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Abstract—Constraint logic programming is a declarative 

programming style combining the features of logic programming and 

constraint propagation to solve combinatorial and optimization 

problems such as resource allocation, scheduling, and routing. We 

consider the problem of mining frequent patterns within a setting of 

constraint logic programming approach. Frequent patterns are 

patterns such as sets of features or items in transactions that appear 

frequently. Such patterns can reveal associations, correlations, and 

many other interesting relationships hidden in a dataset. Constraints 

can play an important role in improving the performance of mining 

algorithms. The problem of constraint-based pattern mining can be 

formulated as the discovery of all patterns in a given dataset that 

satisfy the specified constraints. We present implementation of 

problem modeling and solving with respect to pattern mining in 

knowledge discovery in databases. 

 

Keywords— Frequent pattern discovery, Itemset mining, Logic-

based programming, Constraint programming, ECLiPSe constraint 

system.  

I. INTRODUCTION 

HE main goal of data mining is to extract hidden 

knowledge from data [8]. Knowledge is a valuable asset 

to most organizations as a substantial source to enhance 

understanding of data relationships and support better 

decisions to increase organizational competency. Automatic 

knowledge acquisition can be achieved through the 

availability of the knowledge induction component. The 

induced knowledge can facilitate various knowledge-related 

activities ranging from expert decision support, data 

exploration and explanation, estimation of future trends, and 

prediction of future outcomes based on present data. The 

methodology of knowledge induction is known as knowledge 

discovery in databases, or data mining.  

Data mining methods are broadly defined depending on the 

specific research objective and involve different classes of 
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mining tasks including regression, classification, clustering, 

identifying meaningful associations between data attributes. 

The later mining task refers to association mining, or market 

basket analysis [9] in the retail business domain, which is the 

main focus of our research.  

Association mining is a popular method for discovering 

relations between features or variables in large databases [11], 

[12], [14], [19] and then presenting the discovered results as a 

set of if-then rules, such as {milk, bread} => {butter} to 

indicate that if a customer buys milk and bread, he or she is 

more like to buy butter as well. Association rule generation 

process is composed of two major phases: frequent itemset 

mining and rule generation. Frequent itemset mining is to find 

all items or features that are frequently occurred together [13], 

[21]. It is an import phase of association mining because it is a 

difficult task to search all possible itemsets. We thus pay 

attention to the design and implementation of frequent itemset 

discovery by applying the methodology of constraint logic 

programming. Our implementation is based on the ECLiPSe 

constraint system.  

The organization of this paper is as follows. The problem of 

frequent pattern discovery is defined in Section 2. Then the 

logic-based and constraint programming implementation of 

frequent pattern discovery is explained and demonstrated in 

Section 3. Experimentation and results are presented in 

Section 4. Finally, Section 5 concludes the paper with 

discussion of our future research direction. 

 

II. CONCEPTS AND TECHNIQUES OF FREQUENT PATTERN 

DISCOVERY 

Frequent patterns are patterns such as sets of features or 

items that appear in data frequently. Frequent pattern mining 

focuses on the discovery of relationships or correlations 

between items in a dataset. A set of market basket transactions 

[1], [2] is a common dataset used in frequent pattern analysis. 

A dataset is typically in a table format. Each row is a 

transaction, identified by a transaction identifier or a TID. A 

transaction contains a set of items bought by a customer. A set 

of transactions might be organized in either an enumerated 

(dense), or a sparse binary vector format [6]. In either format a 

dataset can be processed horizontally or vertically. Figure 1 

illustrates the data organization formats of a simple market 

basket dataset.  
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TID Items 

1 {Cereal, Milk} 

2 {Beer, Cereal, Diaper, Egg} 

3 {Beer, Diaper, Milk} 

4 {Beer, Cereal, Diaper, Milk} 

5 {Diaper, Milk} 

(a) Horizontally enumerated format 

 

T
ID

 

Item IDs 

B C D E M 

2 1 2 2 1 

3 2 3  3 

4 4 4  4 

  5  5 

(b) Vertically enumerated format 

 

TID Item  IDs 

 B C D E M 

1 0 1 0 0 1 

2 1 1 1 1 0 

3 1 0 1 0 1 

4 1 1 1 0 1 

5 0 0 1 0 1 

(c) Horizontal binary vector 

 
TID Item  IDs 

 B C D E M 

1 0 1 0 0 1 

2 1 1 1 1 0 

3 1 0 1 0 1 

4 1 1 1 0 1 

5 0 0 1 0 1 

(d) Vertical binary vector 

 
Fig. 1 horizontal and vertical organization schemes of transaction 

database 

 

In a horizontally enumerated data organization (Figure 

1(a)), each transaction contains only items positively 

associated with a customer purchase. It is a simplistic 

representation of market basket data because it ignores other 

information such as the quantity of purchased items or the 

profit of item sold. A horizontally enumerated format is 

sometimes referred to as a TidLists dataset organization. 

