
 

 

  
Abstract—We study the effect of calcitonin on bone formation 

and resorption mathematically by developing a system of nonlinear 
differential equations to describe the process. The model accounts for 
the concentration of calcitonin above the basal level, the number of 
active osteoclastic cells and the number of the active osteoblastic 
cells. We then applied the singular perturbation to our model in order 
to obtain the conditions on the system parameters for which the 
various kinds of dynamic behavior can be occurred. Computer 
simulations are also carried out to support our theoretical predictions.   
The results show that a periodic behavior can be expected 
corresponding to the pulsatile secretion pattern of calcitonin observed 
clinically in normal individuals. 
 

Keywords—bone formation, bone resorption, calcitonin, 
mathematical model, singular perturbation.  

I. INTRODUCTION 

N  adult human body, about 99% of total body calcium is 
stored in bone. Apart from providing structural support, 

bone serves as an enormous reservoir for calcium salts. About 
600 mg of calcium is exchanged between bone and the 
extracellular fluid per day mostly through the bone resorption 
and formation process [1].  There are two types of cells that 
responsible for bone formation and resorption process which 
are osteoclasts, bone resorbing cells, and osteoblasts, bone 
forming cells. Bone remodeling process can be described step 
by step as follows. At first, osteoclasts appear on a previously 
inactive surface of bone and then, they excavate a lacuna on 
the surface of cancellous bone or resorption tunnel in cortical 
bone. After that, osteoclasts are then subsequently replaced by 
osteoblasts and finally, osteoblasts refill the resorption cavity 
and becoming osteocytes, the inactive form of osteoblasts [2], 
[3]. If osteoclasts produce an excessively deep resorption 
space, if the osteoblasts fail to completely refill the resorption 
space, or if both events occur then bone imbalance exists and 
that leads to osteoporosis [2], [3].  
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 Osteoporosis is a major health disorder of bone remodeling 
occurring frequently in women especially in postmenopausal 
women [4]. It is characterized by low bone mass resulting from 
the net increase of bone resorption over bone deposition and 
hence bones become brittle and fracture easily [4], [5]. Many 
factors involve in bone remodeling process including 
calcitonin (CT), parathyroid hormone (PTH), vitamin D, 
prolactin and estrogen. Therefore,  a thorough understanding 
of the bone remodeling process as well as the involving 
hormonal action are needed.  

Even though there are many mathematical models proposed 
to describe bone remodeling process [6]-[9], none of them 
concentrate on the effect of calcitonin. Therefore, in this 
paper, we will develop a system of nonlinear differential 
equations to describe bone remodeling process based on the 
effect of calcitonin.  

II. MODEL DEVELOPMENT 

 Let us denote the concentration of CT above the basal level 
in blood at time t by X(t), the number of active osteoclasts at 
time t by Y(t), and the number of active osteoblasts at time t by 
Z(t). We also assume that the high levels of osteoclast and 
osteoblast precursors lead to the high levels of active 
osteoclastic and osteoblastic cells, respectively, which result 
from the differentiation, and activation of their precursors. 

 Firstly, CT is produced by the thyroid gland [1]. The 
elevated serum calcium level stimulates the secretion of CT.  
In order to counter balance the high level of calcium, CT 
inhibits bone resorption by inhibiting osteoclastic activity 
resulting in decreasing serum calcium [1]. Therefore, the 
equation for the rate of calcitonin secretion is then assumed to 
have the form 

               1 2
1

1

a a YdX
b X

dt k Y

æ ö+
= -ç ÷+è ø

                              (1) 

where the first term on the right-hand side of (1) represents the 
secretion rate of CT from parafollicular cells in the thyroid 
gland. The last term is the removal rate constant 1b . 1 2,a a  and 

1k  are positive constants.  

