 0 0.36 0.08 0.43 0.14 
2 0.36 0 0.25 0.06 0.29 
3 0.08 0.25 0 0.32 0.06 
4 0.43 0.06 0.32 0 0.35 
5 0.14 0.29 0.06 0.35 0 

 
Table 3 shows the gap metric between the pairs of five 

linear models representing the whole operating range of the 
nonlinear process. The obtained values show the similarity 
between the models 1, 3 and 5 and models 2 and 4. The 
similarity between models 1, 3, and 5 can be explained 
physically by the fact that these models represent low-
sensitivity regions.  

VI. MODELING THE PROCESS FROM EXPERIMENTAL DATA 
Optimization of local model networks structure from the 

input-output data structure presents a challenging problem. 
The objective of the modeling process is to find the 
parameters of the validity function, parameters of the local 
models and also the number of local models at the same time. 
The modeling performance can be obtained by computation 
the following criterion: 

 
2

1 1

1( , , ) ( ) ( 1)
N M

i i i i
k i

J M k y k
N

μ μ
= =

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑ ∑Θ ΘΦ  (20) 

where N is the number of samples, M is the number of local 
models, iμ are the validity functions, Θ are the local model 
parameters and regression vector ( )kΦ  contains past data. 

Several approaches related to optimization of the local 
model structure can be found in literature. Methods developed 
by Johansen and Foss in [19] and Nelles [20] start with a 
single model and hierarchically partition operating space and 
iteratively increase the number of models and thus preventing 
from over-fitting. Division of the data to the local models is 
made via clustering which enables division of the complex 
nonlinear regions into simpler subspaces. Here the Gustafson 
and Kessel [21] algorithm is implemented which extends the 
standard fuzzy c-means algorithm by employing an adaptive 
distance norm, in order to detect clusters of different 
geometrical shapes in one data set. This algorithm has the 
advantage of looking for ellipsoids of variable size and 
orientation. Gustafson-Kessel algorithm finds clusters by 
minimizing the following function: 

 ( ) ( )2
, ,

1 1
,

i

N M
m

X m i j A j i
j i

J D x cμ
= =

= −∑∑U V  (21) 

where U is a set of membership degrees , V is a set of cluster 
centers c, m is fuzziness factor (usually a value close to 2), X 
is a set of N samples x, and  is a norm induced by matrix  A. 
Fuzzy covariance matrix F is defined as: 
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( )( ),

1

,
1

N Tm
i j j i j i

j
i M

m
i j

j

x c x cμ

μ

=

=

− −
=
∑

∑
F  (22) 

The distance 2
iAD of a data point to the cluster centre is 

induced by matrix   iA    as: 

 ( ) ( )2 ( )
i

T
A i i iD x c x A c x= − −  (23) 

The centers of the clusters are calculated as the weighted 
mean value of all membership degrees: 

 
,

1

,
1

N
m
i j j

j
i N

m
i j

j

x
c

μ

μ

=

=

=
∑

∑
 (24) 

Equation (21) represents a non-linear optimization problem, 
which is solved in an iterative manner. The cluster algorithm 
stops when a predetermined stopping criterion is fulfilled. The 
set of membership degrees is initialized randomly and then the 
following steps are repeated: 

Step 1. Compute cluster prototypes  
Step 2. Compute distance to cluster prototype  
Step 3. Update the partition matrix U 
The Steps 1- 3 are repeated until the following condition 

holds: 
 ( ) ( 1)U k U k δ− − <  (25) 
If we fix the parameters of the validity function the only 

free parameters are those in the linear regression equations. 
The advantage of such a treatment is that the parameter 
identification problem is reduced to a simple linear 
optimization problem and, thus, can be solved using efficient 
linear learning algorithms. Simultaneous optimization of 
parameters of all local models yields the best results in the 
sense of the prediction error. Alternatively, local estimation 
approach, which is more computationally efficient, can be 
used. The parameters of each of local model are identified 
independently to guarantee individual local models to be local 
approximations of the underlying system. The local least 
squares cost function for the i-th model can be written as 
follows: 

