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Deterministic and stochastic internet-style
networks with a single link, and one or two user
under information delay

Gabriela Mircea, Mihaela Neamtu, Marilen Pirtea and Dumitru Opris

Abstract— 1In this paper we investigate the dynamics of the
Internet-Style Network with delay using a single link, and one or two
user under delay. We establish the existence of the Hopf bifurcation
and the normal form. The stochastic system is associated to the
deterministic model and the mean values and the square mean values
of the variables for the linearized stochastic system are analyzed. The
last part of the paper includes numerical simulations and
conclusions.
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I. IN

AME theory provides a natural framework for

developing pricing and congestion control mechanisms

for the Internet. Users on the network can be modeled as
players in a congestion control game where they choose their
strategies or in this the flow rates. Players are non-
cooperative in terms of their demands for network resource,
and have no specific information on other user strategies. A
user’s demand or utility for bandwidth is captured in a utility
function and may not be bounded. To compensate for this,
one can devise a pricing function, proportional to the
bandwidth usage of a user, in order to preserve the network
resources and to provide an incentive for the user to
implement end-to-end congestion control [3]. A useful
concept in such a non-cooperative congestion control game is
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finding the Nash equilibrium, where each player minimizes
his own cost (or maximize payoff) given all other player’s
strategies. The non-cooperative congestion control game
introduced in [2] is characterized by a cost function for each
user that is defined as the difference of pricing and utility
functions. The pricing function is proportional to the queuing
delay experienced by the user, whereas the utility function
that quantifies the user, demand for bandwidth belongs to a
broad class of strictly increasing and strictly concave
functions. In [7], [8], [9], the other Internet models are
analyzed.

In this paper we will analyze the differential system which

shapes one internet network with a single link, with single
user and two user under information delay.
The rest of the paper is organized as follows. In section 2 the
existence of a unique equilibrium of the system is established.
We analyze the existence of the Hopf bifurcation considering
r as bifurcation parameter. In section 3 we analyze the
direction and stability of the Hopf bifurcation. In section 4 we
analyze the stochastic model with delay associated for
internet style for a single link with a single user. In section 5
we analyze the network model with a single link and two user
and stability of the Hopf bifurcation. In section 6 for given
values of the parameters the numerical simulations are given.
In section 7 conclusions and future research are drawn.

II. THE EQUILIBRIUM POINT AND THE HOPF BIFURCATION
FOR A SINGLE LINK AND SINGLE USER UNDER INFORMATION
DELAY

The one internet network with single link, and single user under
information delay is given by:
X(0)=U (x(0))—ad(t - r)
d(t)=Lx(t-r)-1

where x(#) is the user flow rate, ¢ >0 is the link capacity,

(1

d(t —r) is the queuing delay, » > 0 is the delay between the
user and the link « >0. The utility function U(x) is
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assumed to be strictly increasing, differentiable, strictly
dU(x)

dx

The first equation from (1) represents the dynamic system
of'a game where the cost (objective) function is given by:

J(x,d)=odx-U(x).
For system (1) the following affirmations hold:
Proposition 1:

1. The equilibrium point is (x;,d,) , where:

concave and U'(x) =

2

3

2. With respect to the translation
x(#) =x (1) +xy,d(t) =x,(t)+d,, system (1) becomes:

% ()= g(x (1) —axy(t=7)

xO =cC, dO :éU,(xO)

: 1 “4)
X, (1) =25 (t=r)
where
g(x (1) =U"(x (1) +xp) —d, ®)
3. The linearization of system (4) is:
uy (1) = ay(uy — auy (1 =)
. 1 (6)
uy (1) = e (t=r)
where a; = g'(0)=U"(x,).
4. The characteristic equation of (6):
/12—a1/1+£e_2’1r =0. 7
c

Analyzing the roots of the characteristic equation with respect
to r we obtain:

Proposition 2:
1. The roots of equation (7) are differentiable functions with

aic +20cos@ayty)

(e +2nya)’ +4cag (ya —c)’
From (11) we have Re A'(7,) > 0.

