
 

 

  

Abstract—A model for nutrient-phytoplankton dynamics is 

constructed and analyzed. We contribute theoretical analyses for a 

constant nutrient input and a time-varying nutrient input in terms of 

steady state, local and global stabilities, and limit cycle behavior. 

Numerical simulations of the model are carried out to examine the 

dynamics of the model for four types of nutrient input: 1) constant 

input, 2) sinusoidal input, 3) periodic step function input with fixed 

upper and lower amplitudes, 4) periodic step function input with 

time-varying upper and lower amplitudes. The numerical solutions 

confirm the non-oscillatory and oscillatory behaviors predicted from 

the theoretical analysis.  It is shown that periodic nutrient inputs of 

types 2) and 3) cause phytoplankton blooms with periodic behavior 

and that changes in the frequency of the input produce blooms with a 

wide range of different dynamical behavior.  It is found that nutrient 

inputs of type 4) give the best agreement between the model and the 

observed data. 

 

Keywords—Seasonal algal blooms, Nutrient-phytoplankton 

interaction, Oscillatory behavior, Seasonal nutrient input.  

I. INTRODUCTION 

HYTOPLANKTON plays an important role for marine 

organisms as they are a fundamental food source at the 

bottom of the marine food chain. They are, for example, a 

food source for zooplankton [1]-[3], which are also a food 

source for higher marine animals. Like plants, phytoplankton 

absorb carbon dioxide in the presence of sunlight and produce 

oxygen by photosynthesis. Eventhough phytoplankton are 

essential as a fundamental food source for marine life, they can 

also severely damage marine life if their populations become 

excessively large.  Some examples of these damaging effects 

are reduction of water quality and oxygen levels, release of 

toxic substances or creation of dead zones. Excessive 
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phytoplankton levels in lakes, rivers or the ocean are often 

visible and are called algal blooms. 

In addition to the damaging effects mentioned above, 

blooms of some algae are directly toxic to marine organisms. 

These blooms are called harmful algal blooms (HABs) and 

caused by toxic plankton species such as chrysochrochomulina 

spp [4]. These blooms can kill a wide range of wild organisms 

as well as farmed fish [5].   

Although the growth of a phytoplankton population depends 

on many factors, the availability of nutrient, especially nitrate 

and phosphate, is often a key factor [6]-[7]. Excessive 

concentrations of these nutrients can be a major cause of algal 

bloom [4], [6]-[8]. This excess can be due to both natural and 

human causes.  Human causes include uncontrolled run-off of 

nutrient-rich water from agricultural fields or disposal of 

untreated sewage into rivers, lakes and coastal seas. Other 

major environmental causes of algal blooms have been 

discussed in [8] 

In 2002, Huppert, Blasius, and Stone [8] proposed that 

eutrophication can often be understood using a model that 

includes only nutrient and phytoplankton.  Their main purpose 

was to determine how the nutrient input affected the 

phytoplankton population. Their model showed that an algal 

bloom was triggered whenever nutrient input reached a 

threshold level. In 2005, Huppert et al. [4] studied the 

dynamical behavior of a model for seasonal algal blooms with 

environmental forcing. Their forcing term was assumed to 

explicitly affect phytoplankton growth. They considered 

periodic forcing with a one year period of either sinusoidal or 

step function type. 

A variety of mathematical models of phytoplankton 

dynamics have been proposed in the literature.  These models 

can be nutrient-phytoplankton models [1]-[2], [8] or nutrient-

phytoplankton-zooplankton (NPZ) models [1]-[3]. Various 

functional forms have been assumed for the interactions in 

these models [1]-[3]. Common functions used for nutrient 

uptake by phytoplankton are Lotka-Volterra interaction [9], 

Monod type or Michaelis-Menten kinetics or Holling type II 

[10]-[12].   
In this paper, we consider a model for seasonal algal blooms 

in which the seasonal effects are due to changes in the nutrient 

input. The structure of this paper is as follows. In section II, 

we summarize field information on the occurrence of algal 

blooms and the seasonal pattern of coastal nutrient 

concentrations. Models of nutrient-phytoplankton interaction 

are proposed and their properties are analyzed theoretically in 

section III,. Moreover, four different functional forms of 

nutrient input are considered, namely, constant nutrient input, 

sinusoidal input, periodic step function input with constant 

upper and lower amplitudes in each period, and step function 

A nutrient-induced seasonal algal bloom model 

Wichuta Sae-jie, Kornkanok Bunwong, and Elvin J. Moore 

P

INTERNATIONAL JOURNAL OF MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES

