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Analytical solution for steady state and transient
heat processes 1n a double-fin assembly

Marija Lencmane, Andris Buikis

Abstract—this paper deals with the three dimensional
formulation of steady state and transient problems for the heat
exchanger consisting of rectangular fins attached on either sides of a
plane wall (double-fin assembly). With the help of the conservative
averaging method problem was reduced to the two dimensional
problem. Analytical solution based on Green function is proposed.
This solution is obtained in the form of the 2™ kind Fredholm
integral equations. Some solutions for the system of 2™ kind
Fredholm integral equations are given.

Keywords— analytical solution, Conservative averaging method,
extended surfaces, Green function, heat transfer.

1. INTRODUCTION

Extended surface is used specially to enhance the heat transfer
between a solid and surrounding medium. Such an extended
surface is termed a fin. Extended surfaces are widely examined
in [16]-[18]. The rate of heat transfer is directly proportional
to the extent of the wall surface, the heat transfer coefficient
and to the temperature difference between solid and the
surrounding medium. Finned surfaces are widely used in many
applications such as air conditioners, aircrafts, chemical
processing plants, etc. In [3] is considered performance of a
heat-exchanger consisting of rectangular fins attached to both
sides of plane wall. In [2],[3] works one dimensional steady-
state double-fin assembly problem is compared with the
single-fin assembly. Papers [2]-[7] deals with a numerical
solution for the one dimesional problems. We consider
analytical solution for the three dimensional problem as in
[10]-[15]. In paper [10] mathematical three dimensional
formulation of transient problem for one element with one
rectangular fin is examined, reduce it by conservative
averaging method [9] to the system of three heat equations
with linear sink terms. Reference [11] shows exact analytical
solution for two-dimensional steady-state process for system
with one rectangular fin by the method of Green function [1].
n [12] three dimensional exact analytical solution for the
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distribution of the temperature field in the wall with one
rectangular fin in the form of the 2nd kind Fredholm integral
equation is constructed.

II. MATHEMATICAL FORMULATION OF 3D PROBLEM

In this section we present mathematical three dimensional
formulation of a transient problem one element with two
rectangular fins attached to both sides.

Fig. 1 heat exchanger consisting of rectangular fins attached on either
sides of a plane wall

We will use following dimensionless arguments, parameters:
x=x/(B+R),y=y/(B+R),z=z2/(B+R),
I=L/(B+R),l,=L /(B+R),w=W/(B+R),
b=B/(B+R).,6=D/B+R,
B=hk"(B+R),B,=hk "' (B+R)

and dimensionless temperatures:

I}(x Y.z, t) T (t)

V(x,y,z,t)z () () )
; Vol,y,2,0)-T,(0)
R R
; V(5 2,2,0)-T,(0)
B U= T
O(x, ,2,0)= O(x,y.2.0)-T,(t)

T,(0)-T,(c)
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(:)o(x.y,z,t)—Ta(t)‘

T,(0)-T, ()

We have introduced following dimensional thermal and

éo(x,y,z,t)z

geometrical parameters: k - heat conductivity coefficients for
the wall, right fin and left fin, A(A,)- heat exchange

coefficient for the right (left) side, 2B - fins width
(thickness), L — right fin length, L,— left fin length, D -

thickness of the wall, W - walls’ width (length), 2R —

distance between two fins (fin spacing). Further,

(N (x.y,z,t ) is the surrounding (environment) temperature
on the left (hot) side (the heat source side) of the wall,

@(x, V,Z,t ) - the surrounding temperature on the right (cold
- the heat sink side) of the wall and the fin. Finally y(x, y,z,),

V(x Y.z, t)
the wall, right fin and left fin where 7,(7}) are integral

(x v,z t) are the dimensional temperatures in

averaged environment temperatures over appropriate edges:

T,(t)=

w1 5ilw
w(l + 1)71J‘dz‘[®(D,y,z,t)dy +uw(l+1)" Idxj O(x, B, z,t)dz
5 o
Wb
+W(1+1)fljdzj® D+L,y,zt)dy,
o 0

