
 

 

  
Abstract—This study attempts to obtain a set of human 

comprehensible fuzzy if-then rules for the detection of currency 

crises from Support Vector Machine (SVM). SVM is used with 

explanatory variables known to be associated with currency crises to 

detect occurrences of currency crises. Fuzzy if-then rules are then 

obtained from the SVM through our novel rule extraction method 

which is called Support Vector Space Expansion (SVSE) method in 

order to unveil human comprehensible patterns behind SVM black-

boxed system decision. The overall results of detection of currency 

crises of the fuzzy if-then rules are comparable to those from the 

SVM, and the if-then rules obtained may be used by financial experts 

to try to explain patterns of related financial statuses when currency 

crises occur, plus the if-then rules can also be easily incorporated into 

a software program using any popular computer language. 

 

Keywords—Currency Crises, Fuzzy Rule Base, Rule Extraction, 

Support Vector Machine.  

 

I. INTRODUCTION 

ule extraction methods are used to obtain fuzzy if-then 

rules from artificial neural networks (ANN) and SVM 

[1], [5]. SVM [4], [12], has been shown to outperform ANN in 

classification in many applications [18], so the if-then rules 

obtained from SVM should be superior to rules obtained from 

ANN in many applications. Methods for SVM rule extraction 

can be either pedagogical or decompositional. Pedagogical 

techniques are those that try to relate inputs with outputs 

without making use of system structure, but decompositional 

techniques do make use of structure of the system.  

We have proposed a decompositional rule extraction 

technique from SVM in our recently published paper [16] 

which we will now call it Support Vector Space Expansion 

(SVSE) rule extraction method. Unlike other rule extraction 

methods from SVM, our technique makes use of strength of 

firing signals of support vectors partly similar to the way the 

original SVM makes decision, then each support vector 

expands its space to cover non-support vectors with the 

strongest Gaussian kernel function values. SVSE also 

guarantees that the number of final rules is equal or less than 

the number of support vectors obtained by SVM. We have 

 
P. Pitiranggon is with King Mongkut’s Institute of Technology 

Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok 10520, Thailand ( 

phone: +668-1303-6484; e-mail: prasan.pitiranggon@hotmail.com).  

S. Banditvilai is with King Mongkut’s Institute of Technology Ladkrabang 

(e-mail: kbsomsri@kmitl.ac.th). 

N. Benjathepanun is with King Mongkut’s Institute of Technology 

Ladkrabang (e-mail: kbnunthi@kmitl.ac.th). 

 

 

validated our method against SVM using 5 benchmark data 

sets and found that the classification power of the SVSE is 

comparable to SVM. 

In this study, we are trying to apply SVSE to a non-

benchmark data; specifically, we want to use SVSE with 

financial data to predict currency crises [6].  

There have been studies in the field of currency crises since 

the 1970’s. Three models have been widely accepted to 

explain different currency crises occurred around the world 

[13], [15], [17]. The first model is based on the study of 

Krugman in 1979; it is used to explain currency crises in some 

countries in Latin America in 1970’s to 1980’s. The second 

model is based on the study of Obstfeld in 1994; it is used to 

explain currency crises in some countries in Europe in 1992 

and Mexico in 1994. The third model is used to explain 

currency crises in some countries in Asia in 1997 to 1998. 

Many indicators and indices are believed to be statistically 

linked to these models. Through these variables, researchers 

have used many techniques to come up with the most accurate 

detection systems. These techniques involve traditional 

statistical methods [17], ANN [15], and more recently SVM 

[2] [8].  

Either ANN or SVM does not reveal clearly to human 

comprehension how it makes decision; this is known as black-

boxed characteristic [1], [11]. There is a need to have fuzzy if-

then rules for the decision in order to make human expert 

understand the decision, so we will extract how SVM makes 

each decision in the form of if-then rules, through which we 

will predict whether there is a currency crisis or no crisis in a 

particular year. 

II. BACKGROUND 

This study uses SVM classifier with data from countries in 

Latin America and Asia [17] to detect currency crises during 

1980 to 2002. The data used are 11 explanatory variables 

which have been shown in the past to be significantly 

associated with the occurrences of currency crises. 

The 11 explanatory variables are:  

1) Overvaluation of real exchange rate (OVERRER) 

2) Liquid liabilities of monetary authority and commercial 

banks to foreign reserves (M2_FR) 

3) Dummy for capital liberalization (LIBDUM_FORI) 

4. Dummy for the ratio of short-term debts to foreign 

reserves (DUMST_FR) 

5. Ratio of external debt to Gross National Income 

(EXD_GNI) 

6. Current account as a percentage of Gross Domestic 

Product (CA_GDP) 
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7. Domestic credit growth (CREGROW) 

8. Growth rate of Gross Domestic Product (GDPGROW) 

9. Lending boom as a percentage change of ratio of financial 

system claims on private sector relative to Gross Domestic 

Product over four-year period (LB) 

10. Capital inflows reversal (KAREVS) 

11. Dummy for regional contagion effect (CONT) 

 

Even though SVM can detect currency crisis patterns, the 

way it makes decision is not obvious to human 

comprehension. So our novel decompositional rule extraction 

method, SVSE, is used to reveal human comprehensible if-

then rules in this study. It uses each support vector to pair 

with each non-support vector to select the strongest firing 

signal among the support vectors and expand the coverage in 

input space until no more non-support vectors left to pair 

with. Other studies on rule extraction techniques for SVM 

using decompositional techniques are SVM + Prototype [14] , 

Tree related method [3] , and Cubes and separating 

hyperplane method [7], while the ones using pedagogical 

techniques are Iter [9] and Minerva [10]. 