In a vertical organization of items bought enumeration 

(Figure 1(b)), each column stores an ordered list of TIDs of 

the transactions that contain an item. This format of a dataset 

occupies that same space as the horizontally enumerated 

format. 

Figures 1(c) and 1(d) represent a binary vector format. A 

value in each vector cell is 1 if the item is present in a 

transaction and 0 otherwise. A binary vector format is referred 

to as a TidSets dataset organization. 

Recent attention has been given to the influence of data 

organization on the performance of the process of frequent 

pattern discovery. A vertical vector organization has been 

proven an efficient layout for the problem of frequent pattern 

discovery, but it suffers from the memory usage. In this paper, 

we study the performance of frequent pattern discovery based 

on the horizontal item organization. 

In frequent pattern mining, we are interested in analyzing 

connections among items. A collection of zero or more items 

is called an itemset. For example, the first transaction in 

Figure 1 contains the itemset {Cereal, Milk}. Since this set 

contains two items, it is called a 2-itemset. An itemset can be 

an empty set, a 1-itemset, a 2-itemset, and so on. Figure 2 

shows all combinations of distinct itemsets from the set of 

items {B, C, D, E, M}, where B = Beer, C = Cereal, D = 

Diaper, E = Egg, and M = Milk. 

 

 

Fig. 2 a lattice of possible frequent patterns from the five distinct 

items  

 

The discovery of interesting relationships hidden in large 

datasets is the objective of frequent pattern mining. The 

uncovered relationships can be represented in the form of 

association rules. An association rule is an inference of the 

form X  Y, where X and Y are non-empty disjoint itemsets. 

To form association rules, we consider only valid itemsets. An 

itemset is valid if it really occurs in a transaction. For instance, 

from a dataset shown in Figure 1 an itemset {Egg, Milk} is 

invalid because none of the customers buy both eggs and 

milk. 

The identification of all valid itemsets is computational 

expensive. It can be seen from Figure 2 that a dataset of I 

items has 2I distinct itemsets. To reduce the search space, the 

measurements of support and confidence are used to constrain 

the mining process.  

The constraint support forces the mining process to 

discover only relationships that occur frequently, while 

confidence constrains the reliability of the inference made by a 

rule.  

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 8, Volume 5, 2011 1346



 

 

The support count for an itemset Z, denoted as (Z), is the 

number of transactions that contain a particular itemset Z. As 

an example, consider a dataset in Figure 1, there are three 

transactions (TID 2, 3, 4) that contain the item Beer, thus 

(Beer) = 3. Given the definition of support count, the metrics 

support and confidence of the association rule X  Y can be 

defined as follows [9]. 

Support, s(X  Y) =   
( X Y )

N

 
 ,   

where N is the number of all transactions. 

Confidence, c(X  Y) = 
( X Y )

( X )






. 

 

Given a dataset as shown in Figure 1, an example of 

association rule is the statement that "customers who buy beer 

also buy diaper, with 60% supporting transactions and 100% 

confidence." An itemset is called a frequent itemset if its 

support is greater than or equal user-specified support 

threshold (called minSup).  

An association rule generated from frequent itemset with 

the confidence greater than or equal a confidence threshold 

(called minConf) is considered a valid association rule. With 

the pre-specified minSup and minConf metrics, the problem of 

association rule discovery can be stated as follows: Given a 

set of transactions, find all the rules having support  minSup 

and confidence  minConf. This problem can be decomposed 

into two subtasks: 

(1) Frequent itemset generation: find all itemsets that 

satisfy the minSup threshold. 

(2) Rule generation: generate from frequent itemsets all 

high confidence rules. 

 

It is the minSup constraint that helps reducing the 

computational complexity of frequent itemset generation. 