1 0 w
w(l+1, )"jdzj®0(o,y,z,t)dy+ w(i+1,)" [ax[©,(x,B,2,1)dz

0o b A
w b

+u(l +l)"_[dz_[®0(
0 0

The one element of the wall (base) is placed in the
domain {x [0, 5], y [0,1}, z € [0, w]}. The rectangular right fin

T,(0)=

—Ll,y,z,t)d)k

in dimensionless arguments occupies the
domain{x e[5,5+1], y €[0,b}, z€[0,w]}. The rectangular left
fin in dimensionless arguments occupies the
domain {x c [— I, ,0], ye [O,b], ze [O,W]}. We describe the
temperature field by functions I}(x,y,z,t), f/(,(x,y,z,,),
V1(x, y,z,¢) in the wall and fins:
27, 27, 27, 7
8V20+8V20 8V20 %GVO’ (1
Ox oy oz a” ot
v v v _1av
—+—— . (2)
Ox oy oz a o’
o, o, oV, _ 1oV, 3)
ox’ oy’ oz*  a* ot
We must add initial conditions for the heat equations (1)—(3):
vl =V(x,y,z), “
=0
v =V°x,y,z), )
=0
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v ©)

=V, (x Y,z )
t=0

We assume heat fluxes from the flank surfaces (edges) and
from the top and the bottom edges:

ov, oy,
870 :Qo.z(xayat)v — =Q0_3(x,y,t), @
z oz
=0 z=w
ov ov
67 :Qz(x’y’l)a . =Q3(X,;V,l), ®)
z oz
=0 z=w
v, av,
8721 = Q1,2(x’ y»t)’ —* = Q1,3(x’ y’t)' (9)
z=0 z=w

In the case of steady state problem all above mentioned
functions are time-independent. = Three  dimensional
formulation of a steady state problem can be obtained in the
similar way. Instead of (1) —(3) we have:

v, o, o,
+ +
ox’ oy’ oz*
v &V oV
2 + 2 + 2
Ox Oy oz
v, N oV, . o,
ox® oy’ oz’
Initial conditions (4)-(6) are not needed. Conditions (7)-(9) are
in the form:

=0,

:0,

=0.

o, v,

8720 :QO,Z(X,J/), 8720 :Qo‘z(x’yl
z=0 z=w

ov ov

A =0, (x y) o | —Q3(x,y),
z=0 =w

av, ov,

(971 = Ql,Z(x’ y)’ : =0, (x,y)

z 0z

z=0 z=w

III. REDUCING TO THE 2D MODEL

Such type of boundary conditions (BC)(7) — (9) allows us to
make the exact reducing of this three dimensional problem to
the two dimensional problem by conservative averaging
method [5]. Let us introduce following integral averaged
values:

V(v ) =w - [V (x, 3, 2,00z, (10)
0

9 (x,,t)=w T@O(x,y,z,t)dz, 1
0

V(x,y,t)z w -jl}(x, y,z,t)dz, (12)
0



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

S(x, y,t)z w -j@(x, y,z,t)dz,
0

IV X, ¥,Z, t)dz

ny,

13)

(14)

Realizing the 1ntegrat10n of main equations (1) —(3) by usage

of the BC (7) — (12) we obtain:

o, 62 1 ov
+ s 3t =" 03
axz QO(x y ) az at
82V 0’ 1aV
+Q( X, Vs )=
2o
1 o,
6x2 . )_02 or
Here

Oy(x,y,t)= w (Qos(xsyst)_ Qo,z(x’ y,t)),
0(x, 7,0 =w (0, (x, y,0)~ O, (x, y,1)),
Q] (x,y,t)= W_l( 1‘3(x,y,t)—Q]‘2(x,y,t))

(15)

(16)

a7

We add to the main partial differential equations (15) — (17)

needed BC as follows:

( 2+ B9, (x..1)- VO]) =0,ye(b1),
x=0

(Lot plry-stornl] =o.ve (o)
x=6

Tl ~ 0, (xthxe(0.6)

|, ’