The SVM + Prototypes algorithm is an iterative process 

that starts by training an SVM to obtain support vectors. It 

then uses a clustering algorithm to find new subsets and 

calculate the centroid of each cluster in low dimensional 

space. For each centroid, it finds the support vector located 

farthest from the prototype and uses the prototype as center 

and the support vector as vertex to create a hypercube in the 

input space. Then a partition test on each of the hypercubes is 

performed. This partition test is performed to minimize the 

level of overlapping between cubes for which the predicted 

class is different. If all subsets are processed, the algorithm 

converts all of the current hypercubes into rules. Ellipsoids 

can also be used in place of hypercubes. For another 

decompositional technigue, decision tree is used. This tree 

related method makes use of the information provided by the 

support vectors and the parameters associated with them. In 

the first stage which is a learning stage, the approach handles 

the rule-extraction by using labeled patterns to train an SVM 

and get an SVM model as a classifier with acceptable 

accuracy. In the second stage which is a rule generation stage, 

the objective is to express the concepts learned by the model in 

a comprehensible form. The steps are firstly select the patterns 

that become support vectors but discard their class label, then 

use the SVM model to predict the class label of those patterns, 

hence a special synthetic data set is generated. Finally the 

synthetic data set is used to train a machine learning technique 

with explanation capability; hence symbolic rules that 

represent the concepts learned by the SVM model are 

generated. Cubes and Separating Hyperplane method is the 

last decompositional technique mentioned. In this method, all 

input data are transformed into square observations in the 

interval 0 to 1. Then the method searches for a cube with one 

vertex on the separating hyperplane and the other located in 

the region below the separating hyperplane. Optimal cubes 

can be found from these cubes in two ways − volume 

maximization and point coverage maximization. The optimal 

cube divides the region below the separating hyperplane into 

two new regions − region above and on the right hand side of 
the cube. For an N-dimensional input space, one rule will 

create N new regions.  Then a new optimal cube is found 

recursively for each new region. The algorithm stops after a 

predefined maximum number of iterations.   

Iter is the first pedagogical method for SVM rule extraction 

mentioned. The main idea of the algorithm is to iteratively 

expand a number of hypercubes until they cover the entire 

input space. The algorithm starts with the creation of a user 

defined number of random starting cubes. These cubes 

correspond to points in the input space. In each iteration, the 

following steps are executed. Firstly, for each hypercube and 

for each input dimension, the algorithm calculates how far the 

cube can be expanded to both extremes of the dimension 

before it intersects with another cube; these distances are 

called LowerLimit and UpperLimit. Secondly, for each 

hypercube and for each input dimension, the algorithm 

calculates the size of the update. The update equals a user-

specified constant, unless this size would result in overlapping 

cubes. If this is the case then the update is smaller such that the 

two blocks become adjacent. Thirdly, for each hypercube and 

for each input dimension, the algorithm creates two temporary 

cubes adjacent to the original cube along the opposite sides of 

each input dimension with a width of update value from the 

second step. For each of both cubes, the algorithm creates a 

number of random points lying within the cube and calculates 

the mean prediction for these points according to the trained 

continuous regression model. The difference between each of 

both means and the mean prediction for the original cube 

respectively are called LowerDiff and UpperDiff. Lastly find 

the global minimum over all cubes of these differences and 

combine the temporary cube for which the difference was 

minimal with its original cube. The mean prediction for this 

cube is updated, and all other temporary cubes are removed. 

Each of these cubes can then be converted into a rule of the 

following form: 

 

if Var 1 ∈ [Value1Low ,Value1High] and Var 2 ∈ 

[Value2Low,Value2High] 

. . . and Var M ∈ [ValueMLow,ValueMHigh] then predict 

some Constant 
 

where M is the dimension of the input space. Minerva is the 

other pedagogical method for SVM rule extraction mentioned. 

Minerva is similar to sequential covering algorithm. The 

covering algorithm extracts a rule set by learning one rule first, 

removing the input data covered by that rule, and iterating on 

the remainder of the data. Starting from an empty rule set, the 

sequential covering algorithm first looks for a rule that is 

highly accurate for predicting a certain class. If the accuracy of 

this rule is above a user-defined threshold, the rule is added to 

the set of already found rules, and the algorithm is repeated 
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over the rest of the inputs that were not correctly classified by 

this rule. If the accuracy of the rule is below this threshold, the 

algorithm ends. Because the rules in the rule set can be 

overlapping, the rules are first sorted according to their 

accuracy on the training data before they are returned to the 

user. In Minerva, there are differences compared to the 

sequential covering algorithms above; the most important one 

is that the rules are required to be non-overlapping. Another 

difference is that other sequential covering algorithms stop if 

the performance of the rule is below a certain threshold. 