Suppose we specify minSup = 2/5 = 40% on a set of 

transactions shown in Figure 1; the item {Egg} is infrequent. 

As a result, all supersets of {Egg} are also infrequent. All 

infrequent itemsets can then be pruned to reduce the search 

space (see Figure 3). 

This pruning strategy is called an anti-monotone property 

and has been applied as a basis for searching frequent patterns 

in the well known algorithm Apriori [1], [2]. The detail of this 

algorithm is given in Figure 4. 

The Apriori-like algorithms find all frequent itemsets by 

generating supersets of previously found frequent itemsets. 

This generate-and-test method is computational expensive. 

Han et al [10] proposed a different divide-and-conquer 

approach based on the prefix-tree structure that consumes less 

memory space. Toivonen [20] employed sampling techniques 

to deal with frequent pattern mining from large databases. 

Zaki et al [22] tackled the problem by means of parallel 

computation.  

 

Fig. 3 a reduced search space after pruning an infrequent item E 

 

 

Algorithm Frequent pattern discovery 

Input: Transaction database, DB, of itemset I 

           Minimum support threshold, minSup 

Output: Sets of frequent patterns of length 1 to k,  

                         P1, .., Pk 

1.  P1 = {x |x is an item in I and s(P)  minSup }  

                                                      // 1-item pattern  

2.  For (k=1; Pk  ; k++) do 

2.1     Ck+1 = Generate_candidate(Pk ) 

2.2     For each Ti  DB do 

2.2.1        Increment the count c of all candidates in Ck+1  

                       that are contained in Ti 

2.3      Pk = {c |c  Ck  and c.count  minS } 

3.  Return k Pk   // return all sets of frequent patterns 

 

Algorithm Generate_candidate  

Input:  Pattern at current level, Pi-1 

Output: Pattern in larger level, Ci 

1.    Ci =     // initialize candidate frequent pattern set  

                // as an empty set 

2.   For each pattern J in Pi-1 do 

2.1     For each pattern K in Pi-1 and K  J do 

2.1.1         If i-2 of the elements in J and K are equal then 

2.1.2                  If all subsets of {K  J } are in Pi-1 then 

 2.1.3                      Ci = Ci  {K  J } 

3.   Return Ci 

Fig. 4 a pseudo code of Apriori algorithm [1], [2] 
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Some researchers [4], [7], [16], [17], [18] consider the issue 

of search space reduction through the concept of constraints. 

Our research is in the same direction as De Raedt et al [7]. We 

consider the problem of mining frequent patterns within a 

setting of constraint logic programming using the ECLiPSe 

constraint system [3].  

Constraints can play an important role in improving the 

performance of mining algorithm. The problem of constraint-

based pattern mining can therefore be formulated as the 

discovery of all patterns in a given dataset that satisfy the 

specified constraints. In the next section, we present work in 

progress of problem modeling and solving with respect to the 

frequent pattern discovery in a transaction database. 

III. LOGIC-BASED AND CONSTRAINT-BASED PROGRAMMING 

PARADIGMS 

The problem of frequent pattern discovery is to determine 

how often a candidate pattern occurs. A pattern is a set of 

items co-occurrence across a database. Given a candidate 

pattern, the task of pattern matching is then applied to search 

for its frequency looking for the patterns that are frequent 

enough. The outcome of this search is frequent patterns that 

suggest strong co-occurrence relations between items in the 

dataset. We suggest that such pattern oriented task can be 

efficiently implemented with logic-based languages. 

 

A. Logic Program 

In logic programming, a statement is called a clause, which 

is a disjunction of literals (atomic symbols or their negations) 

such as p q and  p r. A statement is in clausal form if it is 

a conjunction of clauses such as (p q)  ( p r). Logic 

programming is a subset of first order logic in which clauses 

are restricted to Horn clauses. 

A Horn clause, named after the logician Alfred Horn [15], 

is a clause that contains at most one positive literal such as  

p q r. Horn clauses are widely used in logic programming 

because their satisfiability property can be solved by 

resolution algorithm (an inference method for checking 

whether the formula can be evaluated to true). 

A Horn clause with no positive literal, such as  p q, 

which is equivalent to  ( p  q ), is called query in Prolog and 

can be interpreted as „:- p, q’ in which its value (true/false) to 

be proven by resolution method. A clause that contains 

exactly one positive literal such as r is called a fact 

representing a true statement, written in clausal form as „r :-’ 

in which the condition part is empty and that means r is 

unconditionally true. Therefore, facts are used to represent 

data.  

