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Abstract— The aim of this contribution is to revise and extend 

results about stability and stabilization of a retarded quasipolynomial 
and systems obtained using the Mikhaylov criterion in our papers 
earlier. Not only retarded linear time-invariant time-delay systems 
(LTI-TDS) are considered in this paper; neutral as well as distributed-
delay systems are the matter of the research. A LTI-TDS system of 
retarded type is said to be asymptotically stable if all its poles rest in the 
open left half plane. Asymptotic stability of neutral systems described 
by its spectrum is not sufficient to express the notion of stability at 
whole since neutral LTI-TDS are sensitive to infinitesimal delay 
changes. This yields the concept of so called strong stability involving 
this fact. Moreover, stability can not be studied using the characteristic 
quasipolynomial when distributed delays in either input-output or 
internal relation appear in a model. The contribution transforms the 
formulation of the Mikhaylov criterion (the argument principle) into the 
language of the Nyquist criterion for the open loop of a control system. 
The classical simple feedback loop is considered. Illustrative examples 
are presented to clarify the results. 
 

Keywords—Stabilization, stability, time delay systems, Nyquist 
criterion, argument principle, distributed delays.  

I. INTRODUCTION 
SYMPTOTIC stability, spectrum analysis and stabilization 
of linear time-invariant time-delay systems (LTI-TDSs) 

have been challenging tasks in control theory during last 
decades. Due to their infinite dimensional nature, these 
theoretical problems are nontrivial even for simple-modeled 
systems. A vast bulk of various significant results was obtained 
and reported; see for instance [1] – [7], without any attempt to 
be exhaustive. 

In state-space LTI-TDSs are expressed by a set of 
functional differential equations (FDEs) [8], whereas the 
input-output description can be represented by the Laplace 

transfer function as a fraction of so-called quasipolynomials in 
one complex variable. Delay in the feedback can significantly 
deteriorate the quality of control performance, namely stability 
and periodicity. Although the asymptotic stability of LTI-
TDSs is defined in the space of state variables and it can be 
easier to deal with in this space, we investigate our results on 
the basis of transfer functions since some elegant control 
algorithms stem form the input-output description. It is 
essential to discern retarded and neutral LTI-TDSs as well as 
lumped and distributed delays. For lumped delays, the 
denominator quasipolynomial decides about the control 
system asymptotic stability because of the fact that its zeros 
are system poles with the same meaning as for polynomials; 
however, the spectrum is infinite due to a quasipolynomial 
transcendental form. Dealing with distributed delays (either in 
state or input variables) is a rather more involved since some 
roots of transfer function numerator and denominator coincide 
and thus the system poles do not agree with denominator 
zeros. Moreover, stability of neutral systems can not be 
sufficiently studied only in terms of asymptotic stability 
because of the fact that neutral TDSs can be destabilized by 
even infinitesimally small changes in delays. This led to the 
concept of so called strong stability [9] which is closely 
related to notion of formal stability [10]. 
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This paper extends and corrects results obtained for the 
stability of a retarded quasipolynomial with two delays in [11] 
and those for stabilization of the control feedback with a first 
order LTI-TDS in [12]. Since the crucial theorem in the 
former one is not fully correct, its revisited version is 
presented and proved in this contribution. The findings in 
papers mentioned above were obtained via the argument 
principle (or via the Mikhaylov stability criterion) for retarded 
LTI-TDSs [13]. Applying the argument principle for the 
control feedback along with the knowledge the open loop 
frequency response results in the use of the well known 
Nyquist criterion. The notorious precept about the number of 
open loop unstable poles, however, is not easy to utilize in the 
case of LTI-TDSs due to their infinite spectrum [14]-[15]. In 
addition, parlous and complex cases of neutral and distributed 
delays are discussed and comprehend in this research. Hence, 
we simply derive the generalized Nyquist criterion for a wide 
class of LTI-TDSs. 

Theoretical results obtained herein are supported by 
simulations in Matlab-Simulink to clarify and prove the 
statements. 

The paper is organized as follows: A possible LTI-TDS 

A 
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model, some basic preliminaries about asymptotic, formal and 
strong stability and the argument principle are introduced in 
Chapter II. Chapter III contains a revision of previous results 
about root locus (stability) of some retarded quasipolynomials. 
In Chapter IV, divided into several subsections, generalized 
Nyquist criteria and related lemmas for a simple control 
feedback, for retarded, neutral and distributed-delay LTI-
TDSs are introduced. Chapter V. contains two simulation 
examples elucidating and supporting the presented results. 
Conclusions and references finalize the paper.  

II. STABILITY PRELIMINARIES 

A. LTI-TDSs Model 
A state-space description of a LTI-TDS can be provided by 

the set of FDEs 
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where Ñ∈x n  is a vector of state variables, Ñ∈u m stands for 

a vector of inputs, Ñ∈y l represents a vector of outputs, Ai, 
A(τ), BBi, B(τ), C, Hi are real matrices of compatible 
dimensions, Li ≤≤η0  stand for lumped (point-wise) delays 
and convolution integrals express distributed delays. If 

for any i = 1,2,...N0H ≠i H, model (1) is called neutral; on the 
other hand, if for every i = 1,2,...N0H =i H, so called retarded 
LTI-TDS is obtained. 

