



Abstract—Constraint logic programming is a declarative

programming style combining the features of logic programming and

constraint propagation to solve combinatorial and optimization

problems such as resource allocation, scheduling, and routing. We

consider the problem of mining frequent patterns within a setting of

constraint logic programming approach. Frequent patterns are

patterns such as sets of features or items in transactions that appear

frequently. Such patterns can reveal associations, correlations, and

many other interesting relationships hidden in a dataset. Constraints

can play an important role in improving the performance of mining

algorithms. The problem of constraint-based pattern mining can be

formulated as the discovery of all patterns in a given dataset that

satisfy the specified constraints. We present implementation of

problem modeling and solving with respect to pattern mining in

knowledge discovery in databases.

Keywords— Frequent pattern discovery, Itemset mining, Logic-

based programming, Constraint programming, ECLiPSe constraint

system.

I. INTRODUCTION

HE main goal of data mining is to extract hidden

knowledge from data [8]. Knowledge is a valuable asset

to most organizations as a substantial source to enhance

understanding of data relationships and support better

decisions to increase organizational competency. Automatic

knowledge acquisition can be achieved through the

availability of the knowledge induction component. The

induced knowledge can facilitate various knowledge-related

activities ranging from expert decision support, data

exploration and explanation, estimation of future trends, and

prediction of future outcomes based on present data. The

methodology of knowledge induction is known as knowledge

discovery in databases, or data mining.

Data mining methods are broadly defined depending on the

specific research objective and involve different classes of

Manuscript received June 5, 2011: Revised version received August 2,

2011. This work was supported by grants from the National Research Council

of Thailand (NRCT) and Suranaree University of Technology through the

funding of Data Engineering Research Unit.

N. Kerdprasop is an associate professor and the director of Data

Engineering Research Unit, School of Computer Engineering, Suranaree

University of Technology, 111 University Avenue, Muang District, Nakhon

Ratchasima 30000, Thailand (phone: +66-44-224-432; fax: +66-44-224-602;

e-mail: nittaya@sut.ac.th).

K. Kerdprasop is with the School of Computer Engineering and Data

Engineering Research Unit, Suranaree University of Technology, 111

University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand (e-

mail: KittisakThailand@gmail.com).

mining tasks including regression, classification, clustering,

identifying meaningful associations between data attributes.

The later mining task refers to association mining, or market

basket analysis [9] in the retail business domain, which is the

main focus of our research.

Association mining is a popular method for discovering

relations between features or variables in large databases [11],

[12], [14], [19] and then presenting the discovered results as a

set of if-then rules, such as {milk, bread} => {butter} to

indicate that if a customer buys milk and bread, he or she is

more like to buy butter as well. Association rule generation

process is composed of two major phases: frequent itemset

mining and rule generation. Frequent itemset mining is to find

all items or features that are frequently occurred together [13],

[21]. It is an import phase of association mining because it is a

difficult task to search all possible itemsets. We thus pay

attention to the design and implementation of frequent itemset

discovery by applying the methodology of constraint logic

programming. Our implementation is based on the ECLiPSe

constraint system.

The organization of this paper is as follows. The problem of

frequent pattern discovery is defined in Section 2. Then the

logic-based and constraint programming implementation of

frequent pattern discovery is explained and demonstrated in

Section 3. Experimentation and results are presented in

Section 4. Finally, Section 5 concludes the paper with

discussion of our future research direction.

II. CONCEPTS AND TECHNIQUES OF FREQUENT PATTERN

DISCOVERY

Frequent patterns are patterns such as sets of features or

items that appear in data frequently. Frequent pattern mining

focuses on the discovery of relationships or correlations

between items in a dataset. A set of market basket transactions

[1], [2] is a common dataset used in frequent pattern analysis.

A dataset is typically in a table format. Each row is a

transaction, identified by a transaction identifier or a TID. A

transaction contains a set of items bought by a customer. A set

of transactions might be organized in either an enumerated

(dense), or a sparse binary vector format [6]. In either format a

dataset can be processed horizontally or vertically. Figure 1

illustrates the data organization formats of a simple market

basket dataset.