Issue 2, Volume 6, 2012 402



 

 

input with time-varying upper and lower amplitudes in each 

period.  In section IV the results of numerical simulations are 

shown that reveal the wide variety of different types of 

asymptotic behavior of algal blooms that can occur as the type 

and frequency of the nutrient input is changed.  The final 

section is discussion and conclusions. 

II. FIELD OBSERVATIONS 

Monitoring of Peridinium gatunense population was carried 

out from 1970 to 1999 in Lake Kinneret (Sea of Galilee), 

Israel.  Fig. 1 illustrates the time series of phytoplankton 

biomass showing the mostly annual bloom dynamics [8]. The 

bloom usually occurs in spring and often in the same month. 

Each bloom looks like a spike with a different amplitude each 

year. 

      
    Fig. 1  Phytoplankton blooms from 1970-1999 [8]. 

 

Fig. 2 shows time series of monthly average concentrations 

of nutrients measured off southern Norway from 1990 to 2002 

[5]. The time series data was obtained by sampling nutrient 

levels every second to third week at depths between 0-30 m.  

The pattern of nutrient concentrations shows annual 

fluctuations with a different amplitude each year. This data 

gives good guidance for developing a bottom-up model for 

algal blooms induced by seasonal changes in nutrient level. 

                      

                      

                        

                       
 Fig. 2  Sampled nutrient data from 1990-2002 [5].  

 

We will consider four different types of nutrient input, 

namely, a constant input, a sinusoidal input, a step function 

input with fixed upper and lower amplitudes, and a step 

function input with time-varying upper and low amplitudes. 

III. THEORETICAL RESULTS 

A. A General Nutrient-Phytoplankton Interaction Model 

We consider a general forced dynamical model of nutrient-

phytoplankton interaction of the following form: 

 

( ) ( , )
dN

t Q f N P N
dt

λ φ= − −                             (1) 

( , ) ,
dP

g N P P
dt

σ= −                                         (2) 

 

where the following assumptions are made.  The system is 

composed of homogenous compartments of nutrient and 

phytoplankton. Units are calculated in terms of nutrient 

concentration and biomass (phytoplankton) density. (1) 

describes the changing rate of nutrient concentration ( N ).  

The term ( )t Qλ  represents an external nutrient input, where 

Q  is a constant amplitude and ( )tλ gives the time dependence 

of the input.  The term ( , )f N P  represents a decreasing rate of 

N due to phytoplankton uptake, and the term Nφ  is a rate of 

nutrient loss due to sinking to depths below the phytoplankton.  

(2) describes the changing rate of phytoplankton density ( P ).  

The term ( , )g N P  is the growth rate of phytoplankton due to 

nutrient uptake and the term Pσ  gives the decreasing rate of 

phytoplankton due to death.  The parameters , ,Q σ φ  and the 

functions ( , )f N P  and ( , )g N P  are all nonnegative. 

There are a variety of assumptions that have been made in 

the literature for the functional forms for nutrient input, 

phytoplankton growth, and phytoplankton uptake [3].  