Integrals in (1) can be exactly reformulated into sums of 
lumped delays using the Laplace transform, see e.g. [16], [17] 
or approximately via a standard numerical approximation 
methods. The exact transform correspondence is as follows 
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where  denotes the Laplace transform operation. 
Subsequent utilization of the reverse Laplace transform yields 
the state equation in the form 

{}⋅L
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where L

BA NN == ++ 11 ηη . 
Considering model (1) and zero initial conditions, the 

following input-output description of a general multi-input 
multi-output (MIMO) system in the form of the transfer 
matrix using the Laplace transform is obtained 
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The main advantage of the TDS system description in the 

form of the transfer function lies in its practical usability when 
system analysis and control design. All transfer functions in 
G(s) (or a transfer function in SISO case) have identical 
denominator in the form 
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where prefix num means the numerator of the determinant, 

and holds for a neutral system; 

otherwise, the system is retarded. The expression on the right-
hand side of (5) represents a so called quasipolynomial [18]. 
Indeed, 

( )∑
=

≠−
nh

j
njnj sm

1
constantexp η

( )sM  is a ratio of quasipolynomials (i.e. a 
meromorphic function) in general due to distributed state 
(internal) delays, and all roots of the denominator of ( )sM  are 
those of the numerator in this case. As a consequence, a 
transfer function (in a SISO case) can be expressed as a 
meromorphic function as well. 

For instance, consider a system of the form 
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t
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has the transfer function 
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Clearly, both the numerator and denominator of (7) have 

the same zero s = 0, whereas the rest of the denominator 
spectrum lies in the open left half plane. Thus, all system 
poles are located in Â .  −

0

B. LTI-TDSs Stability 
Definition 1 (LTI-TDS asymptotic stability). LTI-TDS is 

asymptotically stable if all poles are located in the open left 
half plane, Â , i.e. there is no s satisfying −

0

 
( ) 0Re,0 ≥= ssM  (8) 

 ■ 
 In the case of neutral systems, one has to be more careful 
when deciding about the stability since there may be infinite 
braches of poles tending to the imaginary axis. Strictly 
negative roots of the characteristic (quasi)polynomial (or 
meromorphic function), thus, do not guarantee a satisfactory 
stable behavior of a system from the asymptotic (and robust) 
point of view. Let us introduce an associated difference 
equation and two stability notions for neutral LTI-TDS which 
are close to each other in the meaning. 
 Definition 2. Given a SISO neutral LTI-TDS (1), an 
associated difference equation is defined as 
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 ■ 
 Definition 3. A neutral TDS is said to be formally stable if 
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 ■ 
see e.g. in [20], [21]. It also means that the a neutral LTI-

TDS has only a finite number of poles in the (closed) right-
half complex plane (Â ) [10]. Clearly from (9) and (10), a 
system is formally stable if characteristic equation  

+
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expressing the spectrum of the difference equation has all 

its solutions in Â .  −
0

 The feature of a neutral TDS that rightmost solution of (11) 
is not continuous in its delays, see e.g. [22], gives rise to 
another (yet a germane) stability notion. 

Definition 4. The difference equation (9) is strongly stable 

if it remains exponentially stable when subjected to small 
variations in delays (i.e. a TDS remains formally stable). ■ 

Theorem 1. (a) A neutral LTI-TDS is strongly stable if and 
only if 
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where ( )⋅Ωr  denotes the spectral radius. 

(b) Alternatively, necessary and sufficient strong stability 
condition in the Laplace transform can be formulated as 

 

∑
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j
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see e.g. [9], [23] where  are coefficients for the highest 

s-power in (5).  ■ 
njm

A sufficient condition for this type of stability is e.g. 
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where ⋅  denotes a matrix norm. A strongly stable system 

is robust against infinitesimal changes in delays of a neutral 
LTI-TDS which can destroy the asymptotic stability of the 
difference equation. 

Clearly, strong stability implies formal stability; 
contrariwise, a formally stable LTI-TDS can be destabilized in 
the formal sense by an infinitesimal change in delays. 

C. Retarded Quasipolynomial Stability 
Let us recall some basic results about the spectrum and 

argument (increment) principle for retarded quasipolynomials, 
respectively, for retarded LTI-TDSs (with characteristic 
quasipolynomial of retarded type). 

Definition 5. Retarded quasipolynomial of the general form 
(5) is said to be asymptotically stable if it has no root in the 
closed right half s-plane (Â ),, i.e. if there is no −

0 s  such that  
 
( ) { } 0Re,0 ≥= ssm  (15) 

 ■ 
Definition 5 is a direct analogy to Definition 1. 
Proposition 1 (Number of unstable roots) [19]. Consider a 

quasipolynomial (5) of retarded type. Then the number  of  UN
poles of ( )sm  located in the closed right half s-plane (i.e. 
unstable ones) is 
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 ■ 
The direct implication of Proposition 1 is the following 

theorem [12]. 