For our technique, we look for unbounded support vectors 

which are the data points used as base locations to define 

separating hyperplane (Fig. 1). Then fuzzy if-then rules can be 

generated around support vectors based on firing strength to 

form our Fuzzy Rule Base (FRB) rules, e.g., IF x > c1 AND x 

< c2 THEN y = d. The rules are modified further by 

combining completely coincided ranges among the if-then 

conditionals using a fuzzy logic process called input scatter 

partitioning, and this set of rules is our final set needed. 

 

III. METHOD 

Data Source for Currency Crisis Study  

1) International Financial Statistics CD-ROM (IFS), IMF  

2) Direction of Trade Statistics Year Books and CD-ROM 

(DOTS), IMF  

3) Balance of Payment Statistics Year Books (BOP), IMF  

4) World Development Indicators CD-ROM (WDI), The 

World Bank  

5) Global Development Finance CD-ROM (GDF), The 

World Bank  

6) Exchange Arrangements and Exchange Restrictions 

Annual Report (EAER), IMF  

7) Consolidated Banking Statistics (CBS), Bank for 

International Settlements (BIS)  

8) Joint BIS-IMF-OECD-World Bank Statistics on External 

Debt (Joint-SED)  

9) Die Falligkeitsverteilung der Internationalen 

Bankausleihung (FIB), BIS  

10) Key indicators of developing Asian and Pacific 

countries, Asian Development Bank (ADB)  

 

Countries selected for this study:  

Argentina (Arg), Bolivia (Bol), Chile (Chi), Ecuador (Ecu), 

Mexico (Mex), Paraguay (Par), Peru (Per), Uruguay (Uru), 

Venezuela (Ven), India (India), Indonesia (Indo), Korea (Kor), 

Malaysia (Mal), Pakistan (Pak), Philippines (Phi), 

Singapore(Sin), Sri Lanka (Slk), and Thailand (Thai)  

 

Data Preparation 

This study follows the empirical implementation proposed 

by Esquivel and Larrain in 1998 [6]. The crises are required to 

be at least five months apart, i.e., a country could have a 

maximum of two crises per year. Most of the explanatory 

variables entered in lagged form due to the purpose of the 

study to interpret the empirical results as the one-period-ahead 

probability of a currency crisis. The explanatory variables can 

be classified into two types. Firstly, the stock variables, whose 

units are measured at one point in time and are observed every 

month. The variables in this first group are OVERRER, 

M2_FR, LIBDUM*FORI, DUMST_FR, and EXD_GNI. 

Secondly, the flow variables, whose units are measured per 

unit of time, are observed, in this case, on yearly basis. The 

variables in this group are CA_GDP, CREGROW, 

GDPGROW, LB, KAREVS, and CONT. All variables are 

entered in lagged form for one period except CONT which is 

contemporaneous. When a crisis occurs late in year t and one 

tries to use the explanatory variables of year t-1 to explain this 

crisis, sometimes many of explanatory variables change 

abruptly in the months before the collapse, and there was real 

evidence from changes in some of the explanatory variables, 

e.g. RER and foreign reserves, only a few months before the 

collapse. With respect to the stock variables if the crisis occurs 

late in year t (period “b” of year t), we should assume that the 

crisis occurred early in year t+1, and instead of taking the 

year-end value as usual, we take the mid-year value of year t to 

explain the crisis occurring in this particular period. This 

adjustment is made only for the stock explanatory variables. 

Esquivel and Larrain suggest that we should consider the 

characteristics of the flow variable, which indicates the change 

of a variable during one period in time, e.g., changing of the 

CA_GDP in year t. For these flow variables the year end value 

of year t-1 is to explain the crisis occurs in year t, even if it 

takes place in period “b” of year t. This adjustment should 

provide more accuracy for the study, which attempts to 

estimate the impact of the explanatory variables on the one-

period-ahead probability of crisis on yearly basis.   

 
SVM Classification  

We are given an input of Q  data points { },),( ii dX  

Qi ,,1…=  with input data 
n

ix ℜ∈  and binary class labels 

{ },1,1 +−∈id  the SVM classifier satisfies the following 

conditions:  

,1)(. 0 ii wXW ξ−+≥+Φ     1+=id         (1) 

,1)(. 0 ii wXW ξ+−≤+Φ     1−=id         (2) 

where W  is weight vector, and the 0w  is a bias constant 

value; the two values are obtained from training the SVM. 

The function )(•Φ  is a non-linear function which maps the 

low dimensional input space into high dimensional space. The 

1+=id  means the output is the class we want to identify, 

and the 1−=id  means the output is the other class. The 
iξ  

is a slack variable to allow misclassification. The separating 

hyperplane, which is the dividing line between the two 

classes, is represented by an equation:  

0)(. 0 =+Φ wXW i                    (3) 
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The margin between the two classes (Fig. 1) can be 

maximized by minimizing:  

∑
=

+
Q

i

iCW
1

2

2

1
ξ                     (4) 

subject to  

[ ] ,01)(. 0 ≥+−+Φ iii wXWd ξ  Qi ,,1…=          (5)

 0≥iξ                       (6) 

 

Separating hyperplane ),0)(.( 0 =+Φ wXW i  which is 

used in main classification decision and formed from two 

boundaries - class 1 boundary )1)(.( 0 +=+Φ wXW i
 and 

class 2 boundary )1)(.( 0 −=+Φ wXW i
  is shown in Fig. 