Secondly, osteoclasts are responsible for bone resorption. 
They are large cells that arise by fusion of mononucleated 
hematopoietic cells [1]. Differentiation and activation of 
osteoclasts require direct physical contact with osteoblastic 
cells that govern these processes by producing at least two 
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cytokines [1]. Many factors involve in the regulation of 
osteoclast formation and differentiation such as osteoclast 
differentiation factor (ODF) which was found to be identical to 
osteoprotegerin ligand (OPGL), TNF-related activation 
induces cytokine (TRANCE), receptor activator NF-kB ligand 
(RANKL) [6],[10],[11]. Therefore, the dynamics of the active 
osteoclastic population can be described by the following 
equation 

                      4
3 22

2

a XdY
a YZ b Y

dt k X

æ ö
= - -ç ÷ç ÷+è ø

                       (2)  

where the first term on the right-hand side of (2) represents the 
reproduction of active osteoclasts and the inhibitory effect of 
calcitonin on active osteoclasts reproduction. The last term 
represents the removal rate of active osteoclasts from the 
system. 3 4 2, ,a a b  and 2k  are positive constants. 

Finally, osteoblasts are responsible for bone formation. They 
arise from progenitors in connective tissue and marrow stroma 
and form a continuous sheet on the surface of newly forming 
bone [1]. There are many factors involve in the proliferation 
and differentiation of osteoblasts such as FGF, IGF-I, TGF-
beta. On the other hand, CT has also been found to enhance 
osteoblastic bone formation [12], [13]. The dynamics of the 
osteoblastic population can be described by the following 
equation   

                           5 6
3

3

a a XdZ
Z b Z

dt k X

æ ö+
= -ç ÷

+è ø
                         (3) 

where the first term on the right-hand side of (3) represents the 
stimulating effect of CT on the reproduction of active 
osteoblasts. The last term is the removal rate of active 
osteoblasts from the system. 5 6 3, ,a a b  and 3k  are positive 

constants. 

III. SINGULAR PERTURBATION ANALYSIS 

To apply the singular perturbation technique to our model, 
we assume that the dynamics of CT is fast. The osteoclastic 
population possesses the intermediate dynamics and the 
osteoblastic population has the slow dynamics. Consequently, 
we scale the dynamics of the three components and parameters 
of the system in term of small positive parameters 0 1< e <<  
and 0 1< d <<  as follows.  

Letting 3
1 1 2 2 3,   ,   ,   ,   ,   ,

a
x X y Y z Z c a c a c

e
= = = = = =  

5 6 34 2
4 5 6 1 1 2 3, , , , ,

a a ba b
c c c d b d d

e ed ed e ed
= = = = = = , we are 

led to the following model equations: 

    ( )1 2
1

1

, ,
c c ydx

d x f x y z
dt k y

æ ö+
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                (4) 
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           (5) 

            ( )5 6
3

3
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c c xdz

z d z h x y z
dt k x

ed ed
æ öæ ö+

= - =ç ÷ç ÷ç ÷+è øè ø
          (6)  

The system of (4)-(6), with the small parameters e  and d  
can then be analyzed by using the geometric singular 
perturbation method which, under suitable regularity 
conditions, allows approximating the solution of the system 
with a sequence of simple dynamic transitions occurring at 
different speeds.  

The shapes and relative positions of the 
manifolds{ }0f = ,{ }0g =  and { }0h =  determine the shapes, 

directions and speeds of the solution trajectories. We now 
analyze each of the equilibrium manifolds in detail. 

  
The manifold { }0=f  

This manifold is given by the equation                       

                         ( )1 2

1 1

1 c c y
x U y

d k y

æ ö+
= ºç ÷+è ø

                           (7)   

which is parallel to the z-axis. It intersects the ( )x,z - plane 

along the line  

                    1
1

1 1

c
x x

d k
= º                          (8) 

Moreover, ( )U y  is an increasing function of x and 

( ) 2
2

1

  as  
c

U y x y
d

® º ® ¥ . 

 
The manifold { }0g =                

This manifold consists of two submanifolds. One is the 
trivial manifold 0y = . The nontrivial one given by the 

equation  

          
( )

( ) ( )
2

2 2

2
3 2 4

d k x
z V x

c k x c x

+
= º

+ -
                      (9) 

this nontrivial manifold is independent of the variable y and 
thus this submanifold is parallel to the y -axis with asymptotic 

line   

                                      
3

2
2d

z z
c

= º                                   (10)                                              

Furthermore, the nontrivial manifold { }0g =  attains its 

maximum at the point where 

     2 3x k x= º      and    2 2
1

3 2 4 2

2

2

d k
z z

c k c k
= º

-
       (11) 