 

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 7, Volume 5, 2011 1215



 

Theorem 2 (Argument increment principle for retarded 
quasipolynomials). Consider a retarded quasipolynomial 

. If  and  for any imaginary ( )sm ( ) 00 >m ( ) 0≠sm ωj=s , 

∈ω Ñ, function  has no zero in Â if and only if the 
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D. Neutral Quasipolynomial Stability 
Analysis of neutral LTI-TDS via the argument increment is 

a rather more complicated due to the absence of a limit of 
; however, it holds true the following [23]. ( )smargΔ

Theorem 3 (Argument increment principle for neutral 
quasipolynomials). Consider quasipolynomial  of neutral 
type satisfying ,  for any imaginary 

( )sm
( ) 00 >m ( ) 0≠sm ωj=s , 

∈ω Ñ, and (13). Then  is strongly and asymptotically 
stable if and only if 
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 ■ 
Nevertheless, if the quasipolynomial is formally stable, i.e. 

it has only a finite number of zeros located in Â , the number 
of such unstable zeros is given by formula (16). Condition 
(13) ensures i.a. that the argument change  in (19) is finite 
(see proof of Theorem 1 in [23]), more precisely, 

+

Φ

( 2/,0 )π∈Φ . If (13) does not hold true, the quasipolynomial 
is not strongly stable, yet it can be formally stable. Thus, (13) 
is a sufficient condition for formal stability of the neutral 
quasipolynomial and it implies that (16) can be utilized for the 
relation between the “main” part of the argument change 
(divisible by  and ignoring Φ ) and the number of 
unstable roots.  

2/π

For example, consider a neutral quasipolynomial 
 

( ) ( ) ( )( 12exp55.0exp5.01 +−+−−= ssssm )  (20) 
 
which is not strongly stable due to Theorem 1b. However, it 
has no unstable zero and the “main” part of the overall phase 
shift is , see the Mikhaylov curve in Fig. 1, hence it is 
asymptotically and formally stable. 

2/π

 

 
Fig. 1 Mikhaylov plot of neutral quasipolynomial (20) 

 

III. RETARDED QUASIPOLYNOMIAL OF DEGREE ONE - 
REVISION 

The following results have been derived for simple 
quasipolynomials with n = 1 and h0 = 1 and h0 = 2, 
respectively. 
 Theorem 4 [12]. Consider the quasipolynomial 
 

( ) ( ) kqsassm +−+= ϑexp  (21) 
 
where ∈≠ 0a Ñ; ∈> 0, ϑk Ñ are fixed, whereas q is 
selectable. Then, if  
 

1≤ϑa  (22) 
 
the quasipolynomial (21) is asymptotically stable if and only if 
 

k
aq −

>  (23) 

 
 In the contrary, if 
 

1>ϑa  (24) 
 
the quasipolynomial (20) is asymptotically stable if and only if 
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>  (25) 

 
where the crossover frequency 0ω  is the minimum nonzero 
element of the set 
 

( ){ }{ }0jIm,0::0 =>=Ω ωωω m  (26) 
 ■ 

Definition 6. Consider quasipolynomial 
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with Ñ; ∈≠ 0a ∈> 0,, τϑk Ñ. Here, the set of crossover 
frequencies is defined as 
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The critical frequency Cω  is defined as 
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for a particular critical gain  given by Cq
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 ■ 
 Remark 1 [11]. Elements 11 Ω∈ω  are calculated as all 
solutions of the transcendental equation 
 

( ) ( )(( 111 sincos ))ωτϑτωω −= a  (31) 
 ■ 

The following theorem constitutes the revisited result 
presented as Theorem 1 in [11]. 

Theorem 5. Consider the following five possibilities: 
a) If ( ) 0sin =Cτω and ( ) 0cos >Cτω , ( ) 0cos <Cτω , then 

quasipolynomial (27) is stable if and only if 
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respectively. 

b) If ( ) 0cos =Cτω and ( ) 0sin >Cτω , ( ) 0sin <Cτω , then 
quasipolynomial (27) is stable if and only if 
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c) If ( ) 0sin >Cτω  and ( ) 0cos <Cτω , ( ) 0sin <Cτω  

and ( ) 0cos >Cτω , then quasipolynomial (27) is stable if and 
only if (33) or (34), (32) or (35), hold, respectively. 

d) If ( ) 0sin >Cτω  and ( ) 0cos >Cτω , then if 
 

( ) ( )CC τωτω sincos >   
 (36) 

 
then quasipolynomial (27) is stable if and only if (32) holds; 
otherwise, the quasipolynomial is stable if and only if (33) 
holds. 

e) If ( ) 0sin <Cτω  and ( ) 0cos <Cτω , then if (36) holds, 
quasipolynomial (27) is stable if and only if (33) is satisfied. 
Otherwise, if condition (36) does not hold true, the 
quasipolynomial is stable if and only if (35) holds. 