Commonly used phytoplankton growth functions are Malthus 

exponential growth, Pκ , logistic growth or growth limited by 

carrying capacity ( )1 /P Pκ− , and Gompertz growth, 

log( / )P Pκ , where κ  is a positive constant.  Obviously, 

these growth functions do not explicitly show the effect of 

nutrient on phytoplankton population.  Phytoplankton growth 

functions that explicitly include the effect of nutrient are: 

Lotka-Volterra interaction, NPγ  [9], Monod type or 

Michaelis-Menten kinetics or Holling type II, 
NP

N
γ

κ +
 [10]-

[11], and Holling type III, 
2

2

N P

N
γ

κ +
 where γ  is a positive 

coefficient that represents the conversion efficiency from food 

consumed into newborn plankton   

In a chemostat environment [13], the nutrient input can be 

easily controlled.  However, in the real-world, the nutrient 

input must be considered as a function of time.  This nutrient 

input is often seasonal with an annual period, but with 

amplitude variations from year to year.  In this paper, we 

examine the algal bloom behavior for three types of time-

dependent nutrient input function. 
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B. Nutrient Input 

Without loss of generality, we assume ( )tλ = 1 . In plankton 
dynamics models it is often assumed that the growth of 

plankton depends on the quantities of its food consumed so 

that the functional forms of growth rate and uptake rate are the 

same.  We will make this assumption here.  We also assume 

that the functional forms of the growth rate and uptake 

functions are separable and linear in P, i.e., we assume 

( , ) ( )f N P h N Pγ=  and ( , ) ( )g N P h N Pβ= , where ( )h N  is a 

strictly increasing function of N with (0) 0h = . These 

assumptions are satisfied for the Lotka-Volterra, Monod type, 

and Holling type III growth functions mentioned above. 

Therefore, (1) and (2) become:  

 

( )
dN

Q h N P N
dt

γ φ= − − ,                                     (3) 

( ( ) ) .
dP

h N P
dt

β σ= −                                            (4) 

 

An equilibrium solution * *( , )N P  must satisfy /dN dt 0=  and 

/dP dt 0= . Obviously, the trivial equilibrium state ( / , )Q 0φ  

always exists.  From (4), it can be seen that P  will decrease to 

0 if *( ) 0h Nβ σ− < . Therefore the trivial equilibrium state 

will be asymptotically stable in this case.  On the other hand, if 
*( ) 0h Nβ σ− >  then the trivial equilibrium state will be 

unstable. 

The conditions for the existence of a second nontrivial 

equilibrium point * *( , )N P  of (3) and (4) are that: 

 *
( )h N

σ
β

=  and 
* *

*

*

( )
0.

( )

Q N Q N
P

h N

φ β φ
γ γσ

− −
= = >       (5) 

Positive solutions for (5) exist iff ( )
N

Max h Nβ σ≥  and 

*
.Q Nφ>  To check the asymptotic stability of the nontrivial 

equilibrium point, we use the linearization method (Liapunov’s 

first method [9]) and obtain the Jacobian as: 

  
* * *

* *

* *

'( ) ( )
( , )

'( ) 0

h N P h N
J N P

h N P

γ φ γ
β

 − − −
=  

 
               (6) 

We have assumed that ( )h N is a strictly increasing function 

and therefore the derivative *'( ) 0.h N >   Then, the real parts 

of the eigenvalues 
1 2,λ λ of (6) must be negative because      

        * *

1 2trace( ) '( ) 0J h N Pλ λ γ φ= + = − − <      and  

        * * *

1 2det( ) ( ) '( ) 0J h N h N Pλ λ βγ= = > .   

Therefore, if the nontrivial equilibrium point exists it must be 

locally asymptotically stable.  We now consider the 

equilibrium states for the.Lotka-Volterra and Monod type 

interactions. 

 

Case 1  Lotka-Volterra type interactions [19] 

 ( , )f N P NPγ= , ( , )g N P NPβ= , σ φ≠ . 

The two equilibrium points are ( )* *
( , ) / ,N P Q φ=

1 1
0  and  

   *
2N

σ
β

= ,      
*

* 2
2

( )Q N
P

β φ
γσ
−

=                            (7) 

The trivial equilibrium point is asymptotically stable if 

Qβ φσ< , whereas the second equilibrium point exists and is 

locally asymptotically stable if Qβ φσ> . In this case, it can 

also be proved that 
* *( , )N P
2 2

 is globally stable.  A commonly 

used global stability test is Liapunov’s second method and 

involves finding a Liapunov function ( , )V N P  [14].  Then, if 

the properties in the following two lemmas are satisfied in 

some region O, the system must be globally stable. 