  

 2
,

1

( ) ( )( ( ) ( , ))
N

i i k i i i
k

J k y k y kθ μ θ
=

= −∑ �  (26) 

The local cost function can be rewritten into a matrix form: 
 ( ) ( )( ) T

iJ θ θ θ= − −Ψ ΨY Q Y  (27) 
 
where Y is the output vector and regression matrix   is given 

as: 

 (1) (2) ( )
TT T T N⎡ ⎤= ⎣ ⎦…Ψ Φ Φ Φ  (28) 

and diagonal matrix Q  is given 

 

,1

,2

,

0 0
0

0
0 0

i

i

i N

μ
μ

μ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
#

# %
"

Q  (29) 

To reduce the amount of data in regression vector only the 
in the vicinity of the center of the local models are used i.e. 
with the value of validity function , 0.1i kμ > .     

The clustering algorithm is started with a large number of 
clusters which results in a local network with imitates the 
behavior of the nonlinear system accurately. If the global 
model is build using larger number of local models, the 
quality of fitness of the model to input-output data increases. 
However, the idea of ‘parsimony principle’ should be 
introduced that says that among the models which explain the 
data well, the model with the smallest number of independent 
parameters should be chosen. Since the clustering of the 
dynamic data can result in clusters with similar or same local 
model parameters, the structure can be reduced in order to 
obtain simpler model. Therefore strategy for model reduction 
using prediction error and gap metric developed in Gugaliya 
and Gudi [22] is adopted. The distance between each pair of 
cluster centers is computed  

 ij i jD M M= −  (30) 

and the pair (i,j) with minimal distance ijD is found. The 

clusters ,i jM M  are merged together and new covariance 

matrix newF and the centre of the new cluster  newc  are defined 
by the following equations: 

 

( )( )2

new i j

ji
new i j

new new

ji
new i j

new new

Ti j
i j i j

new

W W W

WW
c c c

W W
WW

F F F
W W

WW
c c c c

W

= +

= +

= + +

⎡ ⎤+ − −⎢ ⎥⎣ ⎦

 (31) 

where ,i jW W  are the numbers of data points inside the cluster. 
Merging of two clusters is plotted in Fig. 7. 

The modeling performance of the original set of models 
without merging origMSE  and the performance of the reduced 

set reducedMSE  is computed using the following prediction 
performance criterion: 

  ( )
1

2

1

1, ( 1) ( 1)
1

N

orig reduced
k

MSE MSE y k y k
N

−

=

= + − +
− ∑ �  (32) 

If the following condition holds: 
    
 1 2( , )red orig pred gapMSE MSE AND M Mδ δ δ− < <  (33) 

the model merging is accepted and distances between the 
centers in the reduced set are recomputed. If the condition   
(33) is false the original structure is used and new pair with  
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Fig. 7 Merging two clusters (dotted line – original clusters) 

 
minimal distance is found and algorithm repeated. The 
algorithm ends when no clusters can be merged without 
violating the condition (33).  

VII. MODELING PH NEUTRALIZATION FROM INPUT-OUTPUT 
DATA 

The nonlinear analytical model of the process is used to 
generate input–output data for the identification of the 
position of clusters. Generalized multi level noise [23] is used 
as a test signal for the identification. The output of the system 
was corrupted with an additive Gaussian white noise with zero 
mean and standard deviation   = 0.001 to simulate the 
measurement noise. The input–output data has 2000 samples 
with a sampling period of 15 s. The first 1000 samples are 
used for identification of the model and the rest of 1000 
samples for validation purpose. The input–output data are 
plotted in Fig. 8. The initial number of local models was set to 
30. The Gustafson-Kessel algorithm as described in Section 
VI was used for initial position and orientation of these 
clusters. All the local models were assumed to be of the 1-
order and have the following structure:        