Recall that Cω  is the critical frequency.  ■ 
Proof. (Necessity.) For all the cases in the theorem, the 

Mikhaylov curve of stable quasipolynomial (27) starts on the 
positive real axis, and thus the necessary stability condition 

 

q
k
a

<
−  (37) 

 
included in (32)-(35) holds, as proved in Lemma 2 in [11]. 
Lemma 3 in [11] states the condition 

 
1≤+ τϑ kqa  (38) 

 
guaranties that the initial change of the Mikhaylov curve in 
the imaginary axis is positive. i.e. the curve tends to move to 
the first quadrant for 0=ω ; however, according to 
Observation 1 in [11], it immediately moves to the fourth 
quadrant. Otherwise, if 
 

1>+ τϑ kqa  (39) 
 
is satisfied, the curve passes through the fourth quadrant 
already for an infinitesimally small ω . The critical (marginal) 
case is characterized by Cω  and  where the curve crosses 
the origin of the complex plane and a small change of q would 
cause the quasipolynomial stability, i.e. the overall phase 
change would be 

Cq

2/π , see Remark 1 in [11]. The limit stable 
case thus obviously means that ( ){ } 0jRe >Cm ω  and 

( ){ } 0jIm >Cm ω  must hold simultaneously; here we can use 
relations 
 

( ){ } ( ) ( )τωϑωω coscosjRe kqam +=  (40) 
 

( ){ } ( ) ( )τωϑωωω sinsinjIm kqam −−=  (41) 
 

Consider case a) in the theorem and take ( ) 0cos >Cτω . 
Since ( ) 0sin =Cτω , we can not deal with (41), whereas (40) 
gives (32) immediately. Analogously, a case 
when ( ) 0cos <Cτω results in the right-hand side of (33). 

If conditions b) hold, inequalities (34) and (35) are obtained 
from (40) in the similar way as in the previous paragraph. 

In the case c), condition ( ){ } 0jRe >Cm ω  using (40) yields 
results (32) and (33) which are as the same as conditions (34) 
and (34), respectively, obtained from ( ){ } 0jIm >Cm ω  with 
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(41). 
The most involved cases in the theorem are d) and e) since 

conditions ( ){ } 0jRe >Cm ω  and ( ){ } 0jIm >Cm ω  collide here 
– one gives the upper limit for q whereas the second yields the 
lower one. To decide which of them is valid, one has to test 
the sensitivity of the Mikhaylov plot in the vicinity of q = qC. 
If the infinitesimal change of the curve in the real axis is 
higher than that in the imaginary one, condition 

( ){ } 0jRe >Cm ω  establishes the behavior of the curve near the 
origin (i.e. it has the higher priority). Contrariwise, if the plot 
shifts in the imaginary axis faster than in the real one, the 
stability is given by condition ( ){ } 0jIm >Cm ω  because it 
influences the Mikhaylov plot near the critical point more 
decidedly. 

Hence, if 
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then (40) decides about the behavior of the Mikhaylov plot 
near the origin, which results in (32) for ( ) 0cos >Cτω  and in 
(33) for ( ) 0cos <Cτω , respectively. 

Otherwise, if (42) does not hold true, the imaginary part 
(41) of the quasipolynomial (27) dominates in the critical 
point, which gives (34) for ( ) 0sin >Cτω  and (35) for 

( ) 0sin <Cτω . 
 (Sufficiency.) Bound (37) included in (37)-(40) guarantees 

that the Mikhaylov curve initiates on the positive real axis, see 
Lemma 2 in [11]. Lemma 3 in [11] verifies that the curve 
reaches infinity in the imaginary axis for ω → ∞, and Lemma 
4 states that it is bounded in the real axis. Moreover, if (38) 
holds the Mikhaylov curve tends to move to the first quadrant 
and, consequently, to the fourth quadrant for 0=ω ; 
otherwise, it moves to the fourth quadrant for Δ=ω  when 
(39) is satisfied. For the quasipolynomial stability, expressed 
by the overall phase shift π/2, it is now sufficient to show that 
the curve does not encircle the origin of the complex plane in 
the clockwise direction.  

Let the critical stability case be expressed by Cω  and qC 
and consider case a) first. Since ( ) 0sin =Cτω , condition 

( ){ } 0jIm >Cm ω  could not be guaranteed from (41) and  
( ){ } 0jIm =Cm ω  remains for any q. However, inequalities (32) 

and (33) yield ( ){ } 0jRe >Cm ω  from (40) using ( ) 0cos >Cτω  
and ( ) 0cos <Cτω , respectively, for a particular q > qC and q < 
qC, respectively. Thus, it means that the real axis is crossed in 
the positive semi-axis first on the critical frequency and thus, 
with respect to Remark 1 in [11], the origin is encircled in the 
anti-clockwise direction with the overall phase shift π/2. 

Second, assume the case b). Similarly as in the previous 
paragraph, ( ) 0cos =Cτω  gives ( ){ } 0jRe =Cm ω  for any q. 
Inequalities (34) and (35) together with ( ) 0sin >Cτω  and 

( ) 0sin <Cτω , respectively, result in ( ){ } 0jIm >Cm ω , from 
(40). Thus, the overall phase shift is π/2 again. 

In c), pairs of conditions (33) and (34), (32) and (35), agree 
with ( ){ } 0jRe >Cm ω  and ( ){ } 0jIm >Cm ω simultaneously for 

( ) 0sin >Cτω  and ( ) 0cos <Cτω , ( ) 0sin <Cτω  and 
( ) 0cos >Cτω , respectively, which implies the desired phase 

shift for the stability. 
Condition (36) in d) and e) expresses the fact that the 

absolute value of a derivative of the Mikhaylov curve in the 
critical point is higher in the real than in the imaginary one. 
Thus, condition ( ){ } 0jRe >Cm ω  is stricter than 

( ){ } 0jIm >Cm ω  when decision about the behavior of the plot 
in the vicinity of the origin for Cω . Inequalities (32) and (33) 
correspond to ( ){ } 0jRe >Cm ω  for ( ) 0cos >Cτω  and 

( ) 0cos <Cτω , respectively, which means that the critical point 
is not encircled. 

