
 

 

  
Abstract—Parathyroid hormone and vitamin D play an 

important role in calcium homeostasis as well as in bone 
remodeling process. We propose here a system of nonlinear 
differential equations to describe bone remodeling process 
accounted for the concentrations of parathyroid hormone and 
vitamin D, the number of active osteoclasts and the number of 
active osteoblasts. We then utilize the singular perturbation 
technique to analyze our model in order to obtain the 
delineating conditions on the system parameters for which the 
different kinds of dynamic behavior can be occurred. The 
model is then investigated numerically. The theoretical and 
numerical results show that a periodic behavior which 
corresponds to the pulsatile pattern observed clinically in the 
levels of parathyroid hormone and vitamin D can be expected 
from our model.  
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I. INTRODUCTION 

UITABLE amounts of calcium in its ionized form are needed 
for normal function of all cells [1]. Calcium ion controls a 

wide range of biological processes and is one of the principal 
components of bone. In human, maintenance of suitable 
concentrations calcium ion in the extracellular fluid requires 
the activity of two hormones, parathyroid hormone (PTH) and 
a derivative of vitamin D called calcitriol [1].  PTH promotes 
the transfer of calcium from bone into the extracellular fluid. It 
acts on bone cells to promote calcium mobilization through 
bone remodeling process and on renal tubules to promote 
reabsorbtion calcium and excretion of phosphate [1]. The rate 
of PTH secretion is inversely related to the concentration of 
blood calcium, which directly inhibits secretion by the chief 
cells of the parathyroid glands [1]. Vitamin D metabolite also 
promotes calcium mobilization from bone and reinforces the 
actions of PTH on this process. Bone remodeling process can 
be viewed as step by step as follows. At first, bone resorbing 
cells called osteoclasts appear on the surface of bone 
remodeling unit and excavate a lacuna on the surface of bone. 
Osteoclasts are then replaced by bone forming cells called 
osteoblasts. Osteoblasts then refill the resorption cavity and 
become osteocytes, the inactive form of osteoblasts [2], [3].  
Many factors involve in bone remodeling process including 
PTH, vitamin D, calcitonin, and estrogen.  
 Many mathematical models have been proposed to describe 
bone remodeling process. However, PTH and vitamin D have 
not been incorporate in the model together. Therefore, in this 
paper, we will focus on the effects of PTH and vitamin D on 
the number of active osteoclasts and the number of active 
osteoblasts in bone remodeling process [1]-[3].  

II. MODEL DEVELOPMENT 

 We now propose a system of nonlinear differential equations 
to describe bone remodeling process based on the effects of 
PTH and vitamin D as follows. Let us denote the concentration 
of PTH above the basal level at time t by X(t), the serum level 
of vitamin D at time t by Y(t), the number of active osteoclasts 
at time t by Z(t), and the number of active osteoblasts at time t 
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by W(t). At first, we assume that the high levels of osteoclast 
and osteoblast precursors lead to the high levels of active 
osteoclastic and osteoblastic cells, respectively, which result 
from the differentiation, and activation of their precursors. 

 PTH is produced from the parathyroid gland. The secretion 
of PTH is principally controlled by the concentration of 
calcium ion in extracellular fluid [4]. Since the more active 
osteoclasts mean the more calcium release from bone, 
therefore the level of serum calcium varies directly with the 
number of active osteoclasts. When the calcium concentration 
increases, the secretion of PTH decreases [5]. Thus, the level 
of serum calcium varies inversely with the secretion of PTH. 
However, low levels of PTH are secreted even when blood 
calcium levels are high [4]. On the other hand, vitamin D has a 
negative feedback on PTH secretion, thus the increase in the 
level of vitamin D results in the decrease in the level of PTH 
[1]. The equation for the rate of PTH secretion above the basal 
level is then assumed to take the form 

       ( )( )
1

1
1 2

= -
+ +

adX
b X

dt k Y k Z
         (1) 

where 1 1 1, ,a b k  and 2k  are positive constants.  

