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Abstract—This contribution proposes a methodology for robust 

control of unstable systems. For this purpose the algebraic approach 
using polynomials is utilized together with tuning some of the closed 
loop poles using loop sensitivity functions. The control design 
method is illustrated on the stabilization task of the magnetic 
levitation system. Complete procedure from derivation of a 
linearized model to controller design and tuning is described in 
detail. Finally the methodology proves useful for both stabilization in 
different operating points and output/load disturbance attenuation. 
 

Keywords—Algebraic approach, Magnetic levitation system, 
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I. INTRODUCTION 
ANY technological processes possess instable behaviour. 
Such systems can be represented by various types of 

reactors, combustion systems, crystallizers, distillation 
columns, etc. Besides these, lot of aviation systems in both 
civil and military services are naturally unstable [4], [16]. All 
these system need proper control since controlling unstable 
systems can be a real hazard, as shown many times in practice 
[21]. In such cases the control designer has to understand 
fundamental limitations that stem from the process instability 
[15], [19].  

There are many sources devoted to the area of unstable 
systems control, often covering also the case of delayed and 
non-minimum-phase systems, e.g. [3], [5], [7], [12]-[14], 
[17]-[18]. In this work, the control system design is based on 
the algebraic approach using polynomials, e.g. [2], [10], [11]. 
The advantage of this approach is in its systematic and a 
relatively simple way of designing controllers – it provides 
both controller structure as well as its parameters and it allows 
imposing further control requirements simply. A suitable 
controller is then found as a solution of Diophantine equations 
in a given ring - polynomials in this case. A disadvantage may 
be seen in the fact that it can provide more complex 
controllers than classical PIDs but this does not seem too 

problematic nowadays, when controllers are usually 
implemented on industrial PCs or PLCs.  
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This paper is structured as follows: control system structure 
and requirements are stated first, followed by general solution 
using the polynomial approach. Further the system of 
magnetic levitation is introduced and described in detail, 
covering a mathematical model, its physical parameters and a 
suggested approximate linearized model [8]. Next section is 
focused on the controller design and fine-tuning of its 
parameters in order to provide robust - safe control. This is 
done by optimization of some of the closed-loop poles with 
the help of sensitivity functions and spectral factorization 
technique [9]. Control results are presented and discussed and 
the article concludes with some final remarks and suggestions.  

II. METHODOLOGY 
In this work the classical control set-up of Fig. 1 is 

considered where G  denotes a plant to be controlled by a 
controller  and the signals , , ,  stand for the 
reference (set point), control error, control input (manipulated 
variable) and a process (controlled) variable respectively. 
Signals  and  represent general disturbances. 

C w e u y

uv yv

Let us assume that the process can be, after proper 
simplification and linearization, described by a linear time-
invariant continuous-time model given by a transfer function

 

( ) ( )
( )

b s
G s

a s
=  (1) 

 
where ( )b s , ( )a s  are coprime polynomials in the complex 

Laplace variable “ s ” satisfying the condition: 
 

( ) ( )deg dega s b s . (2)

M 

 

 
Fig. 1 Control system configuration 
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Hence, it is a strictly proper system. Further, the controller 
 can be also described by a transfer function (3) with C ( )q s , 

( )p s  coprime polynomials satisfying (4), i.e. the controller is 
generally assumed to be proper. 

 

( ) ( )
( )

q s
C s

p s
=  (3) 

 
( ) ( )deg degp s q≥ s  (4) 

 
Requirements for the control system introduced above are 

formulated as stability, asymptotic tracking of the reference 
signal, disturbances attenuation and inner properness of all the 
parts of the control system. Besides these the system should be 
robust in order to cope with the real plant (not only with the 
adopted linear model) and possible disturbances. This is 
especially important in this case when dealing with unstable 
systems. 

From the scheme of Fig. 1 and assuming (1), (3) it is easy 
to derive following relationships between the controlled 
variable  (y ( )Y s  in the complex domain) and input signals 

,  and  (w uv yv ( )W s , ( )uV s  and  similarly); the 
argument “

( )yV s
s ” is in these formulas omitted somewhere to keep 

them more compact and readable): 
 

( ) ( ) ( )

( )

( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
1 ,

1

,

,

.

u

y

u

y

u y

u u y

G C GY s W s V s
G C G C

V s
G C

b q b pY s W s V s
a p b q a p b q

a p V s
a p b q

b q b p a pY s W s V s V s
d d d

Y s T W s S V s S V s

⋅
= ⋅ + ⋅ +

+ ⋅ + ⋅

+ ⋅
+ ⋅

⋅ ⋅
= ⋅ + ⋅

⋅ + ⋅ ⋅ + ⋅
⋅

+ ⋅
⋅ + ⋅

⋅ ⋅ ⋅
= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

+
 (5) 

 
Here, the symbol  defines a characteristic polynomial of 

the closed-loop and consequently it is given as: 
d

 
a p b q d⋅ + ⋅ = . (6) 

 
Symbols , ,  denote important transfer functions of 

the loop known as the sensitivity function, complementary 
sensitivity function, and input sensitivity function 
respectively. The sensitivity functions   and  are further 
used to make the designed control system robust. 