Rel (1)) =2af (11)

The above analysis can be summarized as follows:

Proposition 4.
Equation (7) has one Hopf bifurcation point at 7, where 7 is

given by (9).

III. DIRECTION AND STABILITY OF THE HOPF
BIFURCATION FOR INTERNET NETWORK WITH A SINGLE
LINK, WITH A SINGLE USER UNDER INFORMATION DELAY

In this section, we study the direction, stability and the period
of the bifurcating periodic solutions in system (4). The
method we use is based on the normal form theory and the
center manifold theorem introduced in [4], [8].

The notational convenience, let » =#, + z£. Then © =0

is the Hopf bifurcation value for system (4). System (4) can
be rewritten as [10]:

¥K0=aﬁﬁﬂ—wma—ﬂ+%aﬂﬂﬂz+%%M0f+
+O0(x @)1 (12)

Ka(0) = 111
C
where a ZU‘(X()) , dy ZUH(X()) , dg ZU‘”(X()) .

For ¢=g(s, 1), with ge[+0],C%) we

consider:

s €[-r,0]

respect to r. L,¢=4¢0)+Bg(-r), (13)
2.1f r =0, the roots of equation (7) have a negative real part.
where A4, and B, is given by:
To establish the existence of the Hopf bifurcation we prove:
Proposition 3: a 0 0 -«
The characteristic equation (7) has the roots 4, =iy, 4= 0 0) B =1 0 | (14)
= c
=4,
where: Let
2.2 4.2 2 2 2 4

—ajc” +4a/c” +4a a3 (0)" + a3¢,(0)” + O

%:\/ P +ya; 6 Pl @HO rahOF 006D (o
2¢ 0
for 7, given by:
For ¢ C! ([—r,O],CZ) we define:
Ty = ——l arctg 4 )
" 2m @y ) 490 . <p<o

Considering A = A(r) in (7) and deriving it with respect to r 4(0)=4 do "’ (16)
we get: 440)+ Bip(-r), 0=0

d2 Qocke

Y )= e (10) and

dr 2Ac—ajc—2are 0. —r<0<0
In (10) replacing » with 7, given by (9) and @ with @, Ri(u)p= F(u.4), 0=0 (17)
given by (8), we obtain: HP) O =
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System (12) can be rewritten as:

= A (u, + R (p)u, (18)
where
u, =u(t+0), 0[-r,0].

For y e C'([0,r],C?) the adjunct operator Al*(,u) of
A;(p) is defined as:

_dy(s)
A (wy(s)=1  ds
w(s) 4 +y" (1B, s=0

, 0<s<r

(19)

For ¢eC'([-r,0],R?), and w eC ([0,r],R?) we

define a bilinear form by:
0 0
—T —T
<pp>=y OO~ [ [y (s-0)dtBpsys  (20)
O=—rs=0

where y(0)=Bo(@+r), 6O€[-r,0], and § is Dirac
distribution.

In order to determine the Poincare normal form of the
operator A;(4), we need to calculate the eigenvector g of

Aj(y) associated to the eigenvalue A =i@, and the

eigenvector ¢~ of Al* (u) associated to the eigenvalue

Ay =—iw,. We can easily verify that:
q(0) =vexp(40), 6<[-r,0] €2y
where v =(v;,V, )T and

v =ck, vy =exp(Lrp) (22)

is the eigenvector of 4,(0) associated to the eigenvalue A;.
The eigenvector of Al* (0) associated to A, is given by:
q"(0)=wexp(h0), 0€[0,7] (23)

where w = (wl,wz)T and

w = %exp(@rowz) , Wy =ac (24)

a= ﬂ,]c;1 exp(yrp) +acv2+r0a\:1 exp(41p) —acipAy v; (25)

Using (20), we can verify that <(7,q >=0, <¢",g>=1.

In the following, we will follow the ideas and use the
notation in [4]. Let:

z=< q*,ut >, Wt,6)=u,(0)-2Re(z(t)q(0)) (26)
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Then

2(0) = 4z(0) + g (2(0), (1) 27)

where
- 1 2 -1 -2 1 2~
g(z,z)=5gzoz +gnzz+5g02z +5g212 z

g0 =q (0 Fn, gn=9 ) Fy, (28)

g =9 (0 Fyy, g2 =q (0) F.