 

Lemma 1   ( , )V N P  is positive definite in O. 

Lemma 2   ( , )V N Pɺ  is negative definite in O.  

For the Lotka-Volterra uptake function a suitable Liapunov 

function is [13],[15] 

* *
* * * *2 2
2 2 2 2( , ) ( ) ln ( ) ln

N P
V N P N N N P P P

N P

   
= − + + − +   

   
.          (8) 

 

Case 2.  Monod type interactions [16]-[17] 

( , ) ( )f N P h N Pγ= , ( , ) ( )g N P h N Pβ= , σ φ≠ , where 

( ) /( )h N N Nκ= + . 

The trivial equilibrium point is again ( )* *( , ) / ,N P Q φ=
1 1

0 .  

Using (5) and the formula ( ) /( )h N N Nκ= + , we find that the 

nontrivial equilibrium point is given by:  

 

   *
2N

σκ
β σ

=
−

,      
*

* 2
2

( )Q N
P

β φ
γσ
−

=                      (9) 

 

A comparison of this second equilibrium point with the 

equilibrium point for the Lotka-Volterra interaction in (7) 

shows that the equilibrium nutrient level for the Monod 

interaction will be lower than that for the Lotka-Volterra if and 

only if 0 (1 )σ β κ< < −  and then the equilibrium 

phytoplankton population for the Monod will be greater than 

for the Lotka-Volterra.  Alternatively, if (1 )σ β κ> −  then the 

equilibrium nutrient level for the Monod will be greater than 

that for the Lotka-Volterra and the phytoplankton population 

for the Monod will be less than for the Lotka-Volterra.  From 

the theory given above, the nontrivial Monod equilibrium will 

be locally asymptotically stable if it exists.  We will now prove 

that the function in (8) is a Liapunov function for the Monod 

interaction and therefore that the nontrivial Monod equilibrium 

is globally stable. 

  

Proof.  The function in (8) is positive definite.  We now show 

that ( , )
V V

V N P N P
N P

∂ ∂
= +

∂ ∂
ɺ ɺ ɺ  is negative definite relative to 

* * *( , )E N P= . 

* *( , ) 0V N P =ɺ , when *
2N

σκ
β σ

=
−

 and 
*

* 2
2

( )Q N
P

β φ
γσ
−

=  
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( )

*
2

*

( , ) 1
N NP

V N P Q N
N N

N
P P

γ
φ

κ

β
σ

κ

  
= − − −    +  

 
+ − − + Ν 

ɺ

 

Let 
* *
2 2,

NN NP

PN PP N P

V V
H

V V  
 

 
=  

 

ɺ ɺ

ɺ ɺ
 

Since 0PPV =ɺ , the determinant is 0PN NPV V− <ɺ ɺ . 

Thus, ( , )V N Pɺ  is negative definite. 

C. Sinusoidal Nutrient Input 

We summarize the results for two special cases where 

analytic solutions can be found for periodic nutrient input.  

Further details can be found in [9]. 

Case 3. ( , ) ( , )f N P g N P= , σ φ= .  [15] 
In this case a simple solution for ( ) ( ) ( )s t N t P t= +  can be 

found from (3) and (4).  Summing (3) and (4), we obtain a 

linear equation for ( ) ( )N t P t+  which can be solved using the 

integrating-factor method. The solution for this special case is 

  ( ) ( )( ) ( )
t

t
s t N P t e Qe d C

σ στλ τ τ−  = + = +  ∫0  

where C  is an arbitrary constant. 

For a sinusoidal input, ( ) (1 cos ) / 2t tλ ω= + , the solution 

is 

[ ]( ) ( )ts t e t Cσ−= Φ +  

where (0)C s=  and 
0

1
( ) (1 cos )

2

t

t Q e t d
στ ω τΦ = +∫ . 

A straightforward integration then gives the result 

    
2 2

1 ( cos sin )
( ) (0)

t t
te t t e

s t s e
σ σ

σσ ω ω ω σ
σ σ ω

− −
−− + −

= + +
+

. 