Frequent Pattern Discovery with Constraint

Logic Programming

Nittaya Kerdprasop and Kittisak Kerdprasop

T

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 8, Volume 5, 2011 1345

TID Items

1 {Cereal, Milk}

2 {Beer, Cereal, Diaper, Egg}

3 {Beer, Diaper, Milk}

4 {Beer, Cereal, Diaper, Milk}

5 {Diaper, Milk}

(a) Horizontally enumerated format

T
ID

Item IDs

B C D E M

2 1 2 2 1

3 2 3 3

4 4 4 4

 5 5

(b) Vertically enumerated format

TID Item IDs

 B C D E M

1 0 1 0 0 1

2 1 1 1 1 0

3 1 0 1 0 1

4 1 1 1 0 1

5 0 0 1 0 1

(c) Horizontal binary vector

TID Item IDs

 B C D E M

1 0 1 0 0 1

2 1 1 1 1 0

3 1 0 1 0 1

4 1 1 1 0 1

5 0 0 1 0 1

(d) Vertical binary vector

Fig. 1 horizontal and vertical organization schemes of transaction

database

In a horizontally enumerated data organization (Figure

1(a)), each transaction contains only items positively

associated with a customer purchase. It is a simplistic

representation of market basket data because it ignores other

information such as the quantity of purchased items or the

profit of item sold. A horizontally enumerated format is

sometimes referred to as a TidLists dataset organization.

In a vertical organization of items bought enumeration

(Figure 1(b)), each column stores an ordered list of TIDs of

the transactions that contain an item. This format of a dataset

occupies that same space as the horizontally enumerated

format.

Figures 1(c) and 1(d) represent a binary vector format. A

value in each vector cell is 1 if the item is present in a

transaction and 0 otherwise. A binary vector format is referred

to as a TidSets dataset organization.

Recent attention has been given to the influence of data

organization on the performance of the process of frequent

pattern discovery. A vertical vector organization has been

proven an efficient layout for the problem of frequent pattern

discovery, but it suffers from the memory usage. In this paper,

we study the performance of frequent pattern discovery based

on the horizontal item organization.

In frequent pattern mining, we are interested in analyzing

connections among items. A collection of zero or more items

is called an itemset. For example, the first transaction in

Figure 1 contains the itemset {Cereal, Milk}. Since this set

contains two items, it is called a 2-itemset. An itemset can be

an empty set, a 1-itemset, a 2-itemset, and so on. Figure 2

shows all combinations of distinct itemsets from the set of

items {B, C, D, E, M}, where B = Beer, C = Cereal, D =

Diaper, E = Egg, and M = Milk.

Fig. 2 a lattice of possible frequent patterns from the five distinct

items

The discovery of interesting relationships hidden in large

datasets is the objective of frequent pattern mining. The

uncovered relationships can be represented in the form of

association rules. An association rule is an inference of the

form X  Y, where X and Y are non-empty disjoint itemsets.

To form association rules, we consider only valid itemsets. An

itemset is valid if it really occurs in a transaction. For instance,

from a dataset shown in Figure 1 an itemset {Egg, Milk} is

invalid because none of the customers buy both eggs and

milk.

The identification of all valid itemsets is computational

expensive. It can be seen from Figure 2 that a dataset of I

items has 2I distinct itemsets. To reduce the search space, the

measurements of support and confidence are used to constrain

the mining process.

The constraint support forces the mining process to

discover only relationships that occur frequently, while

confidence constrains the reliability of the inference made by a

rule.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 8, Volume 5, 2011 1346

The support count for an itemset Z, denoted as (Z), is the

number of transactions that contain a particular itemset Z. As

an example, consider a dataset in Figure 1, there are three

transactions (TID 2, 3, 4) that contain the item Beer, thus

(Beer) = 3. Given the definition of support count, the metrics

support and confidence of the association rule X  Y can be

defined as follows [9].

Support, s(X  Y) =
(X Y)

N

 
 ,

where N is the number of all transactions.

Confidence, c(X  Y) =
(X Y)

(X)






.

Given a dataset as shown in Figure 1, an example of

association rule is the statement that "customers who buy beer

also buy diaper, with 60% supporting transactions and 100%

confidence." An itemset is called a frequent itemset if its

support is greater than or equal user-specified support

threshold (called minSup).