2 T T 2 \T
Fyg =(ayvi,0)", Fip =(aav,0)", Fp =(apv1,0)
F21 = (az(Wéo;] + ZW}IVI) + a3V12;1,0)T

and

-2

- 1 1
W(Z,Z) = > W202 + W]]ZZ +— > Woa 2

Wyo(0) = =222 yexp(40)— =2 exp(/129) +
/11 ﬂvl
+ Ej exp(24,0)
wy,() = —%vexp(ﬂlé’) _&u; vexp(Lo)+Ey, D)
1 4
Ey = (4 +exp(447y) By = 241) ™ Fy
Ey =—(4 + Bl)_lFil
I =diag(1,)).
From (22), (23) and (28), we obtain:
_2 pR—
820 = a2v12 Wi, 811 = daVV) wi, o2 = a2 VI W1
1
E =—— (—2&1a2v12 ,——exp( llro)azvlz )T s
D, c (30)

Dy = ZLexp(2my) - 22 (a - 24,)
C
E, = (O,a—zvlvz)T
a

and

WZO(Q)—_TVI exp(4,0 )-S50 /1 2 y1 exp(4,0) +
1 1

+Mexp(2ﬂlé’)
1

wﬁo(e):—%vz exp(4,0) — S0 o v exp(4a6) +
1 1
" az"l exp( A7)

24,0
D, exp(24,0)



INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

wh(0) =—Ey exp(160) ~ E1v1 exp(4,0)
/11 )Ll

§ _
wﬁw):—%vz exp(0) ~ =1V exp(ipf) +
1 1
n V|V,
(04

21 = wilay (why (0)vi + 2wi; (0)v)) + azvivi.

Using the theory of the normal form [4] we have the
following formulas:

] 1
G (0)= Z%UO(gzogn —2|g11|2 —§|g02|2) + %

ReC,(0)
Hy ==7— =
ReA'(ry)
T = ImC;(0) + 41, ImA'(ry) (32)
a)o ’
B> =2ReC;(0).

Now we can state the main results of this section:

Proposition 5:

In the formulas (32), u, determines the direction of the
Hopf bifurcation: if g, >0(<0), then the Hopf bifurcation
is supercritical (subcritical) and the bifurcating periodic
solutions exist for » > 7, (<7y); [, determines the stability
of the bifurcating periodic solutions: the solutions are
orbitally stable (unstable) if £, <0(>0); and T determines

the period of the bifurcating periodic solutions: the period
increases (decreases) if 7 > 0(<0).

IV. THE MATHEMATICAL STOCHASTIC MODEL WITH
DELAY, ASSOCIATED TO THE INTERNET STYLE NETWORKS
WITH DELAY

Let (€, F,,P),t>0 be a given probability space and
w(t) € R be a scale Wiener process defined on 2 having
independent stationary Gauss increments with
w(0)=0, EW({)w(s))=min(¢,s). The symbol F
denotes the mathematical expectation. The sample trajectories
of w(¢) are continuous, nowhere differentiable and have

infinite variation on any finite time interval [5].

We are interested in knowing is the effect of the noise
perturbation on system (1). The stochastic differential
equation with delay is:

dx; (1) = (U (x(1)) = 0205 (¢ = 1))t + 07 (x, (1) = X )d()

| (33)
dxy (1) = (;(xl (t =) =Dt + 05 (%, (t) = d ()
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where o0} >0,0, >0, W(f) is the scalar Wiener process
and x(t)=x(t,0), x,(t)=d(t,o)are the components of
the process X(f,m)=((x(t,w)d(t, a)))T on the probability
space.

Linearizing (33) around the equilibrium (xO,dO)T yields
the linear differential equation with delay:
dy(1) = (A (1) + By (1 — r))dt + Cu(t)dw(r) (34)
where y(¢) =(3;(9), », (t))T and 4, B, are given by (14)
and C| =diag(o,0,).

Using the method from [6], [11], we analyze the first and

the second moments of the solutions for (34) with respect to
r.