For a sufficiently large t, the exponential terms tend to zero 

and the solution becomes  

  
2 2

1 ( cos sin )
( )

t t
s t

σ ω ω ω
σ σ ω

+
= +

+
 

which is a periodic solution with the same frequency as the 

input.  Therefore, nutrient and phytoplankton have the same 

periodic behavior.  For the next case, we consider the system 

when growth and uptake functions as well as loss of nutrient 

and phytoplankton are not identical. The Monod form has 

already been considered by Jang et al. [18]. We consider the 

Lotka-Volterra interaction. 

 

Case 4 ( , )f N P NPγ= , ( , )g N P NPβ= , σ φ≠ :  

The system when P = 0  is considered first.               

     ( )
dN

t Q N
dt

λ φ= − .                                      (10) 

(9) has a trivial ω -periodic solution ( ( ), )N t 0  where ( )N t  is 

a unique ω -period solution of the form [9] 

    
( )

( )
t s

t

t

e e s Q
N t ds

e

φ φω

φω

φ λ
φ

− +
=

− ∫
1

                           (11) 

and a general solution ( )N t  can be written as 

( ) ( ) ( ( ) ( )) tN t N t N N e φ−= + −0 0 .   

Therefore ( ) ( )N t N t→  as t → ∞ .  Some properties of the 

solutions are summarized in the following lemma and theorem. 

 

Lemma 3 Solutions of (10) are nonnegative and the system is 

dissipative. 

Proof.  See [9]. 

 

Theorem If ( ( ) )N t dt
ω

µ β σ= − <∫0
0

0 , the solution 

( ( ), ( ))N t P t  of (10) satisfies lim( ( ) ( ))
t

N t N t
→∞

− =  lim ( )
t

P t
→∞

= 0   

Proof.  See [9]. 

Therefore, if µ <
0
0  the nutrient input is insufficient to 

support the phytoplankton population and the population 

becomes extinct.  As shown in [9], the trivial solution is stable 

if µ <
0
0  and unstable if µ >

0
0 .  In order to show that (10) 

has a nontrivial ω -periodic solution ( ( ), ( ))N t P tɶ ɶ , similarly to 

Jang et al. [18], more lemmas and theorems are required. 

D. StepFunction Nutrient Input 

We consider two types of step function for the time-

dependent nutrient input factor ( )tλ  in (1).   

Type 1) Constant upper and lower amplitudes.  We assume 

that the input has a period T divided into a high amplitude 

interval τ  with amplitude 
1α and a low amplitude interval 

T τ−  with amplitude 
2α .  That is, 

1

2

, [ , )
( ) 0,1, 2,

, [ , ( 1) )

m
m

m

t mT mT
t m

t mT m T

α τ
λ

α τ
∈ +

= = ∈ + +
…  

In this case, for sufficiently long values of T and τ , the 

solutions of (1) and (2) would converge to steady states 

corresponding to constant nutrient input 
1Qα  in each interval 

of length τ  and constant nutrient input 
2Qα  in each interval 

of length T τ− .  For shorter time intervals, the behavior has to 

be determined by integration of (1) and (2).  Some numerical 

examples are given in section IV. 

 

Type 2) Periodically varying upper and lower amplitudes.  We 

assume that the input has a period T divided into a high 

amplitude interval τ  with sinusoidally varying function of 

amplitude 
1α and frequency 

1ω and a low amplitude interval 

T τ−  with a sinusoidally varying function of amplitude 2α  

and frequency 
2ω  That is, 

1 1

2 2

(1 cos( )) / 2, [ , )
( )

(1 cos( )) / 2, [ , ( 1) )

m m
m

m m

t t mT mT
t

t t mT m T

α ω τ
λ

α ω τ
+ ∈ +

=  + ∈ + +
 

In this case, for sufficiently long values of T and τ , the 

solutions of (1) and (2) would converge in each interval to the 

periodically varying solutions discussed in section III.  For 

shorter time intervals, the behavior has to be determined by 

integration of (1) and (2).  Some numerical examples are given 

in section IV. 
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IV. NUMERICAL RESULTS 

In this section we investigate the dynamical behavior of the 

system for typical values of the parameters for four types of 

nutrient input.  We first show the behavior for constant 

nutrient input and then show the behavior for three types of 

time-dependent input.  We assume parameter values similar to 

those given in Huppert et al [8] for algal blooms in Lake 

Kinneret in Israel, i.e., 0.0075Q = , 1γ β= = , 0.001φ = , 

0.1σ = , and with the initial condition ( , ) (0.0005,0.05)N P = .  