  Vitamin D plays an important role in maintaining the level 
of calcium in blood within the normal rage by enhancing the 
efficiency of intestinal calcium absorption and by increasing 
the mobilization of stem cells to become osteoclasts that, in 
turn, mobilize calcium stores from bone [5]-[8]. In addition, 
the increase in the level of PTH results in the increase in the 
synthesis of calcitriol, the active form of vitamin D [1], [9]. 
Therefore, the equation for the rate of change in serum level of 
vitamin D is then assumed to have the form 

                 2 3
2

3

+
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a a XdY

b Y
dt k Z

                           (2) 

where 2 3 3, ,a a k  and 2b  are positive constants.  

Osteoclasts are responsible for bone resorption deriving 
from hemopoietic stem cells of the monocyte/macrophage 
lineage [10]. Although the dominant activators of bone 
resorption and osteoclast activation are PTH and vitamin D, 
osteoclasts do not possess receptors for either PTH or vitamin 
D [11]. Thus, the activation process involving PTH and 
vitamin D is believed to occur as a consequence of 
PTH/vitamin D interacting with its receptors on osteoblasts. 
Then, the active osteoblasts release paracrine agents which 
then achieve activation of osteoclasts, so that the bone-
resorptive event is initiated [11]. Therefore, the dynamics of 
the active osteoclastic population can be described by the 
following equation 

                        4 5
32

4

æ ö+
= -ç ÷ç ÷+è ø

a a XdZ
YZW b Z

dt k X
                       (3)  

where 4 5 3, ,a a b  and 4k  are positive constants. 

Osteoblasts are responsible for bone formation originated 
from the mesenchymal stem cells. Many factors involve in the 

proliferation and differentiation of osteoblasts including FGF, 
IGF-I, TGF-beta [12]. On the other hand, the effect of PTH on 
the proliferation and differentiation of osteoblasts are both 
stimulating and inhibiting [13]. In addition, vitamin D has 
been found to stimulate the proliferation and differentiation of 
active osteoblastic cells [14]. The dynamics of the osteoblastic 
population can be described by the following equation   

                  6 7 8
4

5 6

æ ö-
= + -ç ÷

+ +è ø

a a W a YWdW
X b W

dt k X k Y
                 (4) 

where 6 7 8 4 5, , , ,a a a b k  and 6k  are positive constants. 

III. SINGULAR PERTURBATION ANALYSIS 

In what follows, we assume that PTH has the very fast 
dynamics, Vitamin D has the fast dynamics. The osteoclastic 
population possesses the slow dynamics and the osteoblastic 
population has the slowest dynamics. Consequently, we scale 
the dynamics of the three components and parameters of the 
system in term of small positive parameters 0 1< e < , 
0 1< d <  and 0 1< h <  as follows.  

Letting 32
1 1 2 3, , , , , , ,= = = = = = =

aa
x X y Y z Z w W c a c c

e e
 

5 34 2
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ed ed e ed
, we are led to the 

following model equations: 
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The shapes and relative positions of the 
manifolds{ }0f = ,{ }0g = , { }0h =   and { }0=k  determine 

the shapes, directions and speeds of the solution trajectories. 
We now analyze each of the equilibrium manifolds in details. 
 