In the contrary, if (36) does not hold true, i.e. 
( ){ } 0jIm >Cm ω  decides about the critical behavior, 

inequalities (34) and (35) correspond to ( ){ } 0jIm >Cm ω  for 
( ) 0sin >Cτω  and ( ) 0sin <Cτω , respectively, which 

guarantees the stability again. □ 
Corollary 1. Definition 6 and Theorem 5 suggest situations 

when the quasipolynomial stabilization by the suitable choice 
of q is not possible. These are two unpleasant possibilities: 

1) If Cω  does not exist. Thus, although 0Ω  is non-empty 
set, it may not contain Cωω =0 . 

2) If q could not satisfy (33) or (34), i.e. if 
 

( )
( ) k

a
k

a

C

CC −
≤

−
τω

ϑωω
sin

sin  (43) 

 
or 

 
( )
( ) k

a
k
a

C

C −
≤

−
τω
ϑω

cos
cos  (44) 

 
depending on the particular case from Theorem 5.  ■ 

Remark 3. Assume that a particular value of q does satisfy 
Theorem 5, then the Mikhaylov plot begins either on the 
positive real semi-axis but the overall phase change differs 
from 2/π  or it starts on the negative one for 0=ω . In the 
former case, the overall phase shift is 

 

( ) ∈−−=Δ
∞∈=

kksm
s

,2
2

3arg
),0[j,

ππ
ωω

ô (45) 

 
The latter case yields 
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( ) ∈−−=Δ
∞∈=

kksm
s

,2
2

arg
),0[j,

ππ
ωω

ô (46) 

 ■ 
 Remark 3 is a direct sequel of Proposition 1. 

IV. GENERALIZED NYQUIST CRITERION FOR LTI-TDS 
In this chapter the Nyquist criterion for retarded and neutral 

LTI-TDS with both lumped and distributed delays based on 
the argument principle is presented. As usual, the Nyquist 
criterion gives information about the closed-loop stability 
based on the knowledge of the overall phase shift (argument 
increment) of the open-loop transfer function ( )sGO  around 
the critical point -1. 

Consider a simple control system as in Fig. 1 and express 
the plant and controller transfer functions, respectively, as 
 

( ) ( ) ( )sasbsG /= ,  (47) ( ) ( ) ( )spsqsGR /=
 
where , , ,  are retarded quasipolynomials 
and  is strictly proper and  is proper (the 
properness is defined as for delay-free systems using the 
highest s-power). Then the corresponding closed loop 
reference-to-output (i.e. complementary sensitivity) transfer 
function reads 

( )sa ( )sb ( )sq ( )sp
( )sG ( )sGR

 

( ) ( )
( )

( ) ( )
( ) ( )

( )
( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )sasp

sbsqsasp
sasp
sbsq

sG
sG

sGsG
sGsG

sW
sYsG

R

R
WY

+
=

+
=

+
==

0

0

11

 (48) 

 
where the characteristic quasipolynomial  is ( )sm
 

( ) ( ) ( ) ( ) ( )sbsqsaspsm +=  (49) 
 

 
Fig. 2 Simple control feedback loop 

 
 

Recall that in the case of input-output or internal distributed 
delays, zeros of (49) do not agree with poles of (48) there are 
some common (unstable) roots of ,  and/or those of 

, .  
( )sa ( )sb

( )sq ( )sp

A. Retarded LTI-TDS with lumped delays 
For retarded LTI-TDSs without distributed delays we can 

formulate and prove the following theorem. 
 Theorem 6 (The Nyquist criterion for retarded LTI-TDSs 

with lumped delays).  Let the plant and the controller have 
transfer functions as in (47) without distributed delays and the 
control system be in a simple form as in Fig. 1. Let retarded 
quasipolynomials ( )sa  and  have no root on the 
imaginary axis, i.e. 

( )sp
( ) ( ) 0,0 ≠≠ spsa  for any imaginary 

ωj=s , ∈ω Ñ. 
 Then, if 
  

)
( ) ( ) 2/arg

,0[j,
π

ωω
lsasp

s
=Δ

∞∈=
 (50) 

 
the closed-loop system is asymptotically stable if 

 

)
( )( ) ( )

2
1arg

,0[j,

π
ωω

lnsGO
s

−=+Δ
∞∈=

 (51) 

 
where n is the highest s-power in the closed-loop 
characteristic quasipolynomial  as in (49) which equals 
the sum of the highest s-powers of   and 

( )sm
( )sa ( )sp . ■ 

Proof. The highest s-power n of ( ) ( ) ( ) ( ) ( )sbsqsaspsm +=  
equals that of ( ) ( )sasp  due to the properness. If 
 

)
( ) 2/arg

,0[,j
π

ωω
nsm

s
=Δ

∞∈=
 (52) 

 
then the closed-loop system is asymptotically stable according 
to Theorem 2 (i.e. its characteristic quasipolynomial has all 
zeros in Â − ), and, simultaneously, since retarded 
quasipolynomials are analytic functions, it holds that 

0

 

)
( ) ( ) ( )( ) 2/2//arg

,0[,j
ππ

ωω
lnspsasm

s
−=Δ

∞∈=
 (53) 

 
 Moreover, from (47) and (48) it is obvious that 
 

)
( ) ( ) ( )( )

)
( )( sGspsasm

ss
0

,0[,j,0[,j
1arg/arg +Δ )=Δ

∞∈=∞∈= ωωωω
 (54) 

 
and the proof is finished. □ 

Thus, to test the closed-loop asymptotic stability, one can 
figure the Nyquist plot of  and count its overall number 
of encirclements around the critical point -1, or more 
precisely, the overall phase shift of the curve around the point. 