A Horn clause that contains one positive literal and one or 

more negative literals such as  p q r is called a definite 

clause and such clause can equivalently written as (p q) r 

which in turn can be represented as a Prolog rule as r :- p, q. 

The symbol „:-’ is intended to mean „‟, which is implication 

in first-order logic (it stands for „if‟), and the symbol „,‟ 

represents the operator  (or „AND‟). 

In Prolog, rules are used to define procedures and a Prolog 

program is normally composed of facts and rules. Running a 

Prolog program is nothing more than posing queries to obtain 

true/false answers. The advantages of using logic 

programming are the flexible form of query posing and the 

additional information regarding variable instantiation 

obtained from the Prolog system once the query is evaluated 

to be true. 

The symbols p, q, r are called predicates in first-order logic 

programming and they can be quantified over variables such 

as r(X) :- p(X,Y), q(Y). This clause has the same meaning as 

X ( p(X,Y)  q(Y)  r(X) ).The scope of variables is within a 

clause (delimit the end of clause with a period). Horn clauses 

are thus the fundamental concept of logic programming. 

The search for patterns of interest can be efficiently 

programmed using the logic-based language such as Prolog. 

In Prolog, the feature of pattern matching can be defined 

through the use of arguments. For example, the following 

program [5] demonstrates the length function (in Prolog it is 

called predicate instead of function) to count the number of 

elements in a list. Last argument is normally a place holder for 

an output.  

Variables in Prolog start with an uppercase letter such as 

Xs, L, X. The first statement of the length predicate declares 

the fact that the length of an empty list is zero. The last 

statement of length predicate can be read as “length of the 

list (X|Xs) is L is length of the list (Xs) is M and L is M+1.” 

length([ ], 0).  -- pattern 1: length of an empty list is 0 

length( (X|Xs), L) :-  length( Xs, M), L is M+1.    

-- pattern 2: length of a list whose first  

-- element is X and remainder is Xs is 1+  length of Xs 

 
In declarative language such as Prolog, programs are sets of 

definitions and recursion is the main control structure of the 

program computation. In imperative or procedural languages, 

such as C and Java, programs are sequences of instructions 

and loops are the main control structure. A logic programming 

language like Prolog is a declarative language in which 

programs are sets of predicate definitions.  

Predicates are true or false when applied to an object or set 

of objects. A predicate definition has a dual meaning: (1) it 

describes what is the case, and (2) it describes the way to 

compute something. 

Declarative languages are mathematically sound. It is easy 

to prove that a declarative program meets its specification, 

which is an important requirement in software industry. 

Declarative style makes a program better engineered, that is, 

easier to debug, easier to maintain and modify, and easier for 

other programmers to understand.  

The following is the coding of frequent pattern mining 

program in Prolog language with a simple transaction 

database of five items as appeared in Figure 1(a). 
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%%  FrequentPattern.pl 
%          call ?-  r1. 
%                ?-  r2(X). 
%                ?-  clear. 

tid(5).                   % all transactions=5 

s(3).                     % support=3 or 0.6 

n([b,c,d,e,m]).       % all items 
 
item([c, m]).               
item([b, c, d, e]). 
item([b, d, m]).           
item([b, c, d, m]). 
item([d, m]). 
 
r1 :-  n(X),  cL1(X). 
r2(X) :-  cC2(X). 
r3(X) :-  cC3(X). 
 
clear :- retractall(l1(_)),   
            retractall(c1(_)), 
            retractall(c2(_)) ,  
            retractall(l2(_)), 
            retractall(c3(_)),  
            retractall(l3(_)). 

cL1([]).      % Create L1 
cL1([H|T]) :-   
      findall(X, f([H], X), L),  
      length(L, Len), 
      Len >= 2 , ! , 
      write( ok-head-H-len=Len),  
      nl, 
      cL1(T),  
      assert(l1(([H], Len))) 
      ; 
      cL1(T). 
 