An association rule generated from frequent itemset with

the confidence greater than or equal a confidence threshold

(called minConf) is considered a valid association rule. With

the pre-specified minSup and minConf metrics, the problem of

association rule discovery can be stated as follows: Given a

set of transactions, find all the rules having support  minSup

and confidence  minConf. This problem can be decomposed

into two subtasks:

(1) Frequent itemset generation: find all itemsets that

satisfy the minSup threshold.

(2) Rule generation: generate from frequent itemsets all

high confidence rules.

It is the minSup constraint that helps reducing the

computational complexity of frequent itemset generation.

Suppose we specify minSup = 2/5 = 40% on a set of

transactions shown in Figure 1; the item {Egg} is infrequent.

As a result, all supersets of {Egg} are also infrequent. All

infrequent itemsets can then be pruned to reduce the search

space (see Figure 3).

This pruning strategy is called an anti-monotone property

and has been applied as a basis for searching frequent patterns

in the well known algorithm Apriori [1], [2]. The detail of this

algorithm is given in Figure 4.

The Apriori-like algorithms find all frequent itemsets by

generating supersets of previously found frequent itemsets.

This generate-and-test method is computational expensive.

Han et al [10] proposed a different divide-and-conquer

approach based on the prefix-tree structure that consumes less

memory space. Toivonen [20] employed sampling techniques

to deal with frequent pattern mining from large databases.

Zaki et al [22] tackled the problem by means of parallel

computation.

Fig. 3 a reduced search space after pruning an infrequent item E

Algorithm Frequent pattern discovery

Input: Transaction database, DB, of itemset I

 Minimum support threshold, minSup

Output: Sets of frequent patterns of length 1 to k,

 P1, .., Pk

1. P1 = {x |x is an item in I and s(P)  minSup }

 // 1-item pattern

2. For (k=1; Pk  ; k++) do

2.1 Ck+1 = Generate_candidate(Pk)

2.2 For each Ti  DB do

2.2.1 Increment the count c of all candidates in Ck+1

 that are contained in Ti

2.3 Pk = {c |c  Ck and c.count  minS }

3. Return k Pk // return all sets of frequent patterns

Algorithm Generate_candidate

Input: Pattern at current level, Pi-1

Output: Pattern in larger level, Ci

1. Ci =  // initialize candidate frequent pattern set

 // as an empty set

2. For each pattern J in Pi-1 do

2.1 For each pattern K in Pi-1 and K  J do

2.1.1 If i-2 of the elements in J and K are equal then

2.1.2 If all subsets of {K  J } are in Pi-1 then

 2.1.3 Ci = Ci  {K  J }

3. Return Ci

Fig. 4 a pseudo code of Apriori algorithm [1], [2]

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 8, Volume 5, 2011 1347

Some researchers [4], [7], [16], [17], [18] consider the issue

of search space reduction through the concept of constraints.

Our research is in the same direction as De Raedt et al [7]. We

consider the problem of mining frequent patterns within a

setting of constraint logic programming using the ECLiPSe

constraint system [3].

Constraints can play an important role in improving the

performance of mining algorithm. The problem of constraint-

based pattern mining can therefore be formulated as the

discovery of all patterns in a given dataset that satisfy the

specified constraints. In the next section, we present work in

progress of problem modeling and solving with respect to the

frequent pattern discovery in a transaction database.

III. LOGIC-BASED AND CONSTRAINT-BASED PROGRAMMING

PARADIGMS

The problem of frequent pattern discovery is to determine

how often a candidate pattern occurs. A pattern is a set of

items co-occurrence across a database. Given a candidate

pattern, the task of pattern matching is then applied to search

for its frequency looking for the patterns that are frequent

enough. The outcome of this search is frequent patterns that

suggest strong co-occurrence relations between items in the

dataset. We suggest that such pattern oriented task can be

efficiently implemented with logic-based languages.

A. Logic Program

In logic programming, a statement is called a clause, which

is a disjunction of literals (atomic symbols or their negations)

such as p q and  p r. A statement is in clausal form if it is

a conjunction of clauses such as (p q)  ( p r). Logic

programming is a subset of first order logic in which clauses

are restricted to Horn clauses.

A Horn clause, named after the logician Alfred Horn [15],

is a clause that contains at most one positive literal such as 

p q r. Horn clauses are widely used in logic programming

because their satisfiability property can be solved by

resolution algorithm (an inference method for checking

whether the formula can be evaluated to true).