The ODE solver ode45 in Matlab has been used to solve (3) 

and (4). 

A. Constant Nutrient Input 

Fig. 3 shows the solution to the system in Case 1, i.e., for 

the Lotka-Volterra nutrient uptake function. The 

phytoplankton density and nutrient concentration initially 

oscillate but eventually tend to the stable nontrivial 

equilibrium solutions of (9). For the parameter values used, the 

analytic solution gives 

             ( )( ) ( )* *( , ) , . , .N P Qσ β β σ φ γ= − =
2 2

0 1 0 0740 .  

in agreement with the numerical solution shown in Fig. 1.  It 

can be seen that the maxima and minima of the phytoplankton 

densities occur with a short delay after the maxima and minima 

of the nutrient concentrations.  The behavior looks like a 

damped oscillation with a period of approximately 90 days and 

a decay time of approximately 200 days. 
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Fig. 3 The time series of the solution to the system for Lotka-Volterra 

uptake function and constant input with 0.0075Q = , 1γ β= = , 

0.001φ = , 0.1σ = . 

 
Fig. 4 shows the solution to the system in Case 2, i.e., for 

Monod-type nutrient uptake function. The qualitative behavior 

of the solution is similar to that for the Lotka-Volterra uptake 

function, but there are differences in detail.  For the value of 

0.5κ =  used, the nutrient equilibrium values from (9) are 
* *
2 2( , ) (0.0556,0.0744)N P =  in agreement with the results 

shown in Fig. 4.  Further, the nutrient equilibrium value is 

lower than for the Lotka-Volterra and the phytoplankton 

equilibrium is higher, in agreement with the theoretical results 

in section 3. 
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Fig. 4 The time series of the solution to the system for the Monod 

uptake function and constant input with 0.5κ = , 0.0075Q = , 

1γ β= = , 0.001φ = , 0.1σ =  

B. Sinusoidal Nutrient Input 

We consider three cases. We first show the behavior for 

input periods close to the natural transient periods in Fig. 3 

and 4, then we show behavior for input periods much greater 

than the natural periods and finally we show behavior for 

nutrient periods much less than the natural periods.   
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Fig. 5  The time series of the solution to the system for Lotka-

Volterra uptake function and sinusoidal input with 0.0075Q = , 

1γ β= = , 0.001φ = , 0.1σ = , 0.1ω = . 

 

Fig. 5 displays the oscillatory behavior that occurs for 

sinusoidal input when the forcing frequency of the Lotka-

Volterra nutrient input is 0.1ω = . This forcing frequency 

corresponds to a period that is approximately 63 days, which is 

approximately two-thirds of the period of approximately 90 

days shown in Fig. 3 for constant Lotka-Volterra nutrient 

input.  After initial transient fluctuations, it can be seen that the 

solution tends to an oscillating solution with a period 
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approximately the same as that of the periodic nutrient input. 

As in Fig. 3, maxima and minima in phytoplankton density 

occur shortly after maxima and minima of nutrient 

concentration 

Fig. 6 shows the oscillatory behavior that occurs for 

sinusoidal input when the forcing frequency of the Monod 

nutrient input is 0.1ω = . The qualitative behavior of the 

solutions are similar to that for the Lotka-Volterra nutrient 

uptake function, but there are again differences in detail. 