      % Create C2, L2 
cC2(X) :-   
      l1((X,_)),  
      l1((X2,_)), 
      X \==X2,  
      write(X-X2), 
      union(X, X2, Res), 
      assert(c2((Res))) ,   
      retract(l1((X,_))) ,  
      nl. 
 
crC2(L) :- findall(X, c2(X), L). 
 
cL2([]). 
cL2([H|T]) :-  
      findall(X, f(H, X), L),  
      length(L, Len), 
      Len >= 2 ,!, 
      write( ok-head-H-len=Len),  
      nl, 
      cL2(T),  
      assert(l2((H,Len))) 
      ; 
      cL2(T). 
 
cC3(X) :-  
       l2((X,_)),  
       l2((X2,_)), 
       X \==X2,  

       write(X-X2), 
       union(X, X2, Res), 
       assert(c3((Res))) ,   
       retract(l2((X,_))) ,   
       nl. 
 
crC3(L) :- findall(X, c3(X), L). 
 
cL3([]). 
cL3([H|T]) :-  
       findall(X, f(H, X), L),  
       length(L, Len), 
       Len >= 2 , !, 
       write( ok-head-H-len=Len),  
       nl , 
       cL3(T), 
       assert(l3((H, Len))) 
       ; 
       cL3(T). 
f(H, X) :- item(X),  

              subset(H, X). 

 

The Prolog implementation of frequent itemset mining uses 

the findall, assert, and retract predicates, which are higher 

order. Higher-order predicate is a predicate in a clause that 

can quantify over other predicate symbols [5]. As an example, 

besides the rule r(X):- p(X,Y), q(Y), if we are also given the 

following five Horn clauses (or facts): p(1, 2). p(1, 3). p(5, 4). 

q(2). q(4).  

By asking the query: ?- r(X), we will get the response as 

„true‟ and also the first instantiation information as X=1. If we 

want to know all instantiations that make r(X) to be true, we 

may ask the query: ?- findall(X, r(X), Answer).We will get the 

response: Answer = [1,5], which is a set of all answers 

obtained from the predicate r(X) according to the given facts. 

The predicate symbol findall quantifies over the variables X, 

Answer, and the predicate r. The predicate findall is thus 

called a higher-order predicate. 

 

B. Constraint Logic Program 

Constraint logic programming is a declarative programming 

style that combines the features of logic programming and 

constraint propagation to solve combinatorial and 

optimization problems. A constraint logic program is an 

extension of logic program by including constraints in the 

body of the clauses. Common structure of a constraint 

program is consisted of the part to define variables and 

constraints on variables and the part to search for a valid value 

on each variable. This is the style of constraint-and-search. 

The structure of constraint logic program is as follows: 

solve(Variables) :- 

          setup_constraints(Variables), 

          search(Variables). 

 Figure 5 demonstrates the different between logic program 

and constraint program on the same problem of map coloring 

[3]. The problem is given four colors and four regions, the 

program has to provide coloring scheme such that two 

consecutive regions have different colors. 
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% Map coloring problem 
%    Prolog style: Generate-and-test 
color(red). 
color(green). 
color(blue). 
color(yellow). 
color_LP([A,B,C,D]) :-  

color(A), 
color(B), 
color(C), 
color(D), 
A \= B,    A \= C,   A \= D,     
B \= C,    B \= D,     
C \= D. 

% Map coloring problem 
%   CLP style: Constrain-and-search 
:- lib(fd). 

color_CLP([A,B,C,D]) :-  

 [A,B,C,D]::[red, green, blue, yellow], 

 alldifferent([A,B,C,D]), 

      labeling([A,B,C,D]). 

Fig. 5 Logic programming versus constraint logic programming 

 

The following implementation is the coding of frequent 

pattern mining in constraint logic programming using the 

ECLiPSe system (http://www.eclipseclp.org). The data set is 

transactional database containing itemset I as appeared in 

Figure 1(a). The constraint problem can be formulated as: 

given a transactional database D and a minimum support 

threshold , find all frequent itemsets FS such that FS = { X  

 | support(X)   }. Screenshots of ECLiPSe system when a 

minimum support has been set to be 0.3 and 0.6 are shown in 

Figure 6. 