Proposition 6:
1. For system (34), the moment of the solution is given by:

E(/(0) = AE(Y(@O)+BE(y(t—r)). (5

2. The characteristic function for (35) is:
a _
h(Ar)=22 —ad+—e " (36)
c

3.If r =0, the roots of equation 4(A4,0) =0 have a negative

real part.
4. The equation /(A,7)=0 has one Hopf bifurcation point

at 7y, where 7, is given by (9).

5. If we denote by E,(t)=E(y,(t)), E,(t) = E(y,(¢))then
E,(t) =vz(t) +v12(0), E; () = vyz(£) +v22(t) (37)

where V,V, are given by (22), @ is given by (8), 7y is

given by (9) and

2(0) = iwyz(t), 2(1) = x(0) + iy (). (38)

To examine the stability of the second moment of y(¥)

for the linear stochastic differential equation with delay (34)
we use Ito’s rule to give the stochastic differential of

YOO where y(0)= (50320
Let R(t,s) =E{y(l)yT (s)} be the covariance matrix of
the process y(t) so that R(z,?) satisfies:

Rt =By @)+ 90 0+ G
= ARG, +R(,A" +BR(t,1—r)+R(t,t—r)B! + (39)
+GRLOG
where C| =diag(oy,0,).

From (23) and R;;(t,5) = E(y;(1)y;(s)), 1,/ =12 we get:

Proposition 7:
1. The differential system (39) is given by:
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Ru(t,t) = Qa; + 02)R, (t,6) — 20R, (1,1 1)

: 2
R22(l,t) =O'22R22(l,t)+*R12(l,f—l")
c

: 1
R12(t,t) =(a1 +O_102)}312(t,t)+*R1 1(t,t—r)—
c

(40)
_O.’Rzz(t,t—r)
2. The characteristic function of (40) is given by:
1(2,r) = (A =2ay =07 )(A =03 )(A—a = 0107) + an
41

2 .
+22 024 -2a, - 0f —o2)e
C

Proof:
System (40) derives from (39) with 4, B given by (13).

Rij(tas):eMHs)Kij,i:j:Lz where  Kj; are

Let
constants. Replacing Rl-j(t,s) in (40) and setting the

condition that the system we obtain should accept nontrivial
solution, we get /(4,7)=0.

From (41) we have:
Proposition 8:
1. The characteristic equation /(A,7) =0 is given by:
B +b, 2 +bA+by+ (b A+b)e ™ =0 (42)

where

by =—03 ay +7)(a +010,),

b =Ba; + 0'12 + 0,0, )0'22 +(2a; + 012 )a, +0105,) (43)

by =3, —0'12 -0,0, —0'22,

_ba

by ,
C

20(2a; + 012 + 0'22)
. .
2 If r =0, the characteristic equation /(1,0) =0 is

given by:
2 +b, 2% +(by+by)A+by+by =0
3 If 09,0, satisfy inequalities:
by >0, by +b;>0, by +b, >0,
by (by +b3) = (by +b4) >0

then the roots of the equation (44) have a negative real
part.

If 0y,0, satisfy (45) and b, —b, <0, then the value
r =1 is a Hopf bifurcation, where:
p— 3 p— p—
L Tp— (b2b34 574)5012 (byby 2b1b4)a)1
20 byeoy’ +(byby —bybs) o —byby

and @j is a positive real root of the equation:

o +(B5 ~ 2B +(Bf ~2bsby —B5)r +by by =0 (47)

b4:

(44)

(45)

(46)

Issue 1, Volume 6, 2012

144

If we denote by:
M’/ (t) = le (t’t)o la_] = 1,2 then

My (t) = vipz(2) +vio 2(2),
M ) (1) = vyoz(t) + va0 2(1),
M 5 (1) = v3oz(t) + v30 2(1)

(48)

where
—2a exp( A,n)
io = 5>
ﬂ’l - 2(11 — 0
_ 2 exp( ﬂz}’l) (49)

" c2-od)’
V30 = 1

and

Ay =—i@, and z(t)is the solution of equation

2(t) = Az(0), () = x(t) + ip(1)