 ( 1) ( ) ( )y k ay k bu k+ = +  (34) 
The modeling performance of the LMN with 30 local 

models is 0.1MSE =  and the response of the model is 
compared with the validation data in Fig. 9. The structure of 
the local model is further optimized using the strategy 
described in Section VI. The prediction error threshold and 
the gap metric threshold were set to 0.001 and 0.2, 
respectively. With the model reduction algorithm the number 
of models is reduced from 30 to 15 while the value of 
performance given by the MSE increased only from 0.10 to 
0.11. The position and orientation of the clusters was 
extracted from the covariance matrix F and shown in Fig. 10.   
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Fig. 8 Input-output data for identification and validation 
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Fig. 9 Modeling performance of LMN with 30 local models 

(dotted – plant, solid - model) 

 
Fig. 10 Position and orientation of clusters (a –LMN with 30 

models b – reduced LMN with 15 models) 
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VIII. GPC CONTROL WITH LOCAL MODEL NETWORK 
A multivariable controlled auto-regressive integrated 

moving average (CARIMA) model for a SISO system can be 
described by 
  

 1 1 ( )( ) ( ) ( ) ( 1) kz k z k ξ− −= − +
Δ

A y Β u  (35) 

where 1 11 ,z z− −Δ = −   is the difference operator, whose 
function is to guarantee integral action in the controller to 
eliminate any offset. The terms ( ), ( ), ( )k k kξy u   are the output, 
input, and noise vectors, respectively. The terms  

1 1( ), ( )z z− −A B  are the matrix polynomials of  1z−  , 
 

 
1

1
1

0 1

na
na

nb
nb

z z

z z

− −

− −

= + + +

= + + +

…
…

A I A A

B B B B
 (36) 

 
where na and nb are the orders of the model output and input, 
respectively. To design a GPC controller it is necessary to 
derive predictions k-step ahead:  

 
1 1

( ) ( ) ( )
( ) ( ) ( 1)k k

t k t t k
t k t t− −

+ = Δ + +
+ = + Δ −

Y G U S
S Y Y U u

 (37) 

where S represents the free response of the system and the 
other terms are given: 

 

[ ]( ) ( 1), ( 2), , ( )

( 1) [ ( 1), , ( 1)]1
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+ = + +

Δ = Δ Δ + −

Δ = Δ Δ

= −

=

…

…
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…

…

…

Y y y y

y

U u u

u

Y y y

y

 (38) 

The cost function used in the GPC algorithms is defined as:
  

 

2

1

2

1

( ) ( )

( 1)

p
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k
N

k

J t k t t k

t k

=

=

= + − + +

Δ + −

∑

∑

Q

R

Y W

U
 (39) 

 where ( )t k+W   is the reference trajectory at a future time 
point k, pN  is the output prediction horizon, and uN   is the 
control increment horizon.  

This criterion can be rewritten in a matrix form 

 0
1
2

T TJ = Δ Δ + Δ +u H u b u f  (40) 

where  , , 0H b f   are defined as 

 

2( )

2( )

( ) ( )0

T R
T

Tf

= +

= −

= − −

H G QG

b S W QG

S W S W

 (41) 

Since the vector   is a constant vector and does not have an 
effect on the quadratic programming result, the constrained 
optimization problem can be defined as:  

 
1
2

T TJ

ω

= Δ Δ + Δ

Δ ≤

u H u b u

uΛ
 (42) 

  
where the constraints for a control action can be rewritten 

as 

 

( )
( )

max

min

max

min

1
1

u

u

u

u

I u Iu k
I u Iu k

I u
I u

ω
Δ

Δ

⎡ ⎤⎡ ⎤ − −
⎢ ⎥⎢ ⎥− − + −⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥ Δ
⎢ ⎥⎢ ⎥

− −Δ⎢ ⎥⎣ ⎦ ⎣ ⎦

Λ  (43) 

 Parameters maxu and minu  are constraints for the control 
signals maxuΔ and minuΔ   and are constraints for the control 
signal increments. Matrices uIΔ and uI  are defined as: 
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#
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"