In the remainder of this paper, we will only show results for 

the Lotka-Volterra nutrient uptake function. As in the 

examples shown above, we have found that the qualitative 

behavior of the Monod nutrient uptake function is similar to 
that of the Lotka-Volterra function in all cases considered. 
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Fig. 6  The time series of the solution to the system for Monod 

uptake function and sinusoidal input with 0.5κ = , 0.0075Q = , 

1γ β= = , 0.001φ = , 0.1σ = , 0.1ω =  
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Fig. 7  The time series of the solution to the system for Lotka-

Volterra uptake function and sinusoidal input with 0.0075Q = , 

1γ β= = , 0.001φ = , 0.1σ = , 0.001ω = . 

 

Fig. 7 shows the oscillatory behavior that occurs for 

sinusoidal input when the input frequency is 0.001ω = . This 

frequency corresponds to a period much greater than the 

period of approximately 90 days in Fig. 3. The observed 

behavior in Fig. 7 looks like a set of separated damped 

oscillating solutions similar to the damped oscillating solution 

for constant input of Fig. 3. In this case, the phytoplankton 

response looks like a response to a set of constant inputs of 

two distinct amplitudes. If time between amplitude changes is 

long compared with the natural decay time of the 

phytoplankton, then a set of separated constant input solutions 

of the type shown in Fig. 7 would be expected to occur. This 

interpretation can be seen more clearly for the step wave input 

function behavior shown in the next section. As before, 

maxima and minima in phytoplankton density occur shortly 

after maxima and minima in nutrient concentration. 
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Fig. 8  The time series of the solution to the system for Lotka-

Volterra uptake function and sinusoidal input with 0.0075Q = , 

1γ β= = , 0.001φ = , 0.1σ = , 0.5ω = . 

 

Fig. 8 shows the dynamical behavior that occurs when 

0.5ω = . This frequency corresponds to a period which is 

much less than the period of the constant input solutions. In 

this case, the nutrient input is oscillating much faster than the 

phytoplankton density can respond. Therefore, the 

phytoplankton responds to a time-averaged input which 

appears approximately constant. Therefore the solution looks 

like a constant input solution, but with small superimposed 

rapid fluctuations. As usual, maxima and minima in 

phytoplankton density follow maxima and minima in nutrient 

concentration. 

C. Periodic Step Function Nutrient Input 

We use the time varying input shown as case 1 in section 

IIID, i.e., 

1

2

, [ , )
( ) 0,1, 2,
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α τ
λ

α τ
∈ +
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…  

In figure captions, the value of 
1α  is “Q”, the value of 

2α  is 

“Nutrient factor times Q”, the value of τ is “odd interval” and 

the value of T τ−  is “even interval”. 

Fig. 9 shows the time series solution for the case where the 

total time interval T is 360 days or 1 year, which is four times 
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the natural transient period of 90 days for the same value of Q.  

It can be seen that the behavior is periodic with a period equal 

to 360 days.  
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Fig. 9  The time series of the solution to the system for Lotka-

Volterra uptake function and step function with 0.0075Q = , 

1γ β= = , 0.001φ = , 0.1σ = , Nutrient factor = 0.2, odd 

interval = 60, even interval = 300, 
1 0ω = , 

2 0ω = .  
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Fig. 10  The time series of the solution to the system for Lotka-

Volterra uptake function and step function with 0.0075Q = , 

1γ β= = , 0.001φ = , 0.1σ = , Nutrient factor = 0.2, odd 

interval = 10, even interval = 50, 1 0ω = , 2 0ω = . 

 

Fig. 10 shows the behavior when the total time interval T is 

60 days, which is less than the natural 90 day period.  It can be 

seen that the behavior is periodic with the same period as the 

uptake function. 

 Fig. 11 shows the time series solution for the case where the 

total time interval T is 800 days or 1 year, which is much 

greater than the natural period of 90 days.  In this case, the 

nutrient concentration and the phytoplankton density appear to 

converge to the nontrivial equilibrium states corresponding to 

the upper and the lower amplitudes (compare Fig. 7). 

D. Periodic Step Function Nutrient Input with Sinusoidal 

Amplitude Variation 

We use the time varying input shown as case 2 in section 

IIID, i.e., 
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Fig. 11  The time series of the solution to the system for Lotka-

Volterra uptake function and step function with 0.0075Q = , 

1γ β= = , 0.001φ = , 0.1σ = , Nutrient factor = 0.2, odd 

interval = 300, even interval l= 500, 
1 0ω = , 

2 0ω = . 