 
The manifold { }0h =               

This consists of the trivial manifold 0z =  and the nontrivial 
one given by the equation              

                     3 3 5
4

6 3

d k c
x x

c d

-
= º

-
                            (12)     
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Case I: If e  and d  are sufficiently small and the inequalities  
 1 4 20 x x x< < < ,                      (13) 

               2 1z z< ,                           (14) 

                    4 3 22c c k< ,                      (15) 

       6 3c d< ,                           (16) 

and                                   3 3 5d k c<                                (17) 
are satisfied where all the parametric values are given as 
above, then the manifolds are positioned as in Fig. 1 and the 
system of (4)-(6) will have a periodic solution. Here, the 
transitions of slow, intermediate and high speeds are indicated 
by one, two and three arrows, respectively. 
 In Fig. 1, without loss of generality we start from point I and 
we assume that the position of I is as in Fig. 1 with { }0f ¹ . A 

fast transition will tend to point J on the manifold 

{ }0 .f = Here, { }0g <  and a transition at intermediate speed 

will be made in the direction of decreasing y  until point K on 

the curve { }0f g= =  is reached. A slow transition then 

follows along this curve to some point L where the stability of 
submanifold will be lost. A jump to point M on the other stable 
part of { }0f g= =  followed by a slow transition in the 

direction of decreasing z until the point N is reached since 

{ }0h <  here. Once the point N is reached the stability of 

submanifold will be lost. A jump to point O on the other stable 
part of { }0f g= =  followed by a slow transition in the 

direction of increasing z since { }0h >  here. Consequently, a 

slow transition will bring the system back to the point L, 
followed by flows along the same path repeatedly, resulting in 
the closed orbit LMNOL. Thus, limit cycle in the system for e  
and d  are sufficiently small exists. 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 The three equilibrium manifolds { } { }0 , 0f g= =  and { }0h =  in the ( ), ,x y z - space in Case 1. Segments of the trajectories with one, 

two, and three arrows represent slow, intermediate, and fast transitions, respectively. 
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Case II: If e  and d  are sufficiently small and the inequalities  
 3 1 4 20 x x x x< < < < ,                    (18) 

               2 1z z< ,                           (19) 

                    4 3 22c c k< ,                      (20) 

       6 3c d> ,                           (21) 

and                                   3 3 5d k c>                                (22) 
are satisfied where all the parametric values are given as 
above, then the manifolds are positioned as in Fig. 2 and the 
system of (4)-(6) will have a stable equilibrium point.  
 In Fig. 2, without loss of generality, we start from point I 
and we assume that the position of I is as in Fig. 2 with 

{ }0f ¹ . A fast transition will bring the solution trajectory to 

point J on the manifold { }0 .f = Here, { }0g <  and a 

transition at intermediate speed will be made in the direction 
of decreasing y  until point K on the curve { }0f g= =  is 

reached followed by a slow transition in the direction of 
decreasing z until the steady state 1S  where 0f g h= = =  is 

reached since { }0h <  here. Thus, the solution trajectory is 

expected in this case to tend toward this stable equilibrium 
point 1S  as time passes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 The three equilibrium manifolds { } { }0 , 0f g= =  and { }0h =  in the ( ), ,x y z - space in Case 2. Segments of the trajectories with one, 

two, and three arrows represent slow, intermediate, and fast transitions, respectively. 
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Case III: If e  and d  are sufficiently small and  

 1 4 20 x x x< < < ,                      (23) 

               2 1z z< ,                           (24) 

                    4 3 22c c k< ,                      (25) 

       6 3c d> ,                           (26) 

and                                   3 3 5d k c>                                (27) 
are satisfied where all the parametric values are given as 
above, then the manifolds are positioned as in Fig. 3 and the 
system of (4)-(6) will have a stable equilibrium point.  
 In Fig. 3, without loss of generality, we start from point I 
and we assume that the position of I is as in Fig. 3 with 