% Frequent pattern discovery with constraint 
:-lib(listut). 
:-dynamic(c/2). 
item([[b], [c], [d], [e], [m]]). 
t([c, m]).             
t([b, c, d, e]).     
t([b, d, m]).  
t([b, c, d, m]).     
t([d, m]). 

solve(Sigma) :-      %   Sigma=MinSupport 
    retract_all(c(_,_)), 
    findall(X,t(X),AllTrans), 
    length(AllTrans,NoTrans), 
    MinSup is Sigma*NoTrans, 
    item(IT), 

                            % scan in all transactions 
    (foreach(Y,IT), param(MinSup)           
       do findall(Y,(t(T), subset(Y,T)), Res), 
            length(Res, Len), 
            (Len >= MinSup -> writeln(Y-Len), 
                                             assert(c(1,Y)) ;  true) ), 
    (for(K,1,5), param(MinSup)  
       do (findall(Y, c(K,Y), RR),  
              KK is K+1, 

              findall(R1, (subset(S, RR),  
                                myunion(S, R1),   
                                length(R1,Len), 
                                Len = KK),  Res11), 
              maplist(flatten, Res11, Res12),   
              remove_dups(Res12, Res1), 

             (Res1=[] -> fail ; true), % break when [ ] 
             (foreach(Y1, Res1), param(KK),  
                                     param(MinSup)  
                do findall(Y1, (t(T), subset(Y1, T)), Res2), 
                     length(Res2,Len1) , 
                     (Len1 >= MinSup ->  
                                      writeln(Y1-Len1), 
                                      assert(c(KK,Y1)) ; true) )  

                 )   ).     % end solve 
myunion([X,Y], Z) :- union(X,Y,Z). 

 

 

 
Fig. 6 Screenshots of ECLiPSe constraint system with 0.6 (top 

screen) and 0.3 (bottom) minimum support values, respectively 
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IV. EXPERIMENTATION 

We comparatively study the performance of our 

implementations of frequent pattern discovery using logic 

programming (SWI Prolog) and constraint logic programming 

(ECLiPSe constraint system). All experimentations have been 

performed on a 796 MHz AMD Athlon notebook with 512 

MB RAM and 40 GB HD. We select four datasets from the 

standard UCI Machine Learning Repository (http:// 

www.ics.uci.edu/~mlearn/MLRepository.html) to test the 

speed and memory usage of the programs. The details of 

selected datasets are summarized in Table 1. 

 

TABLE I 

DATASET  CHARACTERISTICS 

Dataset File size # Transactions 
# Items 

Vote 13.2 KB 300 17 

Chess 237 KB 2,130 37 

DNA 252 KB 2,000 61 

Mushroom 916 KB 5,416 23 

 
 

The frequent pattern discovery programs have been tested 

on each dataset with various minSup values, ranging from 

0.005 to 0.5. Performance comparisons of logic programming 

(LP) and constraint logic programming (CLP) in terms of 

speed and memory usage on four datasets are shown in 

Figures 7 and 8, respectively. It can be noticed from the 

experimental results that on both speed and memory usage 

comparison CLP performs better than LP. However, the 

degree of difference is insignificant. 

 

V. CONCLUSION 

Frequent pattern discovery is one major problem in the 

areas of data mining and business intelligence. The problem 

concerns finding frequent patterns hidden in a large database. 

Finding such frequent patterns has become an important task 

because it reveals associations, correlations, and many other 

interesting relations among items in the databases. We suggest 

that the problem of frequent pattern discovery can be 

efficiently and concisely implemented with high-level 

declarative language such as Prolog. Coding in declarative 

style takes less effort because pattern matching is a 

fundamental feature supported by most logic-based languages. 

The implementation of Apriori algorithm using Prolog 

confirms our hypothesis about conciseness of the program.  

We also extend our study by implementing the algorithm 

with constraint logic programming paradigm using the 

ECLiPSe constraint system. The performance studies also 

support our intuition on the issue of efficiency because our 

constraint-based implementation is slightly more efficient than 

the conventional logic programming implementation in terms 

of speed and memory usage.  

 

 
(a) Vote data 

 
(b) Chess data 

 
(c) DNA data 

 
(d) Mushroom data 

 
Fig. 7 speed comparison of logic program versus constraint logic 

program 
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(a) Vote data 

 
(b) Chess data 

 
(c) DNA data 

 
(d) Mushroom data 

 

Fig. 8 Memory usage comparison of logic program versus constraint 

logic program 

 

This preliminary study supports our belief regarding 

constraint-based declarative programming paradigm towards 

frequent pattern discovery. We focus our future research on 

the design of constraint formulating and processing to 

optimize the speed and storage requirement. We also consider 

the extension of the algorithm in the course of concurrency to 

improve its performance. 
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