(50)

V. A ANALYSIS OF NETWORK MODEL WITH A
SINGLE LINK AND TWO USER UNDER INFORMATION
DELAY

The internet network with single link and two users under
information delay is given by:

x1(8) =y (U'(xy () —d(t 1)

x2 =y (U'(xy (1) —d(t 1) 51)

d(z)=%<xl(z—r)+x2(t—r)>—1

where x(¢) = (x(¢), x, (1))" are the users flow rate, ¢ >0
is the link capacity, d(¢—r)is the queuing delay, >0 is
the delay between the users and the the link, and
oy >0,i=1,2. The utility function U(x) is assumed to be
the strictly increasing, differentiable, strictly concave and
Uy = Y.

dx

For system (51) the following affirmations hold:

Proposition 9:
1. The equilibrium point is (x;¢, X5, dO)T where:
c c

X0 257 X20 :Eado =U"(xy9) -

2. With respect to the translation x;(f)=uy(f)+x,
X () =y (D) +x, d(t)=13(t)+dly, system (51) becomes:
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w1 (t) = ey (U'(uy (1) — d (1 — )
uy (1) =y (U'(uy (1) — d(t — 1))

(1) = %(ul(t — Py (t—1)

The linearization of system (52) is:

(52)

2.
w1 (t) = ay patty (1) — ayus(t—r)

ulz () = ap pyuy (1) — aqus(t —r) (53)

: 1 1
us () =—u(t—r)+—u,(t—r)
c c
where:
P =U"(x), x =x9=xy.

3. The characteristic function of (53) is given by:

h(A,7) =2 - (q + az)pziz + azpzzi +
1 L, 9
+ - (o +ax)A =210 p5)e
Analyzing the roots of the equation A(A,7) =0 with respect
to 7 we obtain:

Proposition 10:
1. If =0 the equation /&(A,7)=0, has roots with a

negative real part.

2. If r#0,exist 1, given by:

o —aionpse) —(oy + o)

1
Iy=——arctg (55)
2y aonphag(oq +0n) +ai or)a(@d ~ictBey)
where @) is a positive real root of the equation:
b +(c? (¢ +a2)2p22 —2c2a1a2p22)a)4 + (56)

+(Patar p) — (o +ay)" Yo' ~dafaipy =0
so that for » €[0, 7)) , equation A(A,7)=0 has roots with a
negative real part.
Considering A =A(r) in A(A,7)=0, and deriving it
with respect to r we get:
) _ A +aVi-2aop)e ™
dr (3 -Aoy+os)pi+oios®)Hog+0s—2cy +ao) i+ dagapy)e 7

Let:
4Ar) N = Im| 20 (58)
A=iwg, r=ry dr A=iwgy, r=r,

From (56) and (57) result:

(57)

Proposition 11:
If r=0 the equation /(A,7)=0, has one Hopf

bifurcation point at 7, , where #, is given by(55).

We study the direction, stability and period of the
bifurcating periodic solutions in system (52). The method we
use is based on the normal form theory and the center
manifold theorem introduced in [4], [8].
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The notational convenience, let » =, + 4, with ©>0.
Then x =0 is the Hopf bifurcation value for system (52).
System (52) can rewritten as:

: 1
ui(t) = oy pyuy (1) — oqus (1 —r) + 5051/93”1(1)2 +

1
3 Patl (t)’ + O, (t))*

: 1
Uy () = ay pyuy (1) — aqyus(t —r) + 50!2,03”2(1)2 - 9

P + 0l ()

Uy (0) =Syt = 1)+ Ly 0 - 1)
C C
where
m, ¥ v, *
p3=U"x ), py=U"(x) .
For ¢=@0,1), Oe[-r0], with ¢eC([-0],C*). We

consider

L,¢ = 4,4(0)+ Byp(-r) (60)
where 4, and B, is given by:
ap; 0 0 0 0 —-o
A= 0 ayp, 0>B,=[0 0 -, (61)
0 0 0 1,
C C
Let
! 2 1 3
5“1,03(151(0) +§011P4¢1 (0)
1 1
F(u,¢)= 5“21P3¢21(0)2 T ay P (07 | (62)
0
For ¢eC'([-,0],C?), we define:
apo)
———= —r<0<0
4Hwp=1 a0 "
A4#0) + Byp(—r), =0
B, (1) 0, —r<6<0
2P F o, o=0.