A Horn clause with no positive literal, such as  p q,

which is equivalent to  (p  q), is called query in Prolog and

can be interpreted as „:- p, q’ in which its value (true/false) to

be proven by resolution method. A clause that contains

exactly one positive literal such as r is called a fact

representing a true statement, written in clausal form as „r :-’

in which the condition part is empty and that means r is

unconditionally true. Therefore, facts are used to represent

data.

A Horn clause that contains one positive literal and one or

more negative literals such as  p q r is called a definite

clause and such clause can equivalently written as (p q) r

which in turn can be represented as a Prolog rule as r :- p, q.

The symbol „:-’ is intended to mean „‟, which is implication

in first-order logic (it stands for „if‟), and the symbol „,‟

represents the operator  (or „AND‟).

In Prolog, rules are used to define procedures and a Prolog

program is normally composed of facts and rules. Running a

Prolog program is nothing more than posing queries to obtain

true/false answers. The advantages of using logic

programming are the flexible form of query posing and the

additional information regarding variable instantiation

obtained from the Prolog system once the query is evaluated

to be true.

The symbols p, q, r are called predicates in first-order logic

programming and they can be quantified over variables such

as r(X) :- p(X,Y), q(Y). This clause has the same meaning as

X (p(X,Y)  q(Y)  r(X)).The scope of variables is within a

clause (delimit the end of clause with a period). Horn clauses

are thus the fundamental concept of logic programming.

The search for patterns of interest can be efficiently

programmed using the logic-based language such as Prolog.

In Prolog, the feature of pattern matching can be defined

through the use of arguments. For example, the following

program [5] demonstrates the length function (in Prolog it is

called predicate instead of function) to count the number of

elements in a list. Last argument is normally a place holder for

an output.

Variables in Prolog start with an uppercase letter such as

Xs, L, X. The first statement of the length predicate declares

the fact that the length of an empty list is zero. The last

statement of length predicate can be read as “length of the

list (X|Xs) is L is length of the list (Xs) is M and L is M+1.”

length([], 0). -- pattern 1: length of an empty list is 0

length((X|Xs), L) :- length(Xs, M), L is M+1.

-- pattern 2: length of a list whose first

-- element is X and remainder is Xs is 1+ length of Xs

In declarative language such as Prolog, programs are sets of

definitions and recursion is the main control structure of the

program computation. In imperative or procedural languages,

such as C and Java, programs are sequences of instructions

and loops are the main control structure. A logic programming

language like Prolog is a declarative language in which

programs are sets of predicate definitions.

Predicates are true or false when applied to an object or set

of objects. A predicate definition has a dual meaning: (1) it

describes what is the case, and (2) it describes the way to

compute something.

Declarative languages are mathematically sound. It is easy

to prove that a declarative program meets its specification,

which is an important requirement in software industry.

Declarative style makes a program better engineered, that is,

easier to debug, easier to maintain and modify, and easier for

other programmers to understand.

The following is the coding of frequent pattern mining

program in Prolog language with a simple transaction

database of five items as appeared in Figure 1(a).

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 8, Volume 5, 2011 1348

%% FrequentPattern.pl
% call ?- r1.
% ?- r2(X).
% ?- clear.

tid(5). % all transactions=5

s(3). % support=3 or 0.6

n([b,c,d,e,m]). % all items

item([c, m]).
item([b, c, d, e]).
item([b, d, m]).
item([b, c, d, m]).
item([d, m]).

r1 :- n(X), cL1(X).
r2(X) :- cC2(X).
r3(X) :- cC3(X).

clear :- retractall(l1(_)),
 retractall(c1(_)),
 retractall(c2(_)) ,
 retractall(l2(_)),
 retractall(c3(_)),
 retractall(l3(_)).

cL1([]). % Create L1
cL1([H|T]) :-
 findall(X, f([H], X), L),
 length(L, Len),
 Len >= 2 , ! ,
 write(ok-head-H-len=Len),
 nl,
 cL1(T),
 assert(l1(([H], Len)))
 ;
 cL1(T).