 (44) 

In the single-step linearization, a single linear model M(k) is 
used over the entire prediction horizon at the time k. The 
optimal control signal can be found by means of quadratic 
programming. For multiple-step-ahead control, however, the 
linear model may significantly deteriorate from the nonlinear 
process and therefore negatively influence the controller 
performance. To reduce the computational complexity of the 
nonlinear optimization linearization along the trajectory [24] 
or MPC algorithm with Nonlinear Prediction and 
Linearization (MPC-NPL) described in [25] can be used. Both 
algorithms use a numerically reliable quadratic programming 
procedure thus the necessity of repeating full nonlinear 
optimization at each sampling instant is avoided.  

The procedure of multi-step linearization along nominal 
trajectory is executed as follows: 

Step 1. Using the current scheduling vector ( )kψ validity 
functions for each of the local models are computed: 

 ( ), , ( )i i if c kρ σ ψ=  (45) 
Step 2. The local model network is linearized around the 

current operating point to give linear model ( )M k of the plant 

 
1 1

,
M M

i i i i
i i

A A B Bρ ρ
= =

= =∑ ∑  (46) 

Step 3. The obtained linear model ( )M k  is used to compute 
the control signal increments u+  over the entire prediction 
horizon pH . 
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Step 4. Using ( )u k+  compute ( 1)M k + , compute the 
response and linearize the LMN at the new point.    

Step 5. Using  ( )M k   and  ( 1)M k + , compute new control 
sequence u over the entire prediction horizon. 
Steps 4 and 5 are repeated for 1.. pH . The set of linear 

models ( )..... ( 1)pM k M k H+ −    is then used in the quadratic 
programming problem and the first element of control 
increment  ( )u k+ is applied to the system.  

IX. CONTROL OF THE PH NEUTRALIZATION PROCESS 
Saturation constraints in the manipulated variables are 

imposed to take into account the minimum/maximum aperture 
of the valve regulating the base flow rate. A lower limit of 
0ml/s and an upper limit of 30 ml/s are chosen for this 
variable. The prediction horizon was set to 8 samples as a 
result of using different values and comparing control 
performances. A control horizon of 4 samples was selected 
since further increase did not add significant improvement in 
terms of performance. The weighting matrix Q associated with 
the error from set point was set two times greater than matrix 
R associated control signal changes.  

  
 2 ,I I= =Q R  (47) 
 
The model predictive control algorithm described in Section 

VII was implemented using the "quadprog" function in 
MATLAB’s Optimization Toolbox to minimize the cost 
function. To reduce the on-line computational load, the 
control sequence computed at the step k − 1 was shifted 
backwards and used as an initial guess for the computation of 
the future controller output at time k. The resulting control 
courses for stepwise set-point changes are shown in Fig. 11. 
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Fig. 11 Controller performance   
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linearization along trajectory with other MPC strategies (solid – 
LMN MPC with linearization, dotted – LMN without linearization, 
dashed - linear MPC with a single model) 

 
The results shown in Fig. 12 show that, for the considered 

application, the LMN MPC with linearization along the future 
trajectory performs slightly better than the MPC based on 
linear model or MPC where linearized model is used for the 
whole prediction horizon. 

X. CONCLUSION 
The multiple model modeling and control strategies 

represent an efficient tool for nonlinear processes. During the 
development of nonlinear model the apriori information about 
the process can be used. If accurate model of the process in 
off-equilibrium regions of the steady-state characteristic is 
needed the model can be identified from the input-output data. 
The structure of the model can be optimized using gap metric 
without loosing the accuracy and stability of the control loop. 
The control problem is solved using a generalized predictive 
controller that used parameters obtained from linearization of 
the local model network at each sampling interval. The control 
tests executed on the simulation model gave satisfactory 
results. It was proved that the examined method can be 
implemented and used successfully to control such nonlinear 
processes. 
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