S T uS

S uS

Similarly, it is straightforward to derive the formula (7) for 
the control error  (  in the complex domain). e ( )E s

 

( ) ( ) ( ) ( )u y
pE s a W s b V s a V s
d

⎡ ⎤= ⋅ − ⋅ − ⋅⎣ ⎦ . (7) 

 

A. Control System Stability 
From (5) it is clear that the control system of Fig. 1. will be 

stable if the characteristic polynomial ( )d s  given by (6) is 
stable. This Diophantine equation, after a proper choice of the 
stable polynomial ( )d s , is used to compute unknown 

controller polynomials ( )q s , ( )p s . Sometimes it is useful to 
require also so called strong stability which guarantees also 
stability of the designed controller, i.e. stability of the 
polynomial ( )p s  in (3). As control of unstable systems is 
generally more dangerous and the suggested design 
methodology relies on the approximate linear model of the 
originally nonlinear plant only, the strong stability condition is 
also considered in this work for safety reasons.  

B. Asymptotic Tracking of the Reference Signal and 
Disturbances Attenuation 

Let us assume, as it is often the usual case, that the 
reference signal ( )w t  is a step function, defined in the 
complex domain as: 

 

( ) 0wW s
s

= , (8) 

 
and, further suppose that both disturbances ( )uv t , ( )yv t  

can be also approximated by step-functions: 
 

( ) 0u
u

vV s
s

= , ( ) 0y
y

v
V s

s
= . (9) 

 
Then substituting (8)-(9) into (7) yields: 
 

( ) 00 0 yu vw vpE s a b a
d s s s

⎛
= ⋅ − ⋅ − ⋅⎜

⎝ ⎠

⎞
⎟ , (10) 

 
which shows that in order to guarantee zero-control error in 

the steady-state (despite both disturbances), the denominator 
polynomial of the controller ( )p s  needs to be divisible by the 
“ s ”-term. This will be fulfilled for this polynomial in the 
form: 

 
( ) ( )p s s p s= ⋅ . (11) 
 
Then the controller (3) can be written as 
 

( ) ( )
( )

q s
C s

s p s
=

⋅
, (12) 
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and the Diophantine equation (6) defining stability will be: 
 

a s p b q d⋅ ⋅ + ⋅ = . (13) 
 

C. Control System Inner Properness 
Inner properness of the control system is satisfied if all its 

parts (transfer functions) are proper. With regard to the 
conditions (2) and (4) and taking into account solvability of 
(6) it is possible to derive following formulae for degrees of 
the unknown polynomials , q p  and : d

 
( ) ( )deg degq s a s= , 

( ) ( )deg deg 1p s a s≥ − , (14) 

( ) ( )deg 2 degd s a s= ⋅ . 
 

D. Robust Setting of the Designed Loop 
In order to cope with external disturbances and with the 

fact that only an approximate model of a generally nonlinear 
unstable plant is used for the control system design, the closed 
loop is designed to be robust. This is done with the help of the 
sensitivity functions  and  from (5). The sensitivity 
function  is defined as 

S uS
S

 

( ) ( )
( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( )

1
1y

Y s
S s

V s G s C s

a s p s a s p s
a s p s b s q s d s

= = =
+ ⋅

⋅ ⋅
= =

⋅ + ⋅

 (15) 

 
and it describes the impact of output disturbance  on the 

process output ; moreover, it gives the relative sensitivity of 
the closed-loop transfer function 

yv
y

( )T s  to the relative plant 
model error. The peak gain of its frequency response given by 
the infinity norm H∞  is a good measure of the loop 
robustness, e.g. [20]. 

The input sensitivity function  describes the impact 
of the input (load) disturbance on the process output and it is 
given as: 

( )uS s

 

( ) ( )
( )

( )
( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( )

1u
u

Y s G s
S s

V s G s C s

b s p s b s p s
a s p s b s q s d s

= = =
+ ⋅

⋅ ⋅
= =

⋅ + ⋅

. (16) 

 
In this work it is suggested to use both sensitivity functions 

and their H∞  norms to tune some of the closed-loop poles in 
order to make the designed control system more robust, i.e. 
safer. The procedure is shown further on the presented 
example of the magnetic system stabilization. 