1. Class 1 boundary is formed from unbounded support 

vectors of class 1 (represented as circles in Fig. 1), and class 2 

boundary is formed from unbounded support vectors of class 

2 (represented as squares in Fig. 1). Margin is a distance 

between the two boundaries which is equal to .
2

W
 Bounded 

support vectors are support vectors which are not on the class 

boundary but are closer to the separating hyperplane. 

Misclassification vector of class 1 

)1)(.( 0 ii wXW ξ−+≥+Φ  is a vector which is 

considered to be class 1 even though it is located at a distance 

iξ−1  (or less) beyond separating plane into class 2 

hyperspace. Misclassification vector of class 2 

)1)(.( 0 ii wXW ξ+−≤+Φ  is a vector which is 

considered to be class 2 even though it is located at a distance 

iξ−1  (or less) beyond separating plane into class 1 

hyperspace.  

 

 
Fig. 1. Bounded and unbounded support vectors, misclassification 

vectors, and separating hyperplane 

 

The part involving 
2

W  in the function maximizes the 

margin between the two classes in the feature space while the 

part involving C  and iξ  minimizes the misclassification 

error. The positive real constant C  is a penalty parameter for 

misclassification. The Lagrangian with primal variables to the 

constraint optimization problem is given by 

=ΓΛ ),,,,( 0 ξwWLP  

++ ∑
=

Q

i

iCW
1

2

2

1
ξ       

[ ][ ] ∑∑
==

−+−+Φ
Q

i

iiiii

Q

i

i wXWd
1

0

1

1)(. ξγξλ                (7) 

where ,),,( 1

T

Qλλ …=Λ  ,0≥iλ  ,),,( 1

T

Qγγ …=Γ  

0≥iγ are the Lagrange multiplier vectors. The solution to 

the optimization problem is given by the saddle point of the 

Lagrangian where all partial derivatives with respect to 

,W ,0w  and iξ  go to zero. The Karush-Kuhn-Tucker 

complementary conditions, 

[ ] ,01))(.( 0 =+−+Φ iiii wXWd ξλ  Qi ,,1…=    (8) 

must also be satisfied.    

This gives dual form of (7): 

∑∑∑
= ==

ΦΦ−=Λ
Q

i

Q

j

jijiji

Q

i

iD XXddL
1 11

))().((
2

1
)( λλλ    (9) 

where ),())().(( jiji XXKXX =ΦΦ  is called a kernel 

function. The kernel function must satisfy Mercer’s Condition 

which is an existence of a mapping )(XΦ  and an expansion 

of a symmetric kernel function, 

∑ ΦΦ=
k

jkikji XXXXK ))().((),(       (10) 

iff 

∫ ∫ ≥ 0)()(),( jijiji dXdXXgXgXXK     (11) 

For all g(X) such that 

∞<∫ dXXg )(2                (12) 

There are a few kernel functions which satisfy Mercer’s 

Condition. In this study, we use Gaussian kernel because it 

will make the creation of equivalent fuzzy rule-based system 

possible, and it has been proved to satisfy Mercer’s 

Condition. 

 

To get support vectors, we need to maximize (9) subject to: 

∑
=

=
Q

i

iid
1

0λ                  (13) 

QiCi ,,1;0 …=≤≤ λ             (14) 

Any input vector with non-zero Lagrange multiplier is a 

support vector. 

There are two kinds of support vectors – bounded and 

unbounded (Fig. 1). The unbounded support vectors are the 

ones used for defining the separating hyperplane. These 
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unbounded support vectors guarantee maximal margin 

between the two classes; in terms of calculations, they have 

Lagrange multipliers greater than zero but less than the penalty 

parameter ).;0( CC ii <> λλ  The bounded support vectors 

are the ones closer to the separating hyperplane than the 

unbounded support vectors, so these vectors geometrically 

bound the two classes; they have Lagrange multipliers equal to 

the penalty parameter ).;0( CC ii => λλ  

One last parameter we need before reaching our final 

classifier equation is: 









−= ∑

=

m

k

k

k

XW
dm

w
1

0 ).
1

(
1

          (15)                    

where m = number of unbounded support vectors and  

∑
=

=
N

k

kkk XdW
1

λ                (16) 

where N  = number of all support vectors 

 

We can now get the final classifier:  

∑
=

+=
N

i

isii wXXKdsignXy
1

0 )).(()( λ      (17) 

where sX  = unbounded support vector 

This final equation is used in the SVM detection of currency 

crises. The unbounded support vectors obtained earlier are 

used in the rule generation step. 

 

Rule Extraction 

A. Rules Generation Based on Firing Strength 

The purpose of this step is to generate preliminary rules 

based on the strongest firing signals associated with 

unbounded support vectors in high dimensional space. 

In Fig. 2, all input patterns are entered into system one at a 

time. Gaussian kernel function as a membership function is 

calculated between current input and each of the support 

vectors, and the highest value is considered the strongest 

signal which will be the only one fired, and the rest will be 

ignored. The fired row then stores cumulative min and max 

value which will be replaced by new min or new max if it 

occurs. After all input patterns have been entered, min and 

max values in each row will be used as a range in conditional 

of each if-then rule.  

Schematic diagram for implementing rule generation from 

unbounded support vectors found from previous step is shown 

in Fig. 2; Xi is input vector, and Ai is Gaussian kernel function 

of unbounded support vector and input vector. 
 