For yeC'([-r,0],C?) the adjunct operator A; (u) of
A, () is defined as:
_dy(s)
ds
y(s) Ay +yp(s)" By, s=0.

For ¢ and  we define a bilinear form by:

* , —r<s<0
A (L) (s)=

<=y Op0-[_ [ " (- 0dm(@hs)ds (@)

where
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)= 0, 0=0
B850+ ), O[]
and O(¢ + r) is Dirac distribuition.

In order to determine the Poincare normal form of the
operator A, (x), we need to calculate the eigenvector g of

A, () associated to the eigenvalue A; =iwjyand the

eigenvector q* of Az* (u) associated to eigenvalue
Ay =—img. We can easily verify that
q(0) = vexp(4,0), 0 [-r,0]
where v = (vl,v2,v3)T and
v == (4 — aypp) exp(Ayr)
vy = =0y (A4 —aypy) exp(dyr) (64)
vy = (4 =105y (4 —ay0,)
The eigenvector of Az*( M) associated to eigenvalue A,
is given by:
q* (s) =wexp(4ys),s €[0,7y],
where w = (wy, w,, w3)T and
_ exp(4ip) W
c(A —apy)
__exp(4irp) (65)
h = w:
(A =)
(A - 0‘1,02)(41 —ay0,)
s

[ = (41010 VXA — )+ (v )y i) +

1

w3 =

Hevgtnd " w0 1) —ayp) G~ )

Using (63), we can verify that <q*,q >=l,
<q.q>=<q .g>=0, <q.q>=l.

Next, we will follow the ideas and use the notations in [4].
Let

z=<q u, >, Wt,0)=u,(0)-2Re(1)q(d))  (66)
Then

2(t) = Ayz(0) + g(2(0), (¢))
where

B 1 2 1 E 1 2
g(Z»Z)=Egzoz +81122+58022 +§g212 z

g20=q 0 Fy, g1=4 () F, (67)

802 :q*(O)TFozs 821 :q*(O)Tlea
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2 2 T
Fyy =(apvis ayp3v,7,0)"

F=(aqipm v, ayp3v V1=O)T7 (63)

2 2 T
Foy =(a1p3v1, ayp3v,7,0)",

Fy = (e (p3(2vywyy ) +wing vy) + /04"12 V),

_ L -
a5 (P3(2va W11 + Wang Vo) + Pav3 v2),0)".

1 1
w(z,z) = 5W2022 + Wz Z+EW02 22

_82 ., 80

Wy = Y v+ E
070 34 !
_ (69)
811 &1
W =—=v—=-Vv+E
11 A A 2

The vectors E; = (Eyy, Eyp, Ey3)' s Ey =(Eyy, Exy, Eng)”
are given by:

g 127% ("1{’1 _VZ;Z)aElZ:_Ei 1»Ei3=& (Vl;)l _Vz;z),
2 ? (70)

By O ) =y =) expl) ),

From (68), (69), (70) result:

2 2
820 = X103V W T Qp 03V, Wy,

811 = 1PV + 0 P3Va Vo Wy,

2 2
o2 = 13V W+ P3Va Wy, (71)
_ -
g1 = (1 (32w +Wing Vi) + pavi v +

_ , - —
+ay(P3(2vy Wy + Wang Vo) + P45 Vo)Ws.
The parameters C;(0), 1,, ' given by (32) with
£20-802- 821> &1 and (71).

The stochastic perturbation of for the system (51) is given
by:

(1) = o4 (U (xy () —d(t =)+ 01 (x (1) —xy ) )dnki)
(1) = (U (x5 (1) —d(t = r) i+ 05 (x5, (6) = xp0)dnkE) (72)

dxg@{(xl(r—r)+xz(r—r>>dr+oa(x3(r>—do>dw<r>

where o; >0, 1=1,23.
For the stochastic differential system with delay a similar
study can be done.