III. MAGNETIC LEVITATION SYSTEM 

A. Description 
The magnetic levitation system CE 152 depicted in Fig. 2 

represents a laboratory-scale model designed by TQ 
Education and Training Ltd for studying system dynamics and 
experimenting with control algorithms. It demonstrates control 
problems associated with nonlinear unstable systems. The 
system consists of a coil levitating a steel ball in the magnetic 
field with the position sensed by an inductive linear sensor 
connected to an A/D converter. A simplified scheme is 
presented in Fig. 3 where aF , mF , gF  denote acceleration 
force, electromagnetic force and gravity force respectively and 

 stands for the coil current. i
The coil is driven by a power amplifier connected to a D/A 

converter. A basic control task is to control the position of the 

ball freely levitating in the magnetic field of the coil. From the 
control theory point of view, the magnetic levitation system is 
a nonlinear unstable system with one input and one output. 
Detailed description of the apparatus can be found in e.g. [8] 
and [22]-[24]. 

 
Fig. 2 The CE 152 magnetic levitation apparatus 

 
Fig. 3 The ball and coil subsystem 

The model is connected to a standard PC via an universal 
data acquisition card MF614 and the Real Time Toolbox 

 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 5, 2011 1191



 

together with the Matlab environment are used for the 
communication.  

B. Mathematical Model 
A simplified mathematical model of the system including 

both D/A and A/D converters can be derived in the following 
form of a second-order nonlinear differential equation [8], 
[22]: 

 
2 2 2

2

0
0

fvk DA i c
k

AD x AD x AD

AD x

km k k u k
y y m

k k k k y k y x
k k

− = −
⎛ ⎞−

−⎜ ⎟
⎝ ⎠

g  (17) 

 
where  denotes the controlled variable - ball position and 
 is the control input, proportional to the voltage from D/A 

converter. Other symbols used in (17) are clearly defined in 
Table I, together with their actual values. 

y
u

State space realization of the system can be expressed in the 

form of (18) with 1x  corresponding to the ball position and 

2x  describing its speed. 

 
1 2

2 2 2

2 2 2

1 0
0

fv AD x DA i c
AD x

AD x AD
k

AD x

x x
k k k k k u k

x x
k k x k ym x

k k

=

= + −
⎛ ⎞−

−⎜ ⎟
⎝ ⎠

k k g  (18) 

 
For the purpose of control system design, the nonlinear 

model (18) was linearized in the chosen operating point 
(equilibrium state for the magnetic force equal to the gravity), 
generally denoted as ( ),s su y . The resultant linear state space 

description is given by (19) and (20) where x  is the vector of 
deviations of the originally defined states from the states in 
the chosen operating point ( ),s su y . 

 

u
y

= +
=

x Ax B
Cx

 (19) 

 

( )

0 1

2

0
1 02

fv

ks c
DA i

k

AD x
s

kg
mkk k u

m g

k k g
u

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜⎜
⎝
⎛ ⎞
⎜ ⎟= =⎜ ⎟⎜ ⎟
⎝ ⎠

A
⎟⎟
⎠

B C

 (20) 

 
C. Model Transfer Function 
A transfer function of the system used for the controller 

design can be easily computed from (19), (20) as 
 
( ) ( ) 1G s s −= ⋅ ⋅ − ⋅C I A B  (21) 

 TABLE I 
PARAMETERS OF THE MODEL 

Symbol Meaning Value and SI unit 

kAD A/D converter gain 0.2 MU a/V 
kDA D/A converter gain 20 V/MU a

kfv damping constant 0.02 N·s /m 
kx position sensor gain 821 V/m 
ki power amplifier gain 0.3 A/V 
kc coil constant 1.769 × 10−6  N·m2/A2

mk ball mass 8.27 × 10−3 kg 
x0 coil offset 7.6 × 10−3 m 
g gravity  constant 9.81 m/s2

y0 position sensor offset 0.0183 V 
y ball position MU a

u input signal MU a

aVoltage converted by the data acquisition card and scaled to ±1 
machine unit (MU). 

where  denotes the identity matrix of the same size as . 
Consequently the transfer function takes a form of a second-
order proportional system (22) with coefficients given 
generally according to (23). 

Ι A

 

( ) 0
2

1 0

b
G s

s a s a
=

+ +
 (22) 

 

0 1 0
2 2fvAD x

s
k s c

DA i
k

kk k g gb a a
mu kk k u

m g

= = − = −  (23) 

 
 If we choose three operating points P , ,  where  

represents the ball levitating in the middle of the space and the 
others differ ±30% in the distance, then the transfer function  
coefficients change as presented in Table II. 