Ml g, (x.1)hxe(0,6)

oy - )

(18)

(19)

(20)

2

We assume them as ideal thermal contact between wall and

fins - there is no contact resistance:

V0|x:5—0 =" i=s10°
v, 4

X {50 S x:§+0’
Vl ©=0-0 VO x=0+0"
oV, _ 0V,

E x=0-0 - E x=0+0

We have following BC for the right fin:

(sl -sterr]]  =0e(00)

X x=0+1

(aV + AV - 9x, y, )]j =0,xe(5,6+1),
oy b

U =0,(x.t)xe(5,6+1)

2

We have following BC for the left fin:
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(23)

(24)

(25)

(26)

27

(28)
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[ P g8, )—mj ~0.y<(0.5). 9)
x=—1,
((ZV ﬂO[V g (x v, )]j =0,xe(—ll,0), (30)
X b
Nl _o(nihxe(-1.0) (1)
W |,

Finally, we introduce integral averaged values as (10) — (14)
and add initial conditions for the heat equations (15) — (17):

Vol,_o =V (x5, 9), (32)
V= V°(x »), (33)
V=V p). (34)

In the 51m11ar way three dimensional steady state problem can
be reduced to the two dimensional problem. Instead of (15)—
(17) we have:

oV, aV

0,
6x2 6y (x7)=
62V oV

+ 0,
o a O(x,y) =
oV 6
0.
6x 6y (x,y)=

BC are still in the form (18)-(21), (26)-(31), conjugation
conditions are in the form (22)-(25) for time-independent

Vol )V (e, )V (0 8 (x, ) (. ).

Initial conditions (32)-(34) are not needed for steady state
problem.

functions

IV. EXACT SOLUTION OF 2D STEADY STATE SIMPLIFIED
PROBLEM

This section represents solution for the 2D case of periodical
system  with  constant  dimensionless environmental

1(@0 =Tb) and $=0(0=T)). We
consider U (x, y) is a temperature of the right fin, U, (x, y)

temperatures &, =

is a temperature of the wall and U, (x, y) is a temperature of
the left fin. Thus, the main equations are:

0’U, a U,
- 0’ (35)
o’ ay
o'U  o°U
st = 0, (36)
ox~ Oy
U, o,
> +— =0. (37)
ox oy
The BC (20), (21), (28), (31) are assumed to be homogeneous:
ou, _ou, B 6£ _ou,
6_)/ y=0 ay y=1 ay y=0 ay y=0
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Instead of BC (18), (19), (26), (27), (29) and (30) we have:

o, +ﬂ0[1_U01 :OJE(b,l), (38)
x x=0

(aUO +ﬂU0j =0,ye(b,1), (39)
ax x=0

(aU + ﬂUJ wsu=0,y€ [0’ b], (40)
Oox

{GU+,BU} =0,xel5,6+1] (41)
a)} )

(aUl + :Bo [1 -U, ]j —1=0,y€ [O» b]» (42)
ox !

{aéy]l +ﬂo[U1 _1]};»—b:0>xe [_11,01 (43)

The conjugations conditions on the line between the wall and
the left fin are still standing in the form (24), (25) for the

functions U 0(x, y) and U, (x, y). The linear combination of

the equations (24), (25) together with BC (38) allow us rewrite
them as following BC on the left hand side of the wall:

oU
( 0 _ﬂoUoj zﬂoFl(O:Y)s (44)
ax x=0+0
where
1 oU,
— -U, 0<y<h,0<x<6,
Fley)=18 ax "7 : (43)
-1, b<y<l

In the similar way using the linear combination of the
equations (22), (23) together with BC (39) we rewrite
following BC on the right hand side of the wall:

(ago +ﬁUo) = fF,(6.7). 40
X x=5-0
where

1 oU

“ 9% ulo<cy<hocxs<s, 47
Fy(x,y)= (ﬁ ox j “n

0, b<y<l.