The manifold { }0=f  

This manifold is given by the equation                       

                     
( )( ) ( )1

1 1 2

,= º
+ +

c
x A y z

d k y k z
                     (9)   

which is a decreasing function of y and z. It intersects the x-
axis on the ( ) -x, y plane at the point where  
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The manifold { }0g =                

This manifold is given by the equation  

          ( )2 3
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y B x z

d k z
                    (11) 

which is an increasing function of y and a decreasing function 
of z. It intersects the y-axis on the ( ) -x, y plane at the point 

where  
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1
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                          (12) 

Moreover, the manifold { }0=f  intersects the manifold 

{ }0=g   along the curve 
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which intersects the ( ) -x, y plane at the point where 0=z  
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The manifold { }0h =  

 This manifold consists of two submanifold which are the 
trivial manifold 0=z  and the nontrivial manifold  

         ( )
2
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The nontrivial manifold is independent of the variable z and 
thus this submanifold is parallel to the z -axis.                                             
It attains the relative minimum at the point where 

                     
2 2

4 4 5 4

5

- ± +
= º m

c c c k
x x

c
                           (17) 

and                ( )
2

3 4

4 5

æ ö+
= ºç ÷ç ÷+è ø

m
m

m

d k x
y y w

w c c x
                        (18) 

On the other hand, the nontrivial manifold intersects the y-axis  

on the (x,y)-plane at the point where  

                ( )3 4
3
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                (19) 

Moreover, the manifold { }0f =  intersects the nontrivial 

manifold { }0=h  along the curve  
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Also, the curve { }0= =f h  intersects the (x,y)-plane at the 

point where 0,=z  ( )3=x x w , ( )3x w  is a root of  

        
( ) ( )

( )( )
3 2

1 3 2 5 1 1 2

1 2 4 1 3 4 1 5 1 4 0

+

+ + - - =

d d k x c d k k w x

d k c k w d k c c w x c c w
     (22) 

and               
( )
( ) ( )

2
4 23

4
4 5 2

æ ö+
= ºç ÷ç ÷+è ø

k x wd
y y w

w c c x w
         (23) 

Note that ( )3x w  is only one positive root of (19) if  

      ( )1 2 4 1 3 4 1 5+ <d k c k w d k c c w         (24) 

 

The manifold { }0k =               

 This manifold is given by the equation 

( )
( ) ( ) ( )( ) ( )6 6

7 6 8 5 4 5 6

,
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= º
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                           (25) 
which is independent of the variable z.  
 
Case I: If e  and d  are sufficiently small and the inequality 
(24) holds and the inequalities  

         ( )2 3m Sx x x x w< < <                     (26) 

and                               ( ) ( )4 2 3< <y w y y w                            (27) 
are satisfied where all the parametric values are given as 
above, then the manifolds are positioned as in Fig. 1 and the 
system of (5)-(8) will have a periodic solution. Here, the 
transitions of slow, intermediate and high speeds are indicated 
by one, two and three arrows, respectively. 
 In Fig. 1, without loss of generality, we start from point I 
and we assume that the position of I is as in Fig. 1 with 

{ }0f ¹ . A very fast transition will bring the solution 

trajectory to point J on the manifold { }0f = . Here, { }0g <  

and a transition at fast speed will be made in the direction of 
decreasing y  until point K on the curve { }0= =f h  is 

reached. A fast transition then follows along this curve to some 
point L where the stability of submanifold will be lost. A jump 
to point M on the other stable part of { }0= =f h  followed by 

a fast transition in the direction of increasing y until the point 
N is reached since { }0>g  here. Once the point N is reached 

the stability of submanifold will be lost. A jump to point O on 
the other stable part of { }0= =f h  followed by a fast 

transition in the direction of decreasing y since { }0<g  here. 
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Consequently, a fast transition will bring the system back to 
the point L, followed by flows along the same path repeatedly, 

resulting in the closed orbit LMNOL. Thus, limit cycle in the 
system for ,e d  and h  are sufficiently small exists.  
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Fig. 1 The three equilibrium manifolds { } { }0 , 0f g= =  and { }0h =  in the ( ), ,x y z - space in Case 1. Segments of the trajectories with one, 

two, and three arrows represent slow, fast, and very fast transitions, respectively. 
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Case II: If e  and d  are sufficiently small and the inequality 
(24) holds and the inequalities  