( )sGO

 Now, the natural question is, whether the notorious precept 
about the number of unstable poles of ( )sGO  (as for delay-
free systems) can be used. The answer is the following 
modification of Theorem 6. 

Theorem 7 (The Nyquist criterion for retarded LTI-TDSs 
with lumped delays – an alternative formulation). Let the plant 
and the controller have transfer functions as in (47) with 
lumped delays only, and the control system be in a simple 
form as in Fig. 1. Let retarded quasipolynomials ( )sa  and 
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( )sp  have no root on the imaginary axis, i.e. 

 for any imaginary ( ) ( ) 0,0 ≠≠ spsa ωj=s , ∈ω Ñ. 
 Then, the closed-loop system is asymptotically stable if 
 

)
( )( ) π

ωω
UO

s
nsG =+Δ

∞∈=
1arg

,0[,j
 (55) 

 
where nU is the number of poles of  with positive real 
parts (i.e. unstable poles). ■ 

( )sGO

Proof. Assume results from Theorem 6 and Proposition 1. 
If there in no pure complex conjugate pair of poles of ( )sGO  
(i.e. roots of ), all its unstable poles have positive real 
parts, the number of which is given by (16). If notations (50) 
and (55) are taken into account, one can write 

( ) ( )spsa

 
( )

UU nnllnn 2
2

−=⇒
−

=  (56) 

 
Substitution (56) into (51) yields (55), finally. □ 

B. Neutral LTI-TDS with lumped delays 
If the plant or the controller is of a neutral type, the Nyquist 

criterion satisfying both the asymptotic and strong stability 
can be easily formulated in the light of Theorem 3 and the 
knowledge of relation between strong and formal stability and 
the number of unstable quasipolynomial zeros, described in 
subchapter II.D. 

Theorem 8 (The Nyquist criterion for neutral LTI-TDSs 
with lumped delays).  Let the plant and the controller have 
transfer functions as in (47) with lumped delays only and let 
the control system be of the scheme as in Fig. 1. Let neutral 
quasipolynomials  and  have no root on the 
imaginary axis, i.e.  for any imaginary 

( )sa ( )sp
( ) ( ) 0,0 ≠≠ spsa

ωj=s , ∈ω Ñ, and define the denominator of ( )sGO  as 
 

( ) ( ) ( ) (∑ ∑
= =

−+==
n

i

h

j
ij

i
ijap

n
ap

iap

ssmssaspsm
0 1

,

,

exp η )  (57) 

 
for which (13) holds true. 

 Then, if 
  

)
( ) ( )apapap

s
llsm Φ+Φ−∈Δ

∞∈=
2/,2/arg

,0[j,
ππ

ωω
 (58) 

 
where 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Φ ∑

=

naph

j
njapap m

,

1
,arcsin  (59) 

 
then the closed-loop system is asymptotically stable if (51) 
holds true. Note that n is the highest s-power in the closed-
loop characteristic quasipolynomial  as in (49), which 
equals the highest s-power of the  denominator 

( )sm
( )sGO ( )smap .■ 

Proof. Follow the proof of Theorem 6. If 
 

)
( ) ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=ΦΦ+Φ−∈Δ ∑

=∞∈=

nh

j
nj

s
mnnsm

1,0[,j
arcsin,2/,2/arg ππ

ωω
(60) 

 
then the closed-loop system is asymptotically and strongly 
stable according to Theorem 3. Since 

( )smdeg ( ) nsmap == deg , apΦ=Φ , and (59) ensures the 

strong stability of both ( )sm , . Because of the fact that 
neutral quasipolynomials are analytic functions, using (47) 
and (48) it holds that 

( )smap

 

)
( ) ( )

( )

)
( )( )sG

ln

lnsmsm

s

apap
s

0
,0[,j

,0[,j

1arg
2

2/2//arg

+Δ=

−=

Φ−Φ±=Δ

∞∈=

∞∈=

ωω

ωω

π

ππ m

 (61) 

 □ 
Remark 4. If ones want to study asymptotic stability solely, 

condition (61) can be used as well without considering (13); 
however, for strong stability (13) is a necessary initial 
conditions. ■ 

As was mentioned, since strong stability condition (13) 
ensures that the number of unstable zeros of a retarded 
quasipolynomial is finite, the relation between the main part 
of the overall argument shift (that divisible by ) and the 
number of unstable zeros is given by (16). If we use this fact 
on (61) and 

2/π

( )smap , one can easily prove that (55) from 
Theorem 7 holds also for neutral systems with lumped delays. 