1 2P 3P 2P

TABLE II 
MODEL TRANSFER FUNCTION  IN DIFFERENT OPERATING POINTS 

Operating 
point Transfer function Poles 

P1 (+30%) 
( )1 2

28231
2.418 6134

G s
s s

=
− −

 
p1 =  79.54 
p2 = -77.12 

P2

( )2 2

18400
2.418 3998

G s
s s

=
− −

 
p1 =  64.45 
p2 = -62.03 

P3 (-30%) 
( )3 2

13638
2.418 2963

G s
s s

=
− −

 
p1 =  55.66 
p2 = -53.24 
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From the table, it can be seen that the system has one stable 
and one unstable pole located on the real axis, nearly 
symmetrically with respect to the origin. It also has a constant 
gain independent of the chosen operating point equal to 

0

0

4.6
b

k
a

= = − . Note also that the system is relatively fast with 

time-constants around 10-20 ms. As the system is unstable, 
the input signal su  used to compute transfer functions in the 
operating points P1 - P3  via (23) was obtained using an 
auxiliary stabilizing controller.  

IV. CONTROL SYSTEM DESIGN 
The task here is to design a feedback control system for the 

magnetic levitation apparatus described above. The control 
system design is based on the nominal linear model (22) (G2 
in the Table II) but it must fulfill the given requirements stated 
in the section II of this paper not only for this model, but also 
for different operating points. 

Let us start with the degrees of the unknown controller 
polynomials ( )q s , ( )p s  and of the characteristic polynomial 

( )d s  from (12)-(13). Assuming the nominal transfer function 
of the controlled system in the form of (22) the degrees will 
according to (14) be: , ( )deg 2q s = ( )deg 1p s ≥  and 

( )deg 4d s = . Therefore the simplest controller structure 
according to (12) will be 

 

( ) ( )
( ) ( )

2
2 1

1 0

q s q s q s qC s
s p s s p s p

⋅ + ⋅ +
= =

⋅ ⋅ ⋅ +
0 , (24) 

 
hence, it can be seen as a real (filtered) PID controller. Its 

coefficients are obtained by a solution of the Diophantine 
equation (13) for some stable characteristic polynomial ( )d s . 
Therefore, the next task is to choose this polynomial which 
must be of the 4th order. Here it is suggested to have it in this 
form: 

 
( ) ( )( )2s+d s n s α= , (25) 

 
where 0α  is a free tuning constant and ( )n s  is a stable 

polynomial computed from the denominator polynomial of the 
controlled system ( )a s  using the spectral factorization 
technique [9]: 

 
( ) ( ) ( ) ( )* *a s a s n s n s=  (26) 

 
(here the asterisk denotes a complex conjugate polynomial 

defined as ( ) ( )*x s x s= −  and the result of the factorization is 
a polynomial with the similar properties as the original but it 

is guaranteed to be stable). This choice of the characteristic 
polynomial will not only guarantee stability of the resultant 
control system but also gives connection to the original 
process behaviour and it will leave space enoug r further 
possible tuning a

h fo
s well. Solving (26) yields ( )n s  in the 

following form:  
 
( ) 2 2

1 0 126.483 3998n s s n s n s s= + ⋅ + = + ⋅ + . (27) 

It  whereas riginal po
 

is easy to check that  the o lynomial 
( )a s  has poles located at 1 64.5p =  and 2 62.p 0= − e. the 

first one is unstable, the result of the factoriz

, i.

ation ( )n s  (27) 

oth stable poles at positions 1 64.5pprovides b = −  and 

2 62.0p = − . Now the characteristic polyno can be 
rewritten into the form:  

 

mial (25) 

( ) ( ) ( )22 126.483 3998d s s s s α= + ⋅ + ⋅ + , (28) 

 
where the only free parameter 0α  can be easily used for 

further tuning of the loop. In this k this i e using the 
sensitivity functions of the loop (

 wor s don
)S s  and ( )uS s  in order to 

make the designed control system robust, as outlined in the 
se er. 

De ce o
ction II.D of this pap

penden f the H∞ -norms of b th sensitivity functions o

( )S s  and ( )uS s  on t parameter he α  is clearly presented in 

 

Fig. 4. 