 

 
 

Fig. 2. Rules generation algorithm based on kernel firing strength 
 

The final min and max values of each row are used as a 

range of the newly generated if-then rules. The if-then 

statements are in the form: 

 

Rule 1: If (x11 > a11- AND x11 < a11+) AND (x12 > a12- AND x12 

< a11+) AND … (x1n > a1n- AND x1n < a1n+) THEN y = v1 

Rule 2: If (x21 > a21- AND x21 < a21+) AND (x22 > a22- AND x22 

< a21+) AND … (x2n > a2n- AND x2n < a2n+) THEN y = v2 

Rule 3: If (x31 > a31- AND x31 < a31+) AND (x32 > a32- AND x32 

< a31+) AND … (x3n > a3n- AND x3n < a3n+) THEN y = v3 

. 

. 

. 

Rule N: If (xN1 > aN1- AND xN1 < aN1+) AND (xN2 > aN2- AND 

xN2 < aN2+) AND … (xNn > aNn- AND xNn < aNn+) THEN y = vN 

 

where aij- are lower range values (cumulative min) and aij+ are 

upper range values (cumulative max) in ℜ . N is the total 

number of unbounded support vectors, and n is the dimension 

of input vectors.        

B.  Input Scatter Partitioning 

The purpose of this step is to reduce generated rules and 

refine rule extraction in low dimensional space. We can 

combine many if-then statements from previous step together 

as long as it does not cause misclassification. Algorithm’s 

pseudo code for input scatter partitioning is: 

 

[Pre-loop condition: IF-THEN rules equal to total number of 

support vectors] 

FOR i = 1 TO N  

[N = total number of generated rules] 

      IF rule i was eliminated THEN NEXT i 

            DO WHILE (no class overlap from another class) or 

(maximum value or minimum value of the input data set 

reached) 

                  Expand ranges of IF-THEN conditional at i by a 

small value (less than 10% of min value of an attribute) 

           IF there is class overlap GOTO END WHILE 

                  END IF 

            END WHILE 

      END IF 
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NEXT i 

FOR i = 1 TO N 

      DO WHILE (there are still rules to merge for this i) 

            IF two ranges coincide then merge the two rules by 

retaining the larger ranges 

            END IF 

      END WHILE 

NEXT i 

[Post-loop condition: Number of IF-THEN rules are the same 

or less than rules in pre-condition] 

 

We can use set membership symbol in place of greater than 

and less than signs as our final form of rules. 

 

IF x11 ∈ [a11-, a11+] AND x12 ∈ [a12-, a12+] AND … x1n ∈ [a1n-, 

a1n+] THEN y = v1 

IV. RESULTS 

We perform classification using both SVM and our fuzzy if-

then rules on Latin America compared to Asia data sets.  Ten-

fold cross validation technique is used in each data set to 

evaluate effectiveness of the classification. 

Results from each data set are average number of unsigned 

support vectors (USV), average percent error from SVM, 

average number of rules from our method, and average percent 

error from our method, and the classification results are shown 

in Table I. SVM performs classification with less error in Asia 

data set than our method, but our method performs better in 

Latin America data set.  

 
TABLE I 

COMPARISON OF ERRORS FROM SVM AND SVSE RULES 

Data 

 

SVM SVSE Rules 

Avg USV %Error Avg Rules %Error 

Latin 33.90 29.47 33.90 28.02 

Asia 14.70 10.63 14.70 15.46 

 

 The main reason why percent errors in SVM are different 

from our method is because of the misclassification vectors in 

the input data. SVM makes use of USV from both class 1 and 

class 2 to make classification decisions, but our method uses 

only USV from class 1. If there is more misclassification 

vectors in class 1 region in hyperspace, our method performs 

worse than SVM. But if there is more misclassification vectors 

in class 2 region in hyperspace, SVM performs worse than our 

method. 

 

 The final if-then rules obtained by our rule extraction 

method for Latin America entire data set, and the final if-then 

rules for Asia entire data set are shown in appendix. 

 

V. CONCLUSION 

The results of our empirical study have shown that the 

SVSE method can outperform SVM decisions in the Latin 

America data set, but under perform in the Asia data set. 

Percent errors of the two methods are not significantly 

different. It can be concluded that the results of the errors from 

the two methods are comparable, just like the results from 5 

benchmark data sets in our previously published paper [16]. 

The SVSE method is shown to be a good method for rule 

extraction from SVM in currency crisis application and has an 

advantage over the decision method of SVM by revealing 

reasons behind the decision. And this makes it more attractive 

to be used in classification or prediction whenever we want to 

have insight into the way classification decision is made.  The 

if-then rules obtained can be easily incorporated into a 

computer program using any popular computer language. 

A suggestion for future study is to use data sets from other 

applications in order to obtain useful human comprehensible 

rules extracted from the pattern classification by SVM in 

different expert domains.  

APPENDIX 

 

The final form of fuzzy if-then rules is in the form: 

 

IF x1 ∈ [a1-, a1+] AND x2 ∈ [a2-, a2+] AND … x11 ∈ [a11-, a11+] 

THEN y = crisis occurs 

 

Where xi is one of the 11 parameters from our data set; ai- is 

the lower range of each parameter, and ai+ is the upper range of 

each parameter. 