 % Create C2, L2
cC2(X) :-
 l1((X,_)),
 l1((X2,_)),
 X \==X2,
 write(X-X2),
 union(X, X2, Res),
 assert(c2((Res))) ,
 retract(l1((X,_))) ,
 nl.

crC2(L) :- findall(X, c2(X), L).

cL2([]).
cL2([H|T]) :-
 findall(X, f(H, X), L),
 length(L, Len),
 Len >= 2 ,!,
 write(ok-head-H-len=Len),
 nl,
 cL2(T),
 assert(l2((H,Len)))
 ;
 cL2(T).

cC3(X) :-
 l2((X,_)),
 l2((X2,_)),
 X \==X2,

 write(X-X2),
 union(X, X2, Res),
 assert(c3((Res))) ,
 retract(l2((X,_))) ,
 nl.

crC3(L) :- findall(X, c3(X), L).

cL3([]).
cL3([H|T]) :-
 findall(X, f(H, X), L),
 length(L, Len),
 Len >= 2 , !,
 write(ok-head-H-len=Len),
 nl ,
 cL3(T),
 assert(l3((H, Len)))
 ;
 cL3(T).
f(H, X) :- item(X),

 subset(H, X).

The Prolog implementation of frequent itemset mining uses

the findall, assert, and retract predicates, which are higher

order. Higher-order predicate is a predicate in a clause that

can quantify over other predicate symbols [5]. As an example,

besides the rule r(X):- p(X,Y), q(Y), if we are also given the

following five Horn clauses (or facts): p(1, 2). p(1, 3). p(5, 4).

q(2). q(4).

By asking the query: ?- r(X), we will get the response as

„true‟ and also the first instantiation information as X=1. If we

want to know all instantiations that make r(X) to be true, we

may ask the query: ?- findall(X, r(X), Answer).We will get the

response: Answer = [1,5], which is a set of all answers

obtained from the predicate r(X) according to the given facts.

The predicate symbol findall quantifies over the variables X,

Answer, and the predicate r. The predicate findall is thus

called a higher-order predicate.

B. Constraint Logic Program

Constraint logic programming is a declarative programming

style that combines the features of logic programming and

constraint propagation to solve combinatorial and

optimization problems. A constraint logic program is an

extension of logic program by including constraints in the

body of the clauses. Common structure of a constraint

program is consisted of the part to define variables and

constraints on variables and the part to search for a valid value

on each variable. This is the style of constraint-and-search.

The structure of constraint logic program is as follows:

solve(Variables) :-

 setup_constraints(Variables),

 search(Variables).

 Figure 5 demonstrates the different between logic program

and constraint program on the same problem of map coloring

[3]. The problem is given four colors and four regions, the

program has to provide coloring scheme such that two

consecutive regions have different colors.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 8, Volume 5, 2011 1349

% Map coloring problem
% Prolog style: Generate-and-test
color(red).
color(green).
color(blue).
color(yellow).
color_LP([A,B,C,D]) :-

color(A),
color(B),
color(C),
color(D),
A \= B, A \= C, A \= D,
B \= C, B \= D,
C \= D.

% Map coloring problem
% CLP style: Constrain-and-search
:- lib(fd).

color_CLP([A,B,C,D]) :-

 [A,B,C,D]::[red, green, blue, yellow],

 alldifferent([A,B,C,D]),

 labeling([A,B,C,D]).

Fig. 5 Logic programming versus constraint logic programming

The following implementation is the coding of frequent

pattern mining in constraint logic programming using the

ECLiPSe system (http://www.eclipseclp.org). The data set is

transactional database containing itemset I as appeared in

Figure 1(a). The constraint problem can be formulated as:

given a transactional database D and a minimum support

threshold , find all frequent itemsets FS such that FS = { X 

 | support(X)   }. Screenshots of ECLiPSe system when a

minimum support has been set to be 0.3 and 0.6 are shown in

Figure 6.

% Frequent pattern discovery with constraint
:-lib(listut).
:-dynamic(c/2).
item([[b], [c], [d], [e], [m]]).
t([c, m]).
t([b, c, d, e]).
t([b, d, m]).
t([b, c, d, m]).
t([d, m]).

solve(Sigma) :- % Sigma=MinSupport
 retract_all(c(_,_)),
 findall(X,t(X),AllTrans),
 length(AllTrans,NoTrans),
 MinSup is Sigma*NoTrans,
 item(IT),