On the assumption that the functions F£(0,y), F,(5,y)are

given we can represent solution for the wall in very well
known form by the Green function [1]:

Uy(x.y) == F0.1)G, (x, .0.v Jv
0 (48)

b

+ JE)(ﬁ,V)GO (x, Vv, 6,V)dv,
0

where Green function is:

G(;rq(x’g) G()y,n()f’v)

Gz o) ]

TH,

0

GO(X,y,g,V)= Z

m,n=1
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P00 ()00, (5)

2 s
H(DO,m
Gy, (y, v) = cos[mz(y + V)] + cos[nﬂ(y - v)],

3
2
By
(1 + 2}
My
Here 1, are the positive roots of the transcendental equation:

14,(B,+ B)

/uri _ﬂoﬂ .
Unfortunately the representation (48) is unusable as solution
for the wall because of unknown functions £(0, y), F, (5, y)

i.e. temperature in the fins. That is why we will pay attention
to the solution for the fins now. In the same way we can
rewrite the conjugations conditions (22), (23) in the form of
BC on the left side of the right rectangular fin:

G(im (x’ g)

¢0,,m (X) = COS(me) + Sin(ymx)’

By
= 2+

2,

m

B ,uj. + (ﬂo )2
2py wk+(BY

2 o
+7

2

H¢0,m‘

tan(u,, &)=

(‘w—ﬂU j = BF(5.), (49)

a’x x=6+0

where

Flx,y)= i%—UO ,0<y<b,o<x<o+1. (50)
g oOx

Then, similar as for the wall we can represent solution for the
right fin in following form:

Ul ) =~ F(5,7)5(5,,8,n)n,

where Green function is:

& GW(x.£). GY)(y.
G(x,y,é:,ﬂ)zz i ( 5) J (y 77)

(5D

=R L T
G (x, &)= H(E).
¢,
()= . bor)
2 ‘l///'H

¢.(x) = cos[A,(x - )]+ gsin[ﬂ, (x-5)}
B

:2+l(l+ﬂ;],

A2 A

l//j(y,ﬂ)=COS[K,~(y+77)}+COS[K,~(J/—77)],
(b+2ﬂ 2].

ki+p

Here ﬁi,k ; are the positive roots of the transcendental

2

¢

2

H‘/’f"

equations:
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Z-p
tan(Kjb)z ﬁ

K

J
Finally, we rewrite the conjugations conditions in the form of
BC on the right side of the left rectangular fin:

oU,

tan(4/) =

( a ! +ﬂ0U1j = ﬂon(O’y)’ (52)
X x=0+0
where
Fz(x,y)=iaU°+U0,03ysb. (53)
0

Thus, solution for the left fin we can represent in following

form:
b

Ul(x’y): ﬁOJ.Gl(x,y,—ll,V}iV
0
b

+ J.FZ(O, V)G, (x,,0,v)dv

0

0

+ /5 J.Gl(x,y,f,b)df,
-

where

(54)

Gt

G(x,3.Em)=)

ij=1
Gy, (x, g )

GI(;) (x» $ ) ) GI(,}/)') (y 17 )
,Uiz + /Ii

b

_ou(e,(¢)

o

v, )
2HV’LJ‘2 |

b

G (v.n)

0,0) = o e+ 1]+ 2 sinf (x4

2:/%+4@+ﬂ{}
o2l 4
v, ()= cosl, (v} cos|, (4 )}

by

2+p

Hgol,i

2

=—|b
2

HVGL/

Here u,, A ;are the positive roots of the transcendental

equations:

2u,B,
/42 - ﬂoz

tan(ljb): %

tan(/uill ) =

J
Using notation (51) and representation (47) we can easy obtain
the following equation:
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b

Fy(x,y)==[ F(8,n)T(x,y.8,n)dn,

0

(55)
where

0
I(x,y,&,n)= (ax + ﬁjG(x,y,ff,ﬂ)-

In the similar way we find equation for £ (0, y) by using (45)
and (54):

b
E(an): ﬂo_"rl(oaya_llavyv
0

_ﬂo Irl(o’y’g’b}i(:

_[I

(56)

b
+ [ (0.v)5,(0,,0,v)dv,
0
where
0
T (x,p.6,v)= (a - ﬂojG. (x.3.6.v).
X
Next,we find equation for F (5 , y) by using (50) and (48):
b
F(o,n)= IFO(5,V)F0(5,U,§,V}JV
0 (57)
1
- j F (0, v)FO (5, 1,0, V)dv,
0
where
0
FO(X,y,g,V) = (a _ﬂjGo(xayag>V)'
X
Finally, using (53) and (48) we get equation for F, (O, y):
1
F, (09 y) = _J K (0’ V)F2 (09 »,0, V}ZV
0 (58)
b
+ [F(6.0)0,(8,,6,v)dv,
0

where

0
Fz(x,y,g,v)= (8x+ﬂojGo(xayagaV)-

When a system of Fredholm integral equations of the second
kind (58) — (61) is solved, we obtain the temperatures fields in
the wall (48), left fin (54) and right fin (51).

V. EXACT SOLUTION OF 2D TRANSIENT SIMPLIFIED PROBLEM

In this section we explain the main idea of solution for the 2D
case of periodical system with constant dimensionless

9 -1(6,-T,)
and $=0(0®=T,). We consider U(x,y,t) is a

temperature of the right fin, U, (x, V.t ) is a temperature of

environmental temperatures
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the wall and U (x, V,t ) is a temperature of the left fin. Thus,
the main equations are:

o’U, o°U, 1 aU,
2 Y722 T2 (59)
ox oy a~ ot
o*U 62U 1 GU
>+ (60)
ox> oy a o
o°U, oU, 1 aU,
>t = . (61)
ox oy a” ot
The BC (20), (21), (28), (31) are assumed to be homogeneous:
ou, _ou,| oul  _ oU,
ay y=0 ay y=1 ay y=0 ay y=0

Instead of BC (18), (19), (26), (27), (29) and (30) we have:

aUO +ﬁ0[1_UO:1 :ane(ba 1)7 (62)
x=0

(aU +ﬂUj =0,ye(b,1) (63)
Oox s

(GU + ﬂU) su=0,y¢€[0,b] (64)

X

{aU - ,BU} »=0,xe[5,5+1] (65)
a)} )

(a : +:Bo[1_Ul]jx_1:ane[0»b]» (66)
ox !

{aUl [Ul - 1]} y=b— 0> X e [_ ll> 0]‘ (67)
oy ’

Initial conditions are still standing in the form (32) — (34). The
conjugations conditions on the line between the wall and the
left fin are still standing in the form (24), (25) for the functions

U O(x,y,t) and Ul(x, y,t)‘ The linear combination of the

equations (24), (25) together with BC (62) allow us rewrite
them as following BC on the left hand side of the wall:

oU
( 2 0 _ﬂoUoj :ﬁOE(Osyat)’ (68)
x=0+0
where
1 oU,
— LU, 0<y<bh,0<x<5,
Fi(x’ys ) ﬂO ax y (69)
-1, b<y<l.

In the similar way using the linear combination of the
equations (22), (23) together with BC (63) we rewrite
following BC on the right hand side of the wall:

(aaljo+ﬂU0j :ﬂF0(5’y9t)’

x=6—-0
where

(70)
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(71)

On the assumption that the functions Fl(x, y,t), Fo(x, y,t)are

given we can represent solution for the wall in very well
known form by the Green function:

j IU En)G,(x,y,E,m.t)dndé

x v,0,17,t— T)d?]dl’

ny,

IR
+a2ﬂ.[0.[oF° o,n,T Go(x,y,d,n,t—r)dndr,

where Green function is:

Z omx‘ft z

m,n=1

(pOm( )¢Om( ) —a,unzz

|(00 m

e (cos[nz

0 nt (72)

(3, E,m,1)