 

In order to save space, we present the rules in the format: 

 

Rule no. [a1-, a1+]  [a2-, a2+]  [a3-, a3+] 

    [a4-, a4+]  [a5-, a5+]  [a6-, a6+] 

    [a7-, a7+]  [a8-, a8+]  [a9-, a9+] 

    [a10-, a10+]  [a11-, a11+] 

 

Final fuzzy rules for currency crises for Latin America data 

set: 
 

1.  [0.06, 1.06],   [4.16, 10.66],  [0.00, 12.60], 

[1, 1],     [0.01, 0.41],   [-4.08, -0.18], 

[41, 171],    [-1.85, 11.15],  [-110, 226], 

[443, 3823],   [1, 1] 

2.  [-0.61, 1.09],  [2.88, 11.38],  [0.00, 14.40], 

[1, 1],     [-0.06, 0.44],  [-5.18, -0.08], 

[106, 276],   [-12.69, 3.31],  [-89, 247], 

[-1130, 3290],  [1, 1] 

3.  [-0.61, 0.49],  [1.87, 8.87],   [0.00, 12.60], 

[1, 1],     [-0.06, 0.44],  [-4.89, -0.69], 

[150, 290],   [-10.96, 2.04],  [-85, 251], 

[1767, 5147],  [1, 1] 

4.  [-0.60, 0.58],  [4.43, 10.33],  [0.00, 9.00], 

[1, 1],      [-0.07, 0.50],  [-3.33, 3.89], 

[10, 631],    [-1.79, 8.61],  [-84, 207], 

[-4396, -1348], [1, 1] 

5.  [-0.68, 1.02],  [5.37, 15.37],  [0.00, 14.40], 

[0, 1],     [-0.05, 0.45],  [-6.89, -0.89], 

[114, 294],   [-6.09, 11.91],  [-94, 242], 
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[-2030, 2650],  [1, 1] 

6.  [-0.60, 1.10],  [0.86, 56.36],  [0.00, 14.40], 

[0, 1],     [-0.06, 0.44],  [-14.60, 6.70], 

[379, 7229],   [-12.50, 11.50], [-126, 210], 

[-15208, 26392], [0, 1] 

7.  [-0.60, 1.10],  [1.09, 18.59],  [0.00, 14.40], 

  [0, 1],     [-0.06, 0.44],  [-6.08, 6.82], 

  [378, 988],   [-12.40, 11.60], [-120, 216], 

  [-9999, 5861],  [0, 1] 

8.  [-0.65, 1.05],  [1.01, 28.51],  [0.00, 14.40], 

  [0, 1],     [0.00, 0.50],   [-14.68, 6.62], 

  [-31, 459],   [-12.41, 11.59], [-101, 235], 

  [9126, 26286],  [0, 1] 

9.  [-0.65, 1.05],  [7.02, 17.02],  [0.00, 14.40], 

  [1, 1],     [-0.06, 0.44],  [-10.36, -4.96], 

  [-33, 117],   [-8.72, 9.28],  [-83, 253], 

  [-2751, 1929],  [1, 1] 

10. [-0.30, 0.64],  [1.28, 13.46],  [0.00, 7.20], 

  [1, 1],     [-0.03, 0.45],  [-3.99, -0.04], 

  [131, 398],   [-7.04, 1.44],  [-97, 198], 

  [-1049, 1545],  [1, 1] 

11. [-0.65, 1.05],  [0.83, 33.33],  [0.00, 14.40], 

  [0, 1],     [-0.01, 0.49],  [-14.68, 6.62], 

  [378, 1628],   [-12.20, 11.80], [-81, 255], 

  [-15143, 15797], [0, 1] 

12. [-0.61, 1.09],  [0.80, 56.30],  [0.00, 14.40], 

  [0, 1],     [-0.02, 0.48],  [-14.59, 6.71], 

  [377, 5007],   [-12.68, 12.32], [-107, 229], 

  [-15285, 26315], [0, 1] 

13. [-0.65, 1.05],  [1.01, 9.51],   [0.00, 14.40], 

  [0, 1],     [-0.05, 0.45],  [-14.50, -10.90], 

  [-31, 149],   [-7.26, 11.74],  [-128, 208], 

  [-4647, 1593],  [0, 1] 

14. [-0.61, 1.09],  [0.97, 8.97],   [0.00, 14.40], 

  [0, 1],     [0.00, 0.40],   [-14.28, -7.68], 

  [-30, 160],   [-3.03, 11.97],  [-116, 220], 

  [-5744, -544],  [0, 1] 

15. [-0.13, 0.37],  [3.87, 10.56],  [3.88, 15.73], 

  [1, 1],     [0.15, 0.49],   [-8.84, 1.08], 

  [-5, 50],    [-1.57, 5.36],  [-44, 132], 

  [-545, 783],   [1, 1] 

16. [-0.69, 0.51],  [1.12, 7.62],   [0.00, 14.40], 

  [1, 1],     [-0.03, 0.47],  [-13.38, -9.18], 

  [-24, 56],    [-9.15, 4.85],  [-124, 212], 

  [-2644, 996],  [1, 1] 