 % scan in all transactions
 (foreach(Y,IT), param(MinSup)
 do findall(Y,(t(T), subset(Y,T)), Res),
 length(Res, Len),
 (Len >= MinSup -> writeln(Y-Len),
 assert(c(1,Y)) ; true)),
 (for(K,1,5), param(MinSup)
 do (findall(Y, c(K,Y), RR),
 KK is K+1,

 findall(R1, (subset(S, RR),
 myunion(S, R1),
 length(R1,Len),
 Len = KK), Res11),
 maplist(flatten, Res11, Res12),
 remove_dups(Res12, Res1),

 (Res1=[] -> fail ; true), % break when []
 (foreach(Y1, Res1), param(KK),
 param(MinSup)
 do findall(Y1, (t(T), subset(Y1, T)), Res2),
 length(Res2,Len1) ,
 (Len1 >= MinSup ->
 writeln(Y1-Len1),
 assert(c(KK,Y1)) ; true))

)). % end solve
myunion([X,Y], Z) :- union(X,Y,Z).

Fig. 6 Screenshots of ECLiPSe constraint system with 0.6 (top

screen) and 0.3 (bottom) minimum support values, respectively

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 8, Volume 5, 2011 1350

IV. EXPERIMENTATION

We comparatively study the performance of our

implementations of frequent pattern discovery using logic

programming (SWI Prolog) and constraint logic programming

(ECLiPSe constraint system). All experimentations have been

performed on a 796 MHz AMD Athlon notebook with 512

MB RAM and 40 GB HD. We select four datasets from the

standard UCI Machine Learning Repository (http://

www.ics.uci.edu/~mlearn/MLRepository.html) to test the

speed and memory usage of the programs. The details of

selected datasets are summarized in Table 1.

TABLE I

DATASET CHARACTERISTICS

Dataset File size # Transactions
Items

Vote 13.2 KB 300 17

Chess 237 KB 2,130 37

DNA 252 KB 2,000 61

Mushroom 916 KB 5,416 23

The frequent pattern discovery programs have been tested

on each dataset with various minSup values, ranging from

0.005 to 0.5. Performance comparisons of logic programming

(LP) and constraint logic programming (CLP) in terms of

speed and memory usage on four datasets are shown in

Figures 7 and 8, respectively. It can be noticed from the

experimental results that on both speed and memory usage

comparison CLP performs better than LP. However, the

degree of difference is insignificant.

V. CONCLUSION

Frequent pattern discovery is one major problem in the

areas of data mining and business intelligence. The problem

concerns finding frequent patterns hidden in a large database.

Finding such frequent patterns has become an important task

because it reveals associations, correlations, and many other

interesting relations among items in the databases. We suggest

that the problem of frequent pattern discovery can be

efficiently and concisely implemented with high-level

declarative language such as Prolog. Coding in declarative

style takes less effort because pattern matching is a

fundamental feature supported by most logic-based languages.

The implementation of Apriori algorithm using Prolog

confirms our hypothesis about conciseness of the program.

We also extend our study by implementing the algorithm

with constraint logic programming paradigm using the

ECLiPSe constraint system. The performance studies also

support our intuition on the issue of efficiency because our

constraint-based implementation is slightly more efficient than

the conventional logic programming implementation in terms

of speed and memory usage.

(a) Vote data

(b) Chess data

(c) DNA data

(d) Mushroom data

Fig. 7 speed comparison of logic program versus constraint logic

program

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 8, Volume 5, 2011 1351

(a) Vote data

(b) Chess data

(c) DNA data

(d) Mushroom data

Fig. 8 Memory usage comparison of logic program versus constraint

logic program

This preliminary study supports our belief regarding

constraint-based declarative programming paradigm towards

frequent pattern discovery. We focus our future research on

the design of constraint formulating and processing to

optimize the speed and storage requirement. We also consider

the extension of the algorithm in the course of concurrency to

improve its performance.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami, “Mining

association rules between sets of items in large

databases,” in Proc. ACM SIGMOD, 1993, pp. 207-216.

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining

association rules,” in Proc. VLDB, 1994, pp. 487-499.

[3] K. R. Apt and M. Wallace, Constraint Logic

Programming using ECLiPSe, Cambridge University

Press, 2007.

[4] S. Bistarelli and F. Bonchi, “Soft constraint based pattern

mining,” Data and Knowledge Engineering, vol. 62,

2007, pp. 118-137.

[5] I. Bratko, Prolog Programming for Artificial Intelligence,

3rd ed., Pearson, 2001.