Gy(0,801)=

y,77,

b

Gy, (v.m.t)= (v +n)]+ cos[nz(y —n)))
@y, (x) = cos(u,x) +

0 sin(u, x),
b . P um+ﬂ0 L9 { ﬂoj
YR )

Here g, are the positive roots of the transcendental equation:

/um (ﬂo + ﬂ)

/131 -BB
Unfortunately the representation (72) is unusable as solution
for the wall because of unknown functions Fi(x, y,t ),

2
Hwo,m‘ =

tan(z,,5) =

E)(x, V.t ) i.e. temperature in the fins. That is why we will

pay attention to the solution for the fins now. In the same way
we can rewrite the conjugations conditions (22), (23) in the
form of BC on the left side of the right rectangular fin:

[aU - ﬂUj = BF(5,v,1), (73)
ax x=6+0

where

F(x,,t)= (1 U, J,0<y<b S<x<S+1. (74)

B
Then, similar as for the wall we can represent solution for the
right fin in following form:

)= [ [ U ()Gl y.En.0)dnde
_azﬂjojo F 5’77’T

where Green function is:
G(x,y.é.m) Z (% &,0)>.G (v,m.1)
m=l

G (r.or) = 20W) 4k (2 ).
’ eI

Uloy,t (75)

G(xa ) 5) 77,f_ T)dUdT

B
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-a* Bt v, (ya 77)
.e 2
2 ‘l//,-‘
SN+ Losinlu (x5

Hi

2B LB
-t 2]

v, (v.n)= cos[ﬂj (v+ 77)J+ coslﬂj (v- 77)L

o0 2]

By 2
2" F s
are the positive roots of the transcendental

GW(y,n,t)=

¢i(x) = COS[;U:‘ (x -

|'/’f|2

Here u,, /11.

equations:

tan(y1) = —2£48

u=p

tan(/l jb) = s .
ﬂ'j

Finally, we rewrite the conjugations conditions in the form of

BC on the right side of the left rectangular fin:

oU
(_1"',30(]1) = B, F. (0 V.t )a (76)
ax x=0+0
where
1 oU,
F(0,y,0)=——L+U,, (77)

0
Thus, solution for the left fin we can represent in following
form:

x y, J- J U 5 ﬂbl(x »,&, ﬂ,t)dndf
+a ﬁoff X, =, t—7)dndz -
+a /B()J. J. 0 ,1,T x y,o n,t T)dnd’l'
e ﬁOH \(x,y.&.b,t—T)dédT
where

Gle.yén)= 3 G, (n )2 G, (.0,

m,n=1 o
1);'( afJ)Zm@;(é),ew /1,-2:,
“(01,1'”
G(y«)(y, ,t) = M,e—aziﬁt’
2“‘/’14“
0, (x) = cosus (x+1, )]+ io sinf,(x +1, )]
H 1,0 ﬂO +— [ IBO j:
| 20 &
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v, (v.1)=cos|A,(y = )|+ cos| 4, (y + 1)}

“‘//1,1”2 :%[b"' - 2}

2
i + By
Here u,, /1j are the positive roots of the transcendental

equations:

2u,

’2 - ﬂoz

tan(/i b) b
}”j

Using notation (75) and representation (71) we can easy obtain

the followmg equation:

tan(/uill ) =

F\(8,y,t)=—a ” (6.7,2)0(8,y.8,m.t =7 )dndz
(79)
+Cy(1,1),
where
1 o+ g1
Cot)=— [ [ U (EnI(x,v.&n,0)dndé,

B
0
F(x,y,f,n,t) = (a + ,B)G(x,y,f,n,t).
In the similar way we find equation for FI(O, V,t ) by using

(69) and (78)
= [['F,

F(0,y,1) (0,7, 7)1,(0, ,0,77,¢ = 7)dnd«

+C1(y, )’

where

L (x,p,&m,t)= (a - ﬂole (x,v.&,m.1),

0=5 L Lv

Oy, l,n,t— r)dndr

(80)

(& (0,,E,m,t)dédn

+a”
+a”