     ( )3 2mx x w x< <                      (28) 

and                               ( ) ( )2 4 3y y w y w< <                            (29) 
are satisfied where all the parametric values are given as 
above, then the manifolds are positioned as in Fig. 2 and the 
system of (5)-(8) will have a stable equilibrium point.  
 In Fig. 2, without loss of generality, we start from point I 
and we assume that the position of I is as in Fig. 2 with 

{ }0f ¹ . A very fast transition will bring the solution 

trajectory to point J on the manifold { }0 .f = Here, { }0g <  

and a transition at fast speed will be made in the direction of 
decreasing y  until point K on the curve { }0f g= =  is 

reached followed by a slow transition in the direction of 
decreasing z until the steady state 1S  where 0f g h= = =  is 

reached since { }0h <  here. Thus, the solution trajectory is 

expected in this case to tend toward this stable equilibrium 
point 1S  as time passes. 
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Fig. 2 The three equilibrium manifolds { } { }0 , 0f g= =  and { }0h =  in the ( ), ,x y z - space in Case 2. Segments of the trajectories with one, 

two, and three arrows represent slow, fast, and very fast transitions, respectively. 
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Case III: If e  and d  are sufficiently small and the inequality 
(24) holds and the inequalities  

       ( )2 3S mx x x x w< < <                      (30) 

and                               ( ) ( )4 2 3< <y w y y w                            (31) 
are satisfied where all the parametric values are given as 
above, then the manifolds are positioned as in Fig. 3 and the 
system of (4)-(6) will have a stable equilibrium point.  
 In Fig. 3, without loss of generality, we start from point I 
and we assume that the position of I is as in Fig. 3 with 

{ }0f ¹ . A very fast transition will bring the solution 

trajectory to point J on the manifold { }0 .f = Here, { }0g <  

and a transition at fast speed will be made in the direction of 
decreasing y  until point K on the curve { }0f h= =  is 

reached followed by a fast transition in the direction of 
decreasing y to the point L where the stability of submanifold 
will be lost. A jump to point M on the other stable part of 

{ }0= =f h  followed by a fast transition in the direction of 

increasing y until the point N is reached since { }0>g  here. 

Once the point N is reached the stability of submanifold will 
be lost. A jump to point O on the other stable part of 

{ }0= =f h  followed by a fast transition in the direction of 

decreasing y, since { }0<g  here, until the steady state 2S  

where 0f g h= = =  is reached. Thus, the solution trajectory 

is expected in this case to tend toward this stable equilibrium 
point 2S  as time passes. 
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Fig. 3 The three equilibrium manifolds { } { }0 , 0f g= =  and { }0h =  in the ( ), ,x y z - space in Case 3. Segments of the trajectories with one, 

two, and three arrows represent slow, fast, and very fast transitions, respectively. 
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IV. NUMERICAL RESULTS 

 A computer simulation of the system (5)-(8) with parametric 
values chosen to satisfy the condition in Case 1 is presented in 
Fig. 4. The solution trajectory, shown in Fig. 4a project onto 
the ( ),x y -plane, tends to a limit cycle as theoretically 

predicted. The corresponding time courses of the 
concentration of PTH above the basal level, the level of serum 
vitamin D, the number of active osteoclasts and the number of 
active osteoblasts are as shown in Fig. 4b, 4c, 4d and 4e, 
respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 A computer simulation of the model systems (5)-(8) with 1 2 3 4 5 6 7 80.1, 0.8, 0.8, 0.5, 0.1, 0.1, 0.1, 0.95,= = = = = = = =c c c c c c c c  

1 2 3 4 5 61,  2,  5,  3,  1,  5,= = = = = =k k k k k k ( )1 2 3 40.1,  0.04,  0.3,  0.4,  0.2,  0.5,  0.9,  (0) 0.5, (0) 0.2, z 0 1= = = = = = = = = =d d d d x ye d h  and 