VI. NUMERICAL SIMULATION
In what follows, we consider U(x)=uln(x+1). Using
Maple 14, for: ©u =100, ¢c=2, a =300, the equilibrium

point is xy=2, dy=0,11. For this values we have
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W, =6,2247, 1r=0085, B,=-0159, u, =0.003, For 0, =-0.1, 0,=-12, u=100, ¢=2, a=300,
T =0.029. The limit cycle is supercritical, the solutions are using the Euler stochastic method, the figures Fig.5, Fig.6,
orbitally stable, the period increases. Fig.7, present the orbits t,x (@t w), (tx(tw),
The orbit (¢,x(¢)) is given in Fig. 1, orbit (¢,d(¢))is (x,(t, ®), %, (t,w)) of the system (33).

given in Fig. 2, orbit (x(¢#—7),x(¢))in Fig. 3 and the orbit o
(d(t—-ry),d(t)) inFig4. o

L

2.004; . o iﬁlﬁ ¥ v Ikﬂ

2002% ol

ngﬁ; Fig.5 The orbit (t,x,(t,))

1.9964

1 99:1% 1
1} 50100 150 200 250 300 3A0 1
Fig.1 The orbit (¢,x(¢)) M

Sb 16 15‘0 20'0 250
01118 A Lk/

=

Fig.6 The orbit (¢, x, (¢, w))

T T T T T T T T T T I
0 50 100 180 200 280 300 350

Fig.2 The orbit (¢,d(t))

20067

2 DUA;
2002]
) ggﬂé Fig.7 The orbit (x,(¢,w), x, (¢,®))
1 9955
1994; For 0,=03, 0,=03 we obtain o =20,127,
1654 19% 1968 2 2002 2004 2005 1, =0.01182, and the figures Fig. 8, fig.9, fig.10 show the
Fig.3 The orbit (x(¢—r), (1)) orbits (£, M, (1)) . (t, My(0)). (t, Mi(2)) -
3 001
011167
0 1114§ ns
o 11122 i
0 1115 -0.005
0 1103% 001
- Fig.8 The orbit (¢, M|,(¢))

L L L L |
0106 01108 0111 01112 01114 01116

Fig.4 The orbit (d(t-r,),d(t))
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0.00039
0.00027

0.0001]

LI

0.0001]

-0.0002]

0.0004

0.0002

-0.0002

-0.0004

Fig.10 The orbit (t, Mlz(t))

In what follows, we consider U(x)=uln(x+1), o; =2,
0y, =5, ¢=50, u=>5 the equilibrium point is x5 =25,
X590 =25d,=0,1923. this
@, =0,8942, r, =17402, B, =0,4150, 1, =-0.000082,
T =-0.0000017 . The limit cycle is subcritical, the solutions
are orbitally unstable, the period decreases.

The orbit (¢,x,(f,w)) 11,
(t,x,(¢,w))is given in Fig. 12, and the orbit (¢,x;(¢,®)) in
Fig 13.

For values we have

is given in Fig. orbit

25.08
5.040001
25

1.959999

24.92.

o 10 20 30 40

t

Fig.11 The orbit (¢, x,(z,®))

50

5.2000019

25

4.7999994
o 10

Fig.12 The orbit (¢,x, (¢, w))

20 30 40 50

o 10

Fig.13 The orbit (z,x5(¢, ®))

20 30 40 50
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Numerical methos for ordinary differential equations are also
given in [12].

VII. CONCLUSIONS

In this paper, we have examined the deterministic model for a
network with a single link and with two users with delay. The
time delay is determined for which a Hopf bifurcation takes
place. The direction and the stability of the Hopf bifurcation
are analyzed. The stochastic model is associated to the
deterministic model. For this model the mean values and the
square mean values of the linearized stochastic are analyzed.
It is proved that there is a value of the delay for which a Hopf
bifurcation takes place. The theoretical results are also
justified by the numerical simulations. An analysis of the
network model with a single link and multiple users will be
done in a future paper.
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