Next,we find equation for F’ (5 , Vot ) by using (74) and (72):

F(o. y,,):_azﬁj‘fg (0.7, ), (6 3.0, - £ )dpd=

i

where

L, (xp.&m.t)= (ai - ﬂJGo(x,yaé,n,t),

Oyfbt T)d?]dl'

(81)

5 n,7 5 y,0,1,t— T)di]dz'+C(y t)

Clot)= 7 [ U EnF (6.3 ek

Finally, using (77) and (72) we get equation for
FZ(O, y,t):
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F,(0, . :—a” (0,72,7),(0,,0,7, — 7 )dnd
H F(8.7.0)0,(0.y.8. .t~ 2)dndr (32
+C2(ya )a
where

L, (x, 3, &m,t)= (%+ﬂo)Go(Xa . Em,t),

()= [ [ Ve, (0...n.0)dzdn.
ﬂ 0 JO

When a system of Fredholm integral equations of the second
kind (58) — (61) is solved, we obtain the temperatures fields in
the wall (72), left fin (78) and right fin (75).

VI. SOLUTION FOR THE SYSTEM OF INTEGRAL EQUATIONS

This section provides the method that can be used to solve
the system of integral equations (79)-(82). Let us denote

unknown functionsE)(é‘,y,t),E(O,y,t),F(5,y,t),
F2(5,y,t) by the functions ¥, ¥,, Vs, V,:

y(1)= F(8,.1),
¥, (n1)= F(0,,1),
y3(1,1)=F(8,y,1)
yi(n1)= F5(0, ).

Let us denote the kernels f integral equations in such way:
KI,S(y’n’t - ): _r(é"ya§anat_ T)a
K2, (yﬂnﬂ ) r1(oaya01,77,t—f),
K31(y,77,l—1') Iy (5,)/,5,77,1,‘—7),
K

3’2()/,77,1—1') %r(é‘ y,O n,t— T)

K4,1(y’773t_r):%r2(0,y,5377,t_r),

K4,2(y7773t_z—):_r2(0,y,0,77,t_7)-
Thus we can rewrite the system of integral equation in such
way:
no)-af I”y3 0K, (v, = 2ldd = €, (,1), (83)
L0.0)=a [ 3.0, 20K, (vt - D)dmdz = Cy(y.1), (89)
_”. yl K31 Vs I],t—T)di]dT (85)
-a ”yz 7,7)K, o (v, 1,6 = 7)dndz = C(y,t),
4(0.1) H n(,0)K,,(von,t —7)dndz
_aZLLyz 77,2'1(4’2(y,77,t—r)d77dz' (86)

= Cz(y,t).
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kernels
square

that the
continuous  or

On the assumption
42()’777 t- 7) ( 2N T) are
integrable on the square [O <y<10<y< 1], other kernels

K1,3(y: n,t— T)’ K2’4(y,77,t - T)»K3,1(y: n,t— T)’Kzt,l(y’ n,t— T)
are continuous or square integrable on the square
[0<y<b0<y<h] and the righthand sides
C(y,1).C,(y,2)C,(y,£)C,(y,t) are continuous or square

integrable on [0 <y< 1] the theory for Fredholm equations of

the second kind can be completely extended to such systems.
Thus system of integral equations (83)-(86) can be solved by
means of the method of successive approximations. To this
end, one should use the recurrent formula:

()= G0+ @[ [ v, 2)K (vt = 2,
y'(v.1)=C\(y.1) +azjfjby”’l (1, 2)K, (v 7.t - oM,
v (t)=Cln)+a [ [yi
v ([ y (.0 )K, (vt~ o,
v (1.1)=C,(v.1)

+@[ [y (00K (vt -

b
wd [ [ 57 (0K, (o, - 2)dd,
n=12,..

with the zeroth approximations:

¥ (1) =Cy(y.1),

1,7)Ky,(v,7,t —7)dndt

r)dndr

¥ (3.1)=C(y.1),
¥ (y.t)=C(»,1)
va(,t)=Cy(v.2).
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