[6] A. Cegler and J. Roddick, “Association mining,” ACM

Computing Surveys, vol.38, no.2, 2006.

[7] L. De Raedt, T. Guns, and S. Nijssen, “Constraint

programming for itemset mining,” in Proc. KDD, 2008,

pp. 204-212.

[8] W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus,

“Knowledge discovery in databases: an overview,” AI

Magazine, vol. 13, no. 3, 1992, pp. 57-70.

[9] J. Han and M. Kamber, Data Mining: Concepts and

Techniques, 2nd ed., Morgan Kaufmann, 2006.

[10] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns

without candidate generation,” in Proc. ACM SIGMOD,

2000, pp. 1-12.

[11] J. Hu and X. Li, “Association rules mining including

weak-support modes using novel measures,” WSEAS

Transactions on Computers, vol. 8, issue 3, 2009, pp.

559-568.

[12] M.C. Hung, S.Q. Weng, J. Wu, and D.L. Yang, “Efficient

mining of association rules using merged transactions,”

WSEAS Transactions on Computers, vol. 5, issue 5, 2006,

pp. 916-923.

[13] N. Kerdprasop and K. Kerdprasop, “Recognizing DNA

splice sites with the frequent pattern mining technique,”

International Journal of Mathematical Models and

Methods in Applied Science, vol.5, issue 1, 2011, pp. 87-

94.

[14] R. Kuusik and G. Lind, “Algorithm MONSA for all

closed sets finding: basic concepts and new pruning

techniques,” WSEAS Transactions on Information

Science & Applications, vol. 5, issue 5, 2008, pp. 599-

611.

[15] S.-H. Nienhuys-Cheng and R.D. Wolf, Foundations of

Inductive Logic Programming, Springer, 1997.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 8, Volume 5, 2011 1352

[16] J. Pei and J. Han, “Can we push more constraints into

frequent pattern mining?” in Proc. ACM SIGKDD, 2000,

pp. 350-354.

[17] J. Pei, J. Han, and L. Lakshmanan, “Pushing convertible

constraints in frequent itemset mining,” Data Mining and

Knowledge Discovery, vol. 8, 2004, pp. 227-252.

[18] R. Srikant, Q. Vu, and R. Agrawal, “Mining association

rules with item constraints,” in Proc. KDD, 1997, pp. 67-

73.

[19] H. Sug, “Discovery of multidimensional association rules

focusing on instances in specific class,” International

Journal of mathematics and Computers in Simulation,

vol. 5, issue 3, 2011, pp. 250-257.

[20] H. Toivonen, “Sampling large databases for association

rules,” in Proc. VLDB, 1996, pp. 134-145.

[21] G. Yu, S. Shao, and X. Zeng, “Mining long high utility

itemsets in transaction databases,” WSEAS Transactions

on Information Science & Applications, vol. 5, issue 2,

2008, pp. 202-210.

[22] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li,

“Parallel algorithm for discovery of association rules,”

Data Mining and Knowledge Discovery, vol. 1, 1997, pp.

343-374.

Nittaya Kerdprasop is an associate professor and the director of

Data Engineering research unit, school of computer engineering,

Suranaree University of Technology, Thailand. She received her B.S.

in radiation techniques from Mahidol University, Thailand, in 1985,

M.S. in computer science from the Prince of Songkla University,

Thailand, in 1991 and Ph.D. in computer science from Nova

Southeastern University, U.S.A., in 1999. She is a member of

IAENG, ACM, and IEEE Computer Society. Her research of interest

includes Knowledge Discovery in Databases, Data Mining, Artificial

Intelligence, Logic and Constraint Programming, Deductive and

Active Databases.

Kittisak Kerdprasop is an associate professor at the school of

computer engineering and one of the principal researchers of Data

Engineering research unit, Suranaree University of Technology,

Thailand. He received his bachelor degree in Mathematics from

Srinakarinwirot University, Thailand, in 1986, master degree in

computer science from the Prince of Songkla University, Thailand, in

1991 and doctoral degree in computer science from Nova

Southeastern University, USA, in 1999. His current research includes

Data mining, Machine Learning, Artificial Intelligence, Logic and

Functional Programming, Probabilistic Databases and Knowledge

Bases.

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 8, Volume 5, 2011 1353