C. LTI-TDS with distributed delays 
In the case of input-output distributed delays, there is a 

polynomial factor in ( )sa , the (unstable) zeros of which are 
those of ( )sb . Viceversa, if some distributed delays are 
included in system dynamics, an unstable factor (or factors) 
appears in ( )sb  where all its zeros are also included in ( )sa . 

Let us study the stability of the characteristic meromorphic 
function defined in (5) first. Hence 
 

( ) ( )[ ] ( )
( )sM
sMsssM

d

n=−= AIdet  (62) 

 
where ( )sM n  is a (retarded or neutral) quasipolynomial of 
degree nM and ( )sM d  is a polynomial of a degree dM with nuM 

zeros in Â which are those of . Then the following 
theorem can be formulated. 

+ ( )sM n

Theorem 9 (Argument increment principle for a 
meromorphic function with distributed delays). Consider the 
meromorphic function  as in (62) where ( )sM

( ) ( ) 0,0 ≠≠ sMsM dn  for any imaginary ωj=s , ∈ω Ñ. 
Then 
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a) If  is a retarded quasipolynomial, ( )sM n ( )sM  has no 

zero in Â if and only if +

 

( )
)

( )
2

arg
,0[,j

π
ωω

MM

s

dnsM −
=Δ

∞∈=
 (63) 

 
b) If  is a neutral quasipolynomial satisfying (13), 

 has no zero in Â  and it is strongly stable if and only if 

( )sM n

( )sM +

 
( ) ( )

[ )

( )
M

MM

s
M

MM dnsMdn
Φ+

−
≤Δ≤Φ−

−
∞∈= 2

arg
2 ,0,j

ππ
ωω

 (64) 

 
where 
 

( ) ( )∑∑

∑

= =

=

−+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Φ

M i
M

uMn

n

i

h

j
ij

i
iju

n
u

h

j
nju

ssMssM

M

0 1
,

1
,

exp

arcsin
,

η
 (65) 

 ■ 
Proof. Let us make a proof of the case a). The second part 

of the proof can be done analogously using the fact that 
 is strongly stable and (16) can be taken into account. ( )sM n

Assume two cases. First, let (quasi)polynomials ( )sM n , 

 have all their zeros located in Â . Since both 
functions are analytic, from Theorem 2 it holds that 

( )sM d
−
0

 

[ )
( )

[ )
( )

[ )
( ) ( )

2
jargjargjarg

,0,0,0

πωωω
ωωω

MMdn dnMMM −=Δ−Δ=Δ
∞∈∞∈∞∈

(66) 

 
Second, let all nuM zeros of  in are those of ( )sM d ( )sM n  

and there is no other one in . From (16) we have ( )sM n

 

[ )
( ) ( )

[ )
( ) ( )

2
2jarg

2
2jarg

,0

,0

πω

πω

ω

ω

uMMd

uMMn

ndM

nnM

−=Δ

−=Δ

∞∈

∞∈  (67) 

 
which gives (66) and (63) again. 

The inverse can be proved analogously (by steps in reverse 
order). □ 

Consider now a feedback system as in Fig. 1 with a plant 
affected by distributed delays.  

Theorem 10. (The Nyquist criterion for LTI-TDSs with 
distributed delays).  Let the plant and the controller have 
transfer functions as in (47) with distributed delays (and 
possibly lumped ones) and let the control system be of the 
scheme as in Fig. 1. Let quasipolynomials  and ( )sa ( )sp  have 
no root on the imaginary axis, i.e. ( ) ( ) 0,0 ≠≠ spsa  for any 

imaginary ωj=s , ∈ω Ñ, and define the denominator ( )smap  

of ( )sGO  as in (57). Then 
a) If ( )smap  is a retarded quasipolynomial with  
 

)
( ) 2/arg

,0[,j
π

ωω
lsmap

s
=Δ

∞∈=
 (68) 

 
then the closed-loop system is asymptotically stable if  
 

)
( )( ) ( ) ππ

ωω
apUUO

s
nnlnsG ,

,0[j, 2
21arg =−−=+Δ

∞∈=
 (69) 

 
 holds where n is the highest s-power in ( )smap , Un is the 
number of common zeros of the numerator and denominator 
of ( )sGO  in Â  and +

apUn ,  stands for the number of unstable 

zeros of ( )smap  which are not included in the numerator of 

( )sGO . 
b) If ( )smap  is a neutral quasipolynomial with (57) and (58) 

satisfying (13), then the closed-loop system is asymptotically 
and strongly stable if (69) holds. 

Proof. Consider a general case for retarded LTI-TDSs. 
Formulation b) of Theorem 10 can be proved in a similar way. 

Let the numerator and denominator (i.e. ( )smap ) of ( )sGO  

have exactly Un  common zeros in Â . From (48) it arises 

that these roots are zeros of as well, hence, they are not 
the system poles since are canceled just by 

+

( )sm
( )smap . 