From the plot it is obvious that the smaller value of the 
constant α  the more sensitive the closed-loop system is, and 
vice versa – the higher value of α  the more robust control 
system (regarding the influence of both disturbances and 

 changes in the process model). Based on this 
information the free tuning parameter 

 
Fig. 4 Infinity-norm of the sensitivity functions  and  

with 
S uS

α  

possible
α  was chosen as 

200α = . This choice will provide robust control system and 
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approximately the same sensitivity for both disturbances. 
Besides this it can be seen as a trade-off between the desired 
robustness of the loop and limitations on the control input 
(higher values of α  result in more aggressive control action 
an

iabl
hen, the designed controller has the following form of a 

filtered PID: 
 

d consequently more overshoots and oscillations of the 
controlled var e). 

T

( ) ( )
( ) ( )

( )

2
2 1 0

200
1 0

2.25 479 8691

q s q s q s q
C s

s p s s p s p

s s

α =

⋅ + ⋅ +
= = =

⋅ ⋅ ⋅ +

⋅ + ⋅ +
=

, (29) 

ith the coefficients computed from formulas (13) and 
(27),(28) as:  

 

3
528.9s s⋅ +

 
w

( )
( )

1

0 1 1

2 1 0 1 0 0 0

2
1 1 0 0 0 0

1;
2 ;
2 ;

1 2 ;

p
p n a
q n n a p a b

q n n a p b

q

α
α

α α

=
= ⋅ + −

= ⋅ ⋅ + − ⋅ −

⎡ ⎤= ⋅ + + ⋅ ⋅ − ⋅⎣ ⎦

 (30) 

bi em also stability of the 
controller is required – see section II.A) will be fulfilled as the 
coefficient  is always p

 
Fig. 5 Control response in different operating points: 

robust setting ( 200α = ) 

2
0 0 0 .n bα= ⋅

 
It is easy to check that the strong stability condition 

(besides sta lity of the control syst

0p ositive for 0α . 

h rol loop
sed fo

V. EXPERIMENTS 
Several experiments were performed on the magnetic 

system in order to test t e designed cont . First, control 
in different operating points were analy r two settings of 
the tuning parameter α  - robust one ( 200α = ), resulting in 
th controller (29) and, non-robust (e 50α = ) with the non-
robust controller of the form: 

 

( ) ( )
( ) ( )

( )

2
2 1 0

50
1 0

2.15 89 543

q s q s q s q
C s

s p s s p s p

s s

α =

⋅ + ⋅ +
= = =

⋅ ⋅ ⋅ +

⋅ + ⋅ +
=

. (31) 
1

228.9s s⋅ +

 
Some of the control responses are presented further in Fig. 

5 - Fig. 8. 
From the graphs it is obvious that the suggested robust 

setting for ( 200α = ) provides more stable response and 
better tracking of the reference signal. It gives relatively big 
overshoots but this can be improved by e.g. different control 
configuration, as shown in [8].  

Fig. 7 Control response in different operating points: 
non-robust setting ( 50α = ) 

 
Fig. 6 Control action for different operating points: 

robust setting ( 200α = ) 
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Further attention was focused on the disturbance 
attenuation. During the control both disturbances (affecting 
control input at the time 1 sec. and controlled output at the 
time 2 sec.) were injected into the loop and the response was 
analysed. Both disturbances were step-functions as assumed in 
the section II.B of this paper and their amplitude was 10% of 
the set-point signal. The figures below (Fig. 9 - Fig. 12) show 
some of the achieved responses. 

 
Fig. 8 Control action for different operating points: 

non-robust setting ( 50α = ) 

 
Fig. 10 Control action for disturbance attenuation: 

robust setting ( 200α = ) 

As can be clearly seen from the graphs, the robust setting of 
the tuning parameter α  provides better responses to both 
disturbances. 

Different approach for the control of the magnetic 
levitation system can be found in e.g. [1] and [6] where the 
state space approach and iterative procedure were successfully 
utilised respectively.  

 

 
Fig. 9 Disturbance attenuation: 

robust setting ( 200α = ) 

 
Fig. 11 Disturbance attenuation: 

non-robust setting ( 50α = ) 

 
Fig. 12 Control action for disturbance attenuation: 

non-robust setting ( 50α = ) 
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VI. CONCLUSION 
This paper presented a relatively simple framework for 

control of unstable single input – single output (SISO) 
processes. It exploited the advantages of systematic algebraic 
approach together with some useful tools from robust control 
theory, namely sensitivity functions and their H-infinity 
norms. The resultant controllers are designed to be robust with 
respect to both, changes in the operating point (adopted 
model) and disturbances affecting manipulated or controlled 
variables. The presented experimental results on the magnetic 
levitation system show applicability of the approach to safer 
control of unstable processes. Further, the presented 
methodology can be extended to cover also multi input – multi 
output (MIMO) processes which is the field for possible 
future research directions. 
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