 

1 1

2 2

(1 cos( )) / 2, [ , )
( )

(1 cos( )) / 2, [ , ( 1) )

m m
m

m m

t t mT mT
t

t t mT m T

α ω τ
λ

α ω τ
+ ∈ +

= 
+ ∈ + +

 

As in section C, in figure captions, the value of 
1α  is “Q”, the 

value of 2α  is “Nutrient factor times Q”, the value of τ is 

“odd interval” and the value of T τ−  is “even interval”. 

 Fig. 12 shows the behavior when the total time T is 360 

days.  The nutrient input is high for 60 days each year and low 

for 300 days.  It can be seen that the phytoplankton density 

shows peaks corresponding to algal blooms each year, but that 

the amplitude of the bloom varies each year depending on the 

actual level of nutrient input during the high input period.  

This response is similar to the observed data in Fig. 1.  
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Fig. 12  The time series of the solution to the system for Lotka-

Volterra uptake function and step function with 0.0075Q = , 

1γ β= = , 0.001φ = , 0.1σ = , Nutrient factor = 0.2, odd 

interval = 60, even interval = 300, 
1 0.15ω = , 

2 0.08ω = . 

 

 Fig. 13 shows the response when the period of the nutrient 

input function is short compared with the natural period and 

Fig. 14 shows the response when the period of the nutrient 

input function is long compared with the natural period. 
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Fig. 13  The time series of the solution to the system for Lotka-

Volterra uptake function and step function with 0.0075Q = , 

1γ β= = , 0.001φ = , 0.1σ = ,  Nutrient factor = 0.2, odd 

interval = 10, even interval = 50, 
1 0.1ω = , 

2 0.2ω = . 
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Fig. 14  The time series of the solution to the system for Lotka-

Volterra uptake function and step function with 0.0075Q = , 

1γ β= = , 0.001φ = , 0.1σ = , Nutrient factor = 0.2, odd 

interval = 300, even interval = 500, 1 2ω = , 2 1ω = . 

V. DISCUSSION AND CONCLUSIONS 

We have studied a nutrient-phytoplankton model both 

analytically and numerically. For constant nutrient input of 

sufficiently large amplitude, phytoplankton blooms can occur 

that initially fluctuate but then tend to a locally and globally 

stable equilibrium solution with nonzero nutrient concentration 

and phytoplankton density. The model shows that large 

nutrient increases are generally followed by bloom events. The 

effect of seasonal periodic nutrient has been studied 

numerically for three different types of input for a range of 

values for the periods of the inputs.  The three different types 

of periodic input are 1) sinusoidal, 2) step function with 

constant upper and lower amplitudes, 3) step function with 

time dependent upper and lower amplitudes. We have shown 

that the qualitative behavior depends on the ratio of the 

nutrient period to the natural damped oscillating period of the 

phytoplankton. For long-period nutrient input, the 

phytoplankton solutions show a series of blooms each similar 

to a constant-input bloom. For short-period input, the 

phytoplankton bloom is similar to the bloom produced by a 

constant input equal to the time-average of the periodic input.  

For inputs of type 1) and 2) and of similar period to the natural 

phytoplankton period, the blooms show initial fluctuations 

which are eventually replaced by blooms that closely follow 

the periodic behavior of the nutrient input.  In particular, the 

amplitudes of the bloom is the same in each period.  For inputs 

of type 3) of similar period to the natural period, the blooms 

again show initial fluctuations which are eventually replaced 

by blooms of similar period to the nutrient period, but the 

bloom amplitudes show random fluctuations with different 

amplitudes at each period.  In all cases, maxima and minima in 

phytoplankton densities follow after maxima and minima for 

nutrient concentrations.  The closest agreement between the 

observed blooms in Fig. 1 and the model behavior occurs for 

inputs of type 3) with nutrient input periods comparable with 

the natural transient decay period of the phytoplankton.  
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