17. [-0.66, 0.14],  [2.44, 6.44],   [1.54, 14.14], 

  [1, 1],     [0.01, 0.41],   [-7.69, -5.59], 

  [-28, 32],    [5.37, 11.37],  [-114, 126], 

  [-357, 1463],  [1, 1] 

18. [-0.66, 0.94],  [0.70, 7.20],   [-0.11, 14.29], 

  [1, 1],     [0.02, 0.42],   [-11.12, -6.92], 

  [-32, 88],    [-4.89, 9.11],  [-82, 254],  

[-3282, 358],  [0, 0] 

19. [-0.67, 0.83],  [0.72, 7.22],   [-0.95, 15.25], 

  [0, 1],     [0.01, 0.41],   [2.51, 6.71], 

  [-31, 89],    [-12.30, 3.70],  [-93, 243], 

  [451, 5131],   [0, 0] 

20. [-0.66, 1.04],  [5.25, 34.25],  [-0.46, 15.74], 

  [0, 1],     [-0.02, 0.48],  [-14.59, 2.21], 

  [-27, 343],   [-12.23, 11.77], [-89, 247], 

  [-15093, -7813], [0, 1] 

21. [-0.68, 1.02],  [3.26, 56.26],  [0.00, 14.40], 

  [0, 1],     [-0.01, 0.49],  [-14.50, 6.80], 

  [-25, 685],   [-12.63, 11.37], [-88, 248], 

  [9118, 26278],  [0, 1] 

22. [-0.68, 1.02],  [0.69, 24.69],  [0.00, 14.40], 

  [0, 1],     [0.02, 0.42],   [-14.55, 3.45], 

  [-27, 383],   [-12.58, 11.42], [-100, 236], 

  [9133, 26293],  [0, 1] 

23. [-0.63, 1.07],  [1.02, 41.02],  [0.00, 14.40], 

  [0, 1],     [0.02, 0.42],   [-14.65, 6.65], 

  [-33, 687],   [-12.17, 11.83], [-114, 222], 

  [9114, 26274],  [0, 1] 

24. [-0.45, 0.75],  [0.77, 4.27],   [0.00, 10.80], 

  [0, 0],     [-0.06, 0.44],  [-7.53, -4.53], 

  [-24, 66],    [6.36, 11.36],  [-82, 254], 

  [-1385, 1216],  [0, 0] 

25. [-0.35, 0.65],  [0.76, 4.76],   [-0.31, 15.89], 

  [0, 0],     [0.03, 0.43],   [-5.32, -2.32], 

  [-30, 70],    [-7.02, 0.98],  [-90, 198], 

  [-989, 1091],  [1, 1] 

26. [-0.28, 0.10],  [0.91, 3.67],   [0.00, 3.37], 

  [0, 0],     [-0.06, 0.15],  [-7.05, -3.18], 

  [6, 44],     [-1.00, 7.35],  [-28, 47], 

  [-238, 555],   [1, 1] 

27. [-0.69, 1.11],  [3.86, 21.36],  [0.00, 14.40], 

  [0, 1],     [-0.03, 0.47],  [-10.50, 0.00], 

  [367, 717],   [-11.70, 9.30],  [-106, 230], 

  [-4467, 4633],  [0, 1] 

28. [-0.69, 1.01],  [0.77, 56.27],  [0.00, 14.40], 

  [0, 1],     [-0.04, 0.46],  [-14.65, 6.65], 

  [383, 3393],   [-11.70, 12.30], [-97, 239], 

  [-15320, 26280], [0, 1] 

29. [-0.63, 1.07],  [0.95, 55.95],  [0.00, 14.40], 

  [0, 1],     [-0.04, 0.46],  [-14.80, 6.80], 

  [375, 7235],   [-12.14, 11.86], [-99, 237], 

  [-15310, 26290], [0, 1] 

30. [-0.64, 1.06],  [21.90, 55.90],  [-0.30, 14.10], 

  [0, 1],     [-0.01, 0.49],  [-14.53, 6.77], 

  [-31, 809],   [-11.76, 12.24], [-125, 211], 

  [-15254, 17506], [0, 1] 

31. [-0.32, 0.28],  [1.74, 4.74],   [-1.76, 7.24], 

  [0, 0],     [-0.06, 0.44],  [-3.53, -1.73], 

  [-22, 38],    [-5.39, -1.39],  [0, 192], 

  [-247, 793],   [1, 1] 

32. [-0.11, 0.45],  [1.50, 7.73],   [7.39, 11.26], 

  [1, 1],     [0.02, 0.46],   [1.28, 6.55], 

  [-3, 83],    [-4.76, 2.10],  [-83, 63], 

  [-48, 2448],   [1, 1] 

33. [-0.45, 0.13],  [2.15, 5.01],   [0.00, 3.60], 

  [1, 1],     [0.06, 0.46],   [-5.47, -3.25], 

  [-24, 42],    [3.07, 7.59],   [-70, 66], 

  [-1736, 338],  [1, 1] 

34. [-0.09, 0.57],  [1.48, 5.53],   [0.00, 3.60], 

  [1, 1],     [-0.03, 0.50],  [-10.22, -4.24], 

  [30, 166],    [4.84, 9.00],   [-97, 55], 
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  [120, 2400],   [1, 1] 