{ }0f ¹ . A fast transition will bring the solution trajectory to 

point J on the manifold { }0 .f = Here, { }0g <  and a 

transition at intermediate speed will be made in the direction 
of decreasing y  until point K on the curve { }0f g= =  is 

reached followed by a slow transition in the direction of 
decreasing z until the steady state 1S  where 0f g h= = =  is 

reached since { }0h <  here. Thus, the solution trajectory is 

expected in this case to tend toward this stable equilibrium 
point 1S  as time passes. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 The three equilibrium manifolds { } { }0 , 0f g= =  and { }0h =  in the ( ), ,x y z - space in Case 3. Segments of the trajectories 

with one, two, and three arrows represent slow, intermediate, and fast transitions, respectively. 
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IV. COMPUTER SIMULATIONS 

 A numerical result of the system (4)-(6) is presented in 
Fig. 4, with parametric values chosen to satisfy the 
condition in Case 1. The solution trajectory, shown in Fig. 

4a project onto the ( ),x z -plane, tends to a limit cycle as 

theoretically predicted. The corresponding time courses of 
the calcitonin concentration and the number of active 
osteoblasts are as shown in Fig. 4b and 4c, respectively. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
Fig. 4 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 6 1 20.1, 0.5, 0.4, 0.7, 0.7,  0.085, 3,  5,c c c c c c k k= = = = = = = =  

3 1 2 32,  0.1,  0.2,  0.2,  0.1,  0.2,  (0) 0.5, (0) 0.5,k d d d x ye d= = = = = = = = (0) 0.5.z =  (a) The solution trajectory projected onto the (x,z)-plane. 

(b) The corresponding time courses of calcitonin concentration (x), and (c)  number of active osteoblastic cells (z). 
 

a) 

b) c) 
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 A numerical result of the system (4)-(6) is presented in 
Fig. 5, with parametric values chosen to satisfy the 
condition in Case 2. The solution trajectory, shown in Fig. 
5a project onto the ( ),x y -plane, tends to a stable 

equilibrium as theoretically predicted. The corresponding 

time courses of the calcitonin concentration and the number 
of active osteoclasts are as shown in Fig. 5b and 5c, 
respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 6 1 20.5, 0.7, 0.2, 0.7, 0.1,  0.21, 3,  4,c c c c c c k k= = = = = = = =  

3 1 2 31,  0.05,  0.2,  0.2,  0.01,  0.01,  (0) 1, (0) 5,k d d d x ye d= = = = = = = = (0) 5.z =  (a) The solution trajectory projected onto the (x,y)-plane. 

(b) The corresponding time courses of calcitonin concentration (x), and (c)  number of active osteoclastic cells (y). 
 

a) 

b) c) 
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 A numerical result of the system (4)-(6) is presented in 
Fig. 6, with parametric values chosen to satisfy the 
condition in Case 3. The solution trajectory, shown in Fig. 
6a project onto the ( ),x y -plane, tends to a stable 

equilibrium as theoretically predicted. The corresponding 

time courses of the calcitonin concentration and the number 
of active osteoclasts are as shown in Fig. 6b and 6c, 
respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 A computer simulation of the model systems (4)-(6) with 1 2 3 4 5 6 1 20.6, 0.7, 0.2, 0.7, 0.1,  0.21, 3,  4,c c c c c c k k= = = = = = = =  

3 1 2 31,  0.05,  0.2,  0.2,  0.01,  0.01,  (0) 1, (0) 5,k d d d x ye d= = = = = = = = (0) 5.z =  (a) The solution trajectory projected onto the (x,y)-plane. 

(b) The corresponding time courses of calcitonin concentration (x), and (c)  number of active osteoclastic cells (y). 
 

a) 

b) c) 
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V. CONCLUSION 

In this paper, bone formation and resorption is studied 
mathematically. We have proposed a system of nonlinear 
differential equations accounting for the level of calcitonin, 
the number of active osteoclasts, and the number of active 
osteoblasts as in (1)-(3). The singular perturbation 
technique [14], [15] is then applied to analyzed our model 
to obtain the conditions on the system parameters for which 
the various kinds of dynamics behavior can be occurred 
including a periodic behavior in the solution of the system. 
Computer simulations of the model are then carried out by 
using Runge-Kutta method which has been widely used to 
find the approximate solution of the differential equations 
[16]-[19]. Both of theoretical and numerical results show 
that the periodic behavior can be exhibited by our model 
which closely resembles to the serum level of calcitonin that 
has been observed clinically [20], even though the model is 
kept relatively simple. 
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