(0) 5.=w  (a) The solution trajectory projected onto the (x,y)-plane. (b) The corresponding time courses of the concentration of PTH above the 
basal level (x). (c) The corresponding time courses of the level of serum vitamin D (y), (d) number of active osteoclastic cells (z), and (e) 
number of active osteoblastic cells (w). 

a) 

c) 

d) 

b) 

e) 
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 A computer simulation of the system (5)-(8) with 
parametric values chosen to satisfy the condition in Case 2 
is presented in Fig. 5. The solution trajectory, shown in Fig. 
5a project onto the ( ),x y -plane, tends to a stable 

equilibrium as theoretically predicted. The corresponding 

time courses of the concentration of PTH above the basal 
level, the level of serum vitamin D, the number of active 
osteoclasts and the number of active osteoblasts are as 
shown in Fig. 5b, 5c, 5d and 5e, respectively 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 A computer simulation of the model systems (5)-(8) with 1 2 3 4 5 6 7 80.05, 0.8, 0.8, 0.5, 0.1, 0.1, 0.1, 0.95,c c c c c c c c= = = = = = = =  

1 2 3 4 5 61,  2,  5,  3,  1,  5,= = = = = =k k k k k k ( )1 2 3 40.1,  0.04,  0.3,  0.4,  0.1,  0.1,  0.1,  (0) 0.5, (0) 0.2, z 0 1d d d d x ye d h= = = = = = = = = =  and 

(0) 5.=w  (a) The solution trajectory projected onto the (x,y)-plane. (b) The corresponding time courses of the concentration of PTH above the 
basal level (x). (c) The corresponding time courses of the level of serum vitamin D (y), (d) number of active osteoclastic cells (z), and (e) 
number of active osteoblastic cells (w). 

a) 

c) 

d) 

b) 

e) 
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 A computer simulation of the system (5)-(8) with 
parametric values chosen to satisfy the condition in Case 3 
is presented in Fig. 6. The solution trajectory, shown in Fig. 
6a project onto the ( ),x y -plane, tends to a stable 

equilibrium as theoretically predicted. The corresponding 

time courses of the concentration of PTH above the basal 
level, the level of serum vitamin D, the number of active 
osteoclasts and the number of active osteoblasts are as 
shown in Fig. 6b, 6c, 6d and 6e, respectively 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 A computer simulation of the model systems (5)-(8) with 1 2 3 4 5 6 7 80.8, 0.8, 0.8, 0.5, 0.2, 0.1, 0.1, 0.95,c c c c c c c c= = = = = = = =  

1 2 3 4 5 61,  2,  5,  3,  1,  5,= = = = = =k k k k k k ( )1 2 3 40.1,  0.04,  0.3,  0.4,  0.3,  0.1,  0.3,  (0) 0.5, (0) 0.2, z 0 1d d d d x ye d h= = = = = = = = = =  and 

(0) 5.=w  (a) The solution trajectory projected onto the (x,y)-plane. (b) The corresponding time courses of the concentration of PTH above the 
basal level (x). (c) The corresponding time courses of the level of serum vitamin D (y), (d) number of active osteoclastic cells (z), and (e) 
number of active osteoblastic cells (w). 

a) 

c) 

d) 

b) 

e) 
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V. CONCLUSION 

In this paper, we developed a mathematical model to 
describe bone remodeling process by incorporating the 
effects of PTH and vitamin D on the proliferation and 
differentiation of osteoclastic and osteoblastic cells. We 
then apply the singular perturbation technique [15], [16] to 
our model in order to derive the conditions on the system 
parameters for which the various kinds of dynamic behavior 
can be obtained. We also investigated the model 
numerically by using Runge-Kutta method which has been 
widely used to find the approximate solution of the 
differential equations [17]-[20]. Theoretical and numerical 
results show that a periodic behavior can be exhibited by 
our model corresponding to the pulsatile secretion pattern of 
PTH and the oscillatory behavior observed clinically in the 
level of vitamin D [21]-[23].    
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