35. [-0.13, 0.47],  [0.85, 3.85],   [0.00, 5.40], 

  [0, 0],     [-0.05, 0.45],  [-4.22, -2.42], 

  [-3, 57],    [-2.75, 3.25],  [-118, 122], 

  [210, 1510],   [0, 0] 

36. [0.02, 0.60],   [1.16, 2.35],   [0.00, 3.79], 

  [0, 0],     [-0.05, 0.21],  [-4.65, 2.90], 

  [17, 168],    [1.17, 4.97],   [-105, 63], 

  [-3313, 20],   [1, 1] 
 

Final fuzzy rules for currency crises for Asia data set: 
 

1.  [-0.30, 0.30],  [51.91, 88.41],  [0.00, 9.00], 

  [0, 1],     [-0.09, 3.81],  [-8.47, 15.83], 

  [-16, 53],    [-8.19, 8.81],  [-102, 137], 

  [-3775, 20924] , [0, 1] 

2.  [-0.31, 0.29],  [0.56, 9.56],   [-1.00, 8.00], 

  [1, 1],     [-0.05, 0.95],  [-8.34, -2.94], 

  [-13, 46],    [-7.90, 9.10],  [-69, 122], 

  [-3761, -1681], [1, 1] 

3.  [-0.22, 0.28],  [0.92, 7.92],   [-1.66, 9.14], 

  [1, 1],     [-0.02, 0.78],  [-6.63, -2.43], 

  [-12, 47],    [-1.04, 8.96],  [-82, 157], 

  [-3955 ,-835],  [1, 1] 

4.  [-0.27, 0.23],  [0.71, 13.21],  [0.00, 9.00], 

  [0, 1],     [0.00, 1.50],   [-6.17, 1.63], 

  [-11, 48],    [-8.30, 8.70],  [-74, 117], 

  [8070, 14830],  [0, 1] 

5.  [-0.32, 0.14],  [2.95, 22.78],  [0.00, 1.80], 

  [0, 0],     [0.01, 0.19],   [-2.40, 4.43], 

  [10, 29],    [0.79, 6.50],   [-60, 81], 

  [-3697, 995],  [1, 1] 

6.  [-0.29, 0.21],  [2.40, 11.40],  [0.00, 9.00], 

  [1, 1],     [-0.06, 1.04],  [-8.57, -3.77], 

  [-14, 55],    [-1.94, 9.06],  [-90, 149], 

  [-4004, -1144], [0, 0] 

7.  [-0.26, 0.24],  [0.71, 51.71],  [0.00, 9.00], 

  [0, 1],     [0.00, 3.80],   [-8.48, 15.82], 

  [-16, 53],    [-7.99, 9.01],  [-75, 116], 

  [9719, 33119],  [0, 1] 

8.  [0.01, 0.23],   [3.69, 27.27],  [0.00, 1.80], 

  [0, 0],     [0.01, 0.29],   [-5.93, -2.64], 

  [8, 39],     [2.55, 7.32],   [5, 48], 

  [131, 7279],   [1, 1] 

9.  [-0.25, 0.25],  [9.07, 20.07],  [0.00, 9.00], 

  [0, 1],     [-0.04, 1.16],  [-8.34, -5.04], 

  [-18, 51],    [-8.13, 8.87],  [-92, 147], 

  [636, 6096],   [0, 1] 

10. [-0.27, 0.23],  [0.93, 10.93],  [0.00, 9.00], 

  [1, 1],     [0.00, 1.10],   [-2.82, 2.88], 

  [-13, 46],    [-7.31, 2.69],  [-89, 150], 

  [-1886, 3053],  [1, 1] 

11. [-0.30, 0.29],  [8.92, 16.44],  [0.00, 7.20], 

  [1, 1],     [-0.05, 0.48],  [-6.98, -3.84], 

  [-12, 50],    [0.04, 8.75],   [-65, 150], 

  [-1483, 439],  [1, 1] 

12. [-0.21, 0.29],  [3.43, 7.43],   [0.00, 7.20], 

  [0, 0],     [-0.07, 0.43],  [-5.80, -3.40], 

  [-18, 51],    [0.39, 8.39],   [-82, 157], 

  [-2633, -1073], [0, 0] 

13. [-0.29, 0.21],  [0.95, 9.95],   [0.00, 9.00], 

  [0, 1],     [-0.04, 1.06],  [-8.28, -2.28], 

  [-10, 49],    [-4.81, 9.19],  [-77, 114], 

  [2439, 7379],  [1, 1] 

14. [-0.27, 0.30],  [1.02, 5.09],   [-1.66, 9.72], 

  [1, 1],     [2.27, 3.74],   [-2.12, 15.63], 

  [-8, 49],    [-7.44, 8.51],  [-75, 118], 

  [-938, 5272],  [1, 1] 

15. [-0.32, 0.28],  [10.77, 20.77],  [0.00, 9.00], 

  [1, 1],     [-0.08, 1.02],  [-8.62, -2.92], 

  [-14, 55],    [-6.70, 9.30],  [-105, 134], 

  [-2667, 2272],  [0, 0] 

16. [-0.27, 0.23],  [0.86, 7.86],   [0.00, 9.00], 

  [1, 1],     [-0.03, 1.07],  [-8.37, -5.97], 

  [-16, 54],    [-1.10, 8.90],  [-105, 134], 

  [602, 4242],   [0, 0] 
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