Thus, all number of unstable zeros of apUn , ( )smap  is given 
by (16) as 

 

)
( )

)
( ) ( )( )

2
2arg

arg

2

,
,0[,j

,0[,j
,,

π

π

ωω

ωω

apUUap
s

ap
s

apUUapU

nnnsm
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nnnn

+−=Δ⇒

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ Δ
−=+=

∞∈=

∞∈=

 (70) 

 
and those of ( )sm  
 

)
( )

)
( ) ( )

2
2arg

arg

2

,0[,j

,0[,j

π

π

ωω

ωω

U
s

s
U

nnsm

sm
nn

−=Δ⇒

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ Δ
−=

∞∈=

∞∈=

 (71) 

 
From (47), (48), (68), (70) and (71) we have finally 
 

)
( ) ( )

)
( )( )

)
( )

)
( ) ( ) ππ

ωωωω

ωωωω

apUUap
ss

s
ap

s

nnlnsmsm

sGsmsm

,
,0[,j,0[,j

0
,0[,j,0[,j

2
2argarg

1arg/arg

=−−=Δ−Δ=

+Δ=Δ

∞∈=∞∈=

∞∈=∞∈=

(72) 

 □ 
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Clearly, Theorem 7 holds true as well. Note that the 
common unstable zeros of  and  are not taken as 

poles of . 

( )smap ( )sm

( )sGO

V. EXAMPLES 

A. Retarded LTI-TDS with lumped delays 
 Let the retarded LTI-TDS plant be described by the 
transfer function 
 

( ) ( )
( )

( )
( )ss

s
sa
sbsG

−−
−

==
exp5

1.1exp  (73) 

 
and consider utilization of a proportional controller 0qq = . 

The controlled system is unstable which is clear from the 
Mikhaylov plot ( )ωja  displayed in Fig. 3 (a detailed zoom to 
the origin of the complex plane is added) since the overall 
phase shift (the argument change) is 2/5π− , i.e. 5−=l . In 
other words, the plant has three unstable poles because of 
Proposition 1. The task is to find the appropriate range of  
so that the closed loop is asymptotically stable. 

0q

 

 

 
Fig. 3 Mikhaylov plot of  from (73) (a) and a detail of the 

vicinity of the origin (b) 
( )sa

 

Hence, the closed-loop characteristic quasipolynomial reads 
 
( ) ( ) ( sqsssm 1.1expexp5 0 − )+−−=  (74) 

 
According to Remark 1, one can calculate the set of 

frequencies as { },...498.12,385.10,702.6,741.4,953.01 =Ω  and 
easily verify that the critical frequency satisfying definition 
(29) is 953.0=Cω  which gives rise to the critical gain 

803.5=Cq . Since ( ) 867.0048.1sin =  and ( ) 5.0048.1cos = , 
Theorem 5 results in the stabilizing interval 

 
803.55 0 << q  (75) 

 
Set e.g. 4.50 =q  and display the Nyquist plot of the open 

loop, see Fig. 4. The overall phase shift around the point -1 is 
π3 . Because 1=n , the closed loop is stable according to 

Theorem 6 (or Theorem 7). 
 

 

 
Fig. 4 Nyquist plot of ( )sGO  for plant (73) and a proportional 

controller  (a) and a detail of the vicinity of the critical point 
-1 (b)  

4.50 =q

 
B. Neutral LTI-TDS with lumped delays 
Let the neutral LTI-TDS plant be described by the transfer 

function 
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( ) ( )
( ) ( )( ) 1exp5.01

13
2 +−−+

+
==

sss
s

sa
sbsG  (76) 

 
and consider utilization of a proportional controller 2=q . 
The open loop transfer function denominator  
 

( ) ( ) ( )( ) 1exp5.01 2 +−−+== ssssasmap  (77) 
 
is strongly stable since (13) holds (i.e. the controlled system is 
stable as well). However, the system is not asymptotically 
stable, because  
 

)
( ) ( )apapap

s
sm Φ+−Φ−−∈Δ

∞∈=
ππ

ωω
,arg

,0[j,
 (78) 

 
where  

 
( ) 6/5.0arcsin π==Φap  (79) 

 
see Fig. 5. Since  and the “main” part of 2=n ( )smapargΔ  

equals π− (i.e. ), number of unstable poles from (16) is 
2 (i.e. a complex conjugate pair). 

2−=l

 

 

 
Fig. 5 Mikhaylov plot of  from (77) (a) and a detail of the 

vicinity of the origin (b) 
( )smap

 

The Nyquist plot of  is displayed in Fig. 6. ( )sGO

 

 
Fig. 6 Nyquist plot of ( )sGO  for plant (76) and a proportional 

controller   20 =q

 
According to Theorem 8, the closed loop system is 

asymptotically (and strongly) stable, since  
 

)
( )( ) π

ωω
21arg 0

,0[,j
=+Δ

∞∈=
sG

s
 (80) 

 
which also agrees with the precept about the number of 

unstable poles. 

VI. CONCLUSION 

This contribution has presented a study about the 
asymptotic and neutral stability of LTI-TDSs. In the first part 
of the paper, a basic overview about the stability and the 
argument principle for LTI-TDs has been presented. A 
revision of our results about the asymptotic stability of 
retarded quasipolynomials has been introduced in the second 
part. The Nyquist criteria for retarded and neutral systems 
based on the argument principle for a simple feedback loop 
have followed. Both lumped and distributed delays have been 
taken into account in theorems. It was i.a. verified that the 
obligatory statement about the number of open-loop unstable 
poles holds for these systems as well.  

In the future research, other feedback control systems can 
be utilized which give rise to rather more complex criteria 

Some of the presented results have been clarified by 
